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Abstract: Strength characteristics of a two-dimensional ice beam were studied using a discrete ele-
ment method (DEM). The DEM solver was implemented by the open-source discrete element method
libraries. Three-point bending and uniaxial compressive tests of the ice beam were simulated. The ice
beam consisted of an assembly of disk-shaped particles with a particular thickness. The connection
of the ice particles was modelled using a cuboid element, which represents a bond. If the stress acting
on the bond exceeded the bond strength criterion, the bond started to break, explaining the cracking
of the ice beam. To find out the effect of the local parameters of the contact and bond models on the
ice fracture, we performed numerical simulations for various bond Young‘s modulus of the particles,
the bond strength, and the relative particle size ratio.

Keywords: ice beam; discrete element method; contact model; bond model; ice fracture; three-point
bending test

1. Introduction

As the sea ice area coverage in the Arctic Ocean shrinks over the years due to climate
change, the operation of ships in the Arctic Ocean have been issued. To operate a ship in the
sea ice area, accurate prediction of ice breaking performance is needed. Studies for an ice
breaking load estimation have been carried out using empirical, analytical, and numerical
methods [1]. The empirical method used measured data in full-scale trials and model-scale
experiments. Formulations based on full-scale data produce highly reliable methods for
the ice load prediction, while there is a limitation with regard to obtaining definitive data
on properties, e.g., thickness, strength, and friction [2,3]. The model tests in the ice model
basin have the advantage of being able to measure the ice load under various operating
conditions compared to the full-scale measurements, but it is very difficult to evaluate the
ice performance with various design factors due to cost and time issues. Consequently,
there is an increasing need for numerical models to predict the accurate ice load with regard
to various sea ice conditions in the initial design stages of Arctic offshore structures [4].

Numerical approaches for ice modeling could be divided into a continuous method,
such as the finite element method (FEM) and finite discrete method (FDM), and a dis-
continuous method, such as the discrete element method (DEM). The FEM is a dominant
numerical tool in modelling continuous materials both in the linear and nonlinear range of
deformation. It has some drawbacks when simulating macrocracks or fragmentation of the
material [5,6]. On the other hand, the DEM easily generates realistic macrocrack patterns
and material fragments given its discontinuous nature [5,7]. The DEM is known to better
simulate the propagation of an ice crack and fracture behavior because the connection
between the particles can be modelled [7]. The DEM is widely applied to ice modelling,
ice breaking, and ice–structure interaction issues [8]. To produce physical deformabil-
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ity and strength of ice by the DEM, researchers require extensive careful calibration of
parameters [5,9].

In the DEM, each individual particle that contains properties of the ice could be
described as several shapes such as a disk, a sphere, and a polyhedron. The DEM could
simulate various ice conditions, e.g., ice floes, level ices, and ice ridges by modeling the
ice as individual particles or an assembly of particles [10–13]. For the ice floes, studies on
an interaction between ships or offshore structures and the ice floes using disk-shaped
particles that assumed unbreakable ice were carried out [14–18]. For the level ices, some
studies used bonds between particles to simulate contacts and cracks in the level ice [19–21].
The bond between two particles was broken when the maximum force acting on the bond
exceeded a criterion, which could explain the crack and fracture phenomenon [22].

The ice breaking load in the DEM was highly dependent on the mechanical properties
of ice [23–25]. The bond Young’s modulus, flexural strength, and compressive strength
were related to parameters of contact and bond models. It is necessary to define the
parameters of the models that affect the mechanical properties of ice and to figure out the
relationship between the parameters and the mechanical properties of ice [23,26,27].

In the present study, the DEM was selected and applied to the three-point bending test
and the uniaxial compressive test. For the simulations, the open-source discrete element
method libraries were used [13,28,29]. The relationship between the mechanical properties
of the simulated ice and the parameters associated with the contact and bond models
was investigated.

The present paper is organized as follows. Section 2 describes numerical modeling
including the governing equation for particle contact and bond models, and the parameters
for ice modeling. Section 3 presents the results and discussion for the parametric study.
Finally, in Section 4, concluding remarks are provided.

2. Numerical Modeling
2.1. Contact Model

The translational and rotational motions of a particle with a constant mass (m) could
be expressed by Newton’s second law as follows:

m
du
dt

= ∑ Fc +∑ Fb + mg (1)

I
dω

dt
= ∑ Mc +∑ Mb (2)

where the subscripts c and b represent the contact and the bond, respectively. The mass
(m = ρhdπr2) is calculated as the disk-shaped particle that has a certain thickness (hd).
u is translational velocity of the particle. Fc and Fb are the contact force and the bond force,
respectively. mg is the gravitational force. I is the inertia moment of the particle, and ω
is the angular velocity of the particle. The particle rotation is calculated by the sum of
the torque (Mc) caused by collisions and the moment (Mb) by the bond that transferred to
the particle.

The contact force (Fc) by the collisions between particles could be simplified using a
spring-dashpot model. The contact force consisted of the normal (Fc,n) and tangential (Fc,t)
forces, which could be expressed as

Fc,n = knδn − γn
.
δn (3)

Fc,t = min
(∣∣∣∣kt

∫ t

tc
∆

.
δtdt − γt

.
δt

∣∣∣∣, µFc,n
)

(4)

where the subscripts b and t represent normal and tangential components, respectively.
k and γ are the spring stiffness and the damping coefficient, respectively. δ and

.
δ represent

the overlap and the relatively velocity between two contact particles, respectively. The
normal overlap (δn) was a function of the particle radius and the distance between the
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particle centroids at the current time step. The tangential overlap (δt) was calculated
by the incremental distance in the tangential direction after an incidence of contacting.
The maximum tangential force was limited by the Coulomb friction law with the friction
coefficient (µ) and normal contact force (Fc,n). The spring stiffness and damping coefficient
were dependent on the particle properties and selected contact law. The contact law could
be divided into a linear contact law (Hook contact model) and a non-linear contact law
(Hertz contact model). In this study, Hertz contact model was used [30].

2.2. Bond Model

The bonding method between particles was based on the parallel bond method [22].
Figure 1 shows two disk-shaped particles bonded by a cuboid element in the two-dimensional
model [13]. Each bond was characterized by the thickness (hb), width (2Rb), length (lb),
radius factor (λR), bond Young’s modulus (Eb), and the normal stiffness (kb,n) and shear
stiffness (kb,t) per unit area. Here, the bond thickness (hb) and the disk-shaped particle
thickness (hd) exist in the z-direction, and both values are identical. The width and length
of the bond could be expressed as

Rb = λRmin
{

ri, rj
}

(5)

lb = ri + rj (6)

where the radius factor (λR) ranged from 0 to 1. kb,n and kb,t depend on the bond Young’s
modulus (Eb), bond length (lb), and the ratio of the normal to shear stiffness (λns), kb,n and
kb,t could be expressed as

kb,n =
Eb
lb

(7)

kb,t =
kb,n

λns
(8)

Figure 1. Two particles connected with a bond.

The forces (Fb) and torques (Mb) acting on the particles connected with a bond caused
a relative displacement and rotation of those particles.

Fb = Fb,n + Fb,t (9)

Mb = Mb,n + Mb,t (10)

Before the start of the simulation, the forces (Fb) and moments (Mb) in the bond were
initialized to zero. The relative displacement and rotation of the particles were governed
by the linear elastic material and calculated as follows:

∆Fb,n(t) = kb,nSb∆t∆un (11)

∆Fb,t(t) = −kb,tSb∆t∆ut (12)

∆Mb,tw(t) = −kb,t Jb∆t[∆wn, 0] (13)

∆Mb,bn(t) = −kb,n∆t
[

Ib,y∆wt, Ib,z∆wz

]
(14)
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where Sb = 2Rbhb is the cross-sectional area of the bond, and ∆un and ∆ut represent the
parallel and perpendicular components to the bond axis, respectively. The subscripts
tw and bn indicate a twisting and a bending, respectively. ∆wn and ∆wt represent the
normal and tangential components, respectively. Ib,x = Ib,y = 1

6 h3
bRb, Ib,z = 2

3 hbR3
b, and

Jb = Ib,y + Ib,z represent the moments of inertia. J denotes the polar moment of inertia. The
torque could be expressed as follows:

Mb = r × Fb,t + Mb,tw + Mb,bn (15)

In the 2-D model, Fb.t contributed to the particle’s rotation around the z-axis. The
twisting moment (Mb,tw) was zero, and only the z-component of the bending moment
(Mb,bn) was not zero.

To simulate the ice fracture, we used the elastic beam theory. The normal bond strength
(σb) and the shear bond strength (τb) could be expressed as a maximum value as follows [22]:

σb,max = −
Fb,n

Sb
+

∣∣HMb,bn
∣∣hb

Ib,x
+

∣∣n·Mb,bn
∣∣Rb

Ib,z
(16)

τb,max =

∣∣Fb,t
∣∣

Sb
+

∣∣Mb,tw
∣∣Rb

Jb
(17)

where n is a unit normal vector, H is a 3 × 3 projection matrix from the 3-D space to
the x-y plane, H11 = H22 = 1, and all remaining elements are zero. The negative sign
in Equation (16) indicated that only tensile normal stress could cause bond failure. The
normal stress acting on the bond element includes the bonding moment due to the relative
rotation of the particle and the normal force. The bond began to break if at least one of the
maximum stress components acting on that bond exceeded the bond strength as follows:

σb,max > σb or τb,max > τb (18)

2.3. Parameters for Ice Modeling

The parameters for the contact model were the particle radius (r), density (ρ), Poisson
ratio (ν), friction coefficient (µ), and restitution coefficient (e). Some parameters, namely,
Poisson ratio (ν), friction coefficient (µ), and restitution coefficient (e) for the contact model,
were less crucial to approximate the strength and stiffness of the continuous material with
the inter-particle bonds [23,24]. The parameters of the bond model considered in this study
were the bond Young’s modulus (Eb), width (2Rb), length (lb), thickness (hb), ratio of the
normal to shear stiffness (λns), normal strength (σb), and shear strength (τb). The normal
and shear bond strengths were applied to be identical [31–33]. In the bending problem, the
effect of the contact point of the load was not significant [25]. Within a particle assembly,
all particle properties were assumed to be distributed uniformly. The distance between
particles was entirely covered by the bond. Thus, the bond length (lb) and the bond width
(2Rb) were regarded as the particle diameter (d = 2r). The radius factor (λR) was 1. For
both the three-point bending tests and the uniaxial compressive tests, the particle diameters
were set at d = 2.5, 5, 10 and 20 mm. The particle size effect was studied using the relative
particle size ratio (h/d). Here, h indicates the cross-sectional height of the ice specimen in
the three-point bending test and uniaxial compressive test as shown in Figure 2. h/d is
proportional to the number of particle layers of the ice specimen. The parameters related
to the contact and the bond of ice modeling are shown in Table 1.
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Figure 2. Problem description of numerical simulations: (a) three-point bending test; (b) uniaxial
compressive test.

Table 1. Summary of simulation parameters.

Parameter Value

Particle Poisson ratio (ν) 0.3
Particle friction coefficient (µ) 0.015

Particle diameter (d) (mm) 2.5, 5, 10, 20
Particle density (ρ) (kg/m3) 920
Coefficient of restitution (e) 0.3

Time step (∆t) (s) 2.0 × 10−6

Bond Young’s modulus (Eb) (GPa) 1.0, 2.0, 3.0
Bond stiffness ratio (λns) 2.0
Bond width (2Rb) (mm) d

Bond strength (σb) (MPa) 0.5, 0.75, 1.0, 1.5, 2.0

3. Results and Discussion
3.1. Three-Point Bending Tests and Uniaxial Compressive Tests of Ice Beam

To investigate the relationship between the parameters for ice modeling and the
simulated mechanical properties of ice, we simulated the three-point bending test and
uniaxial compressive test of an ice beam. Figure 2 shows the dimensions and test setup of
the ice specimen. In the three-point bending simulation, the distance (l) between the two
fixed supporting points was 500 mm and the length of the ice specimen (L) was 700 mm.
The width (b) and height (h) were set to be the same at 70 mm. A constant downward
vertical load with a constant rate of 0.002 m/s was applied at the middle point on the
top side of the ice beam. The supporting and loading points also were modelled by a
disk-shaped particle.

In the uniaxial compressive tests, the distance (l) between top and bottom plates was
250 mm. The width (b) and height (h) were set to be the same at 100 mm. The bottom plate
was fixed, and the constant downward load of 0.002 m/s was applied to the top plate. The
bottom and top plates were modelled by a disk-shaped particle.

Sea ice is quasi-brittle heterogenous and anisotropic. In the present study, for simplic-
ity, the sea ice was assumed to be homogeneous, anisotropic, and elastic brittle [24,25,32].
The ice beam was represented by the particle assembly with a regular arrangement such as
the Hexagonal Close Packing (HCP) [24,25,32]. This arrangement leads to anisotropy but
yields a less realistic crack pattern as compared to the randomized packing [27]. Despite
the limitations of the regular arrangement, it could lead to a consistent and predictable
mechanical behavior, which was beneficial for establishing the relationship between the
parameters for ice modeling and the simulated mechanical properties of ice [20,24–26,32].

In the modeling regarding the level ice for the ice–structure interaction issues, the
critical mechanical properties were the bond Young’s modulus, flexural strength, and
compressive strength [34]. The three-point bending and uniaxial compressive tests were
carried out to obtain the simulated Young’s modulus (Es), as well as the flexural strength
(σf ) and the compressive strength (σc) of the ice beam. The total contact force acting on the
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loading particle indicated the load applied to the ice beam, while the deformation of the
ice beam was expressed by the displacement of the loading particle. The flexural strength
and the compressive strength of the ice beam could be calculated as

σf =
3
2

Pmaxl
bh2 (19)

σc =
Pmax

bh
(20)

where Pmax is the maximum load when the ice beam is broken. The simulated Young’s
modulus (Es) can be derived from the stress-deflection curve as

Es =
l2

6h
(σB − σA)

(UB − UA)
(21)

where the subscripts A and B denote the two arbitrary selected points in the stress–
deflection curve.

In the three-point bending and uniaxial compressive tests, the bond Young’s modulus
(Eb), the bond strength (σb), and the relative particle size ratio (h/d) were studied as the
main parameters of the contact and bond models. Figure 3 shows the failure process of the
three-point bending test. The compressive stress was increased at the upper part and the
tensile stress was increased at the lower part of the ice beam until the crack appeared at
t = 0.4792 s. It could be observed that the crack occurred near the lower part at t = 0.4794 s.
As the compressive stress concentrated near the upper part at t = 0.4796 s, the ice beam
broke at t = 0.4800 s. The fracture of the ice beam occurred at the middle point with a
gradual increase of the normal stress at the top and bottom sides [33,35].

Figure 3. Failure process of three-point bending test: left column presents x-directional velocity; right
column presents normal stress in the x-direction. (a) t = 0.4792 s; (b) t = 0.4794 s; (c) t = 0.4796 s;
(d) t = 0.4800 s; (e) t = 0.4792 s; (f) t = 0.4794 s; (g) t = 0.4796 s; (h) t = 0.4800 s.

Figure 4 shows the failure process of the uniaxial compressive tests. The tests were
performed at the bond Young’s modulus of 1.0 GPa, the bond strength of 0.75 MPa, and
the particle size of 10 mm. The compressive stress was gradually increased until the crack
appeared at t = 0.2988 s. The crack was propagated until t = 0.2989 s, showing a shear
failure pattern [33].
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Figure 4. Failure process of uniaxial compressive test: left column presents x-directional velocity;
right column presents normal stress in the y-direction. (a) t = 0.2987 s; (b) t = 0.2988 s; (c) t = 0.2989 s;
(d) t = 0.2990 s; (e) t = 0.2987 s; (f) t = 0.2988 s; (g) t = 0.2989 s; (h) t = 0.2900 s.

Figure 5 shows the obtained stress–deformation curve. During the short time after
the deformation was started, the stress reached to the maximum stress, which denoted a
brittle material behavior. The normal stress of the ice beam was increased until the fracture
occurred. The simulated Young’s modulus (Es) could be obtained by the stress and defor-
mation at the two arbitrary points A and B. The maximum stress at the point C indicated
the flexural strength (σf ) and the compressive strength (σc). In Figure 5a, the simulated
Young’s modulus (Es) and the flexural strength (σf ) were 1.47 GPa and 1.15 MPa, respec-
tively. As shown in Figure 5b, the simulated Young’s modulus (Es) and the compressive
stress (σc) were 1.258 GPa and 3.03 MPa, respectively. The ratio of the compressive stress to
the flexural stress (σc/σf ) was 2.63, which was acceptable for that measured for the Bohai
Sea [35]. To validate the bond model, we compared the result for the flexural strength with
the DEM simulations [24,26,33] and experimental data of sea ice [35] as listed in Table 2.
The DEM simulations [24,26,33] used the parallel bond [22] and the Mohr–Coulomb law
for the breaking criteria. For the same bond Young’s modulus, the bond strengths were
similar. The real sea ice data represented the measured mean flexural strength of sea ice
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in the Bohai Sea [35]. The simulated flexural strength in the present study was slightly
higher than the measured mean flexural strength of sea ice [35] and lower than the DEM
results [24,26,33]. All simulated results (Es, σc, σf , σc/σf ) were within the range of the
mechanical properties of the actual sea ice [35]. It could be seen that the simulated ice
characteristic represented the mechanical properties of real sea ice to a reasonable level.

Figure 5. Typical simulation results: (a) stress–deflection curve in three-point bending test;
(b) stress–strain curve in uniaxial compressive test. Points A and B indicate two arbitrary selected
points to derive the simulated Young’s modulus (Es). Point C corresponds to the maximum load
(Pmax) for calculating the compressive (σc) and the flexural strength (σf ) in Equations (19) and (20),
respectively.

Table 2. Simulated flexural strength in different DEM models.

Parameter Present Ji et al. [24] Di et al. [26] Long et al. [33] Ji et al. [35]

Bond Young’s
modulus (Eb) (GPa) 1.0 1.0 1.0 1.0 -

Bond strength
(σb) (MPa) 0.75 0.74 0.73 0.7 -

Flexural strength
(σf ) (MPa) 1.15 1.59 1.25 1.27 1.08

Compressive
strength (σc) (MPa) 3.03 2.55 5.64 3.73 2.56

3.2. Effect of Bond Young’s Moduls

The effect of the bond Young’s modulus (Eb) was investigated. The relationship
between the bond Young’s modulus and simulated Young’s modulus (Es) is examined
in Figure 6. The bond strength (σb) was 1.0 MPa and the relative particle size (h/d) was
7.06. The simulations were performed at three bond Young’s modulus. Figure 6a presents
the stress–deflection curve. The slope of the stress–deflection curve increased as the bond
Young’s modulus increased, while the maximum stress was almost consistent. Figure 6b
shows the stress–strain curve. The slope of the stress–strain curve increased as the bond
Young’s modulus increased, while the maximum stress was almost consistent. The material
stiffness was proportional to the bond Young’s modulus, but the flexural strength (σf ) and
the compressive strength (σc) were not related to the bond Young’s modulus. Figure 6c
shows the ratio of the simulated Young’s modulus to the bond Young’s modulus (Es/Eb).
The normal bond stiffness (kb,n) was proportional to the bond Young’s when the bond
length (lb) was constant. Therefore, a uniform ratio (Es/Eb) was obtained under the given
simulation conditions. The ratio (Es/Eb) greater than 1 meant that the ice fracture occurred
at a lower deflection than the targeted ice condition. However, the uniaxial compressive
tests showed a lower result of the ratio (Es/Eb) than that of the three-point bending tests.
This was due to the assumption of equal contact and bond modulus. When the contact and
bond modulus were equal, the contact stiffness at a small overlap was much lower than
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the bond stiffness. Therefore, the simulated Young’s modulus was lower in the uniaxial
compressive tests where contact was a dominant part of the load-resisting mechanism [25].

Figure 6. Effect of bond Young’s modulus: (a) stress–deflection curve; (b) stress–strain curve; (c) ratio
of simulated Young’s modulus to bond Young’s modulus.

3.3. Effect of Bond Strength

Figure 7 shows the stress–deformation curve for various bond strengths (σb). The bond
Young’s modulus (Eb) and the relative particle size (h/d) were 1.0 GPa and 7.06, respectively.
The flexural strength (σf ) and the compressive strength (σc) increased proportionally with
the bond strength. This was due to the breaking condition where the bond was breaking
when the maximum stress exceeded the bond strength. However, the deformation of the
ice beam according to the constant vertical load showed a constant behavior until the ice
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was fractured. This indicated that the simulated material stiffness was not affected by the
bond strength.

Figure 7. Effect of bond strength on: (a) stress–deflection curve; (b) stress–strain curve.

Figure 8 presents the ratio of the flexural strength to bond strength (σf /σb). The
flexural strengths increased linearly with the bond strength. The slope showed a constant
σf /σb of 1.52. σf /σb could be defined as the normalized strength. In an ice modeling trial,
the normalized strength is a key variable that could characterize the effect of bond strength
on target material strength.

Figure 8. Effect of bond strength on the flexural strength.

3.4. Effect of Particle Size

Figure 9 presents the effect of the relative particle size (h/d) to the ratio of simulated
Young’s modulus to bond Young’s modulus (Es/Eb). The bond Young’s modulus and the
bond strength were 1.0 GPa and 1.0 MPa, respectively. As h/d increased, Es/E tended
to increase slightly in the uniaxial compressive tests, while converging in the three-point
bending tests. In Figure 9a, Es/Eb converged to 1.5 with h/d > 7.06, while it was low with
h/d < 7.06. Following the results shown in Figure 9b, the simulated Young’s modulus was
proposed as a function of Es/Eb and h/d and expressed as

Es

Eb
= −0.603e−0.129 h

d + 1.414 (22)
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Figure 9. Effect of relative particle size on the simulated Young’s modulus: (a) three-point bending
test; (b) uniaxial compressive test.

The relative particle size ratio (h/d) was dependent on the porosity and the number
of particles. In other words, smaller particle sizes reduced a void between the particles
and increased the number of particles per unit volume, resulting in a stiffer assembly.
Therefore, if the relative particle size was large enough, the simulated Young’s modulus
converged [23,36].

Figure 10 shows the effect of the relative particle size (h/d) to the simulated ice
strength. The normalized strength converged to be 1.55 for the flexural strength and 4.04
for the compressive strength at h/d > 7.06, indicating that the consistent behavior of ice
could be predicted when the relative particle size ratio was higher than 7.06.

Figure 10. Effect of relative particle size on (a) flexural strength; (b) compressive strength.

3.5. Ice Modeling in the Bohai Sea

The simulated flexural strength (σf ) and compressive strength (σc) were compared to
the actual strength of the Bohai Sea ice by the three-point bending test and the uniaxial
compressive test [35]. The measured mean and the maximum flexural strengths were
1.08 MPa and 2.42 MPa, respectively. The measured mean and maximum compressive
strengths were 2.56 MPa and 5.98 MPa, respectively. The Young’s modulus in the Bohai
Sea was assumed to be 1.0 GPa. The two particle sizes, 5 mm and 10 mm, were considered.
For the relative Young’s modulus ratio (Es/Eb) of 1.5 and the assumed Young’s modulus
of actual ice of 1.0 GPa, the bond Young’s modulus was 1/1.5 = 0.66 GPa. The assumed
bond Young’s modulus could not affect the flexural strength. The bond strength for the
mean flexural strength was 1.08/1.55 = 0.7 MPa and the bond strength for the maximum
flexural strength was 2.42/1.55 = 1.56 MPa. In the uniaxial compressive tests, the bond
Young’s modulus was 0.85 GPa from Equation (22). The bond strength for the mean
compressive strength was 2.56/4.04 = 0.63 MPa and the bond strength for the maximum
compressive strength was 5.98/4.04 = 1.48 MPa. Table 3 shows the ice properties used in
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the simulation. Figure 11 presents the stress–deflection curves. Table 4 shows the simulated
flexural strengths and the actual flexural strengths of ice. The simulated strength was
evaluated to be close to the actual strength. From the results in Figure 11 and Table 4, we
can confirm that the parameters determined by the relationships obtained in the parametric
study (the Es/E ratio and the normalized strength) were able to achieve the desired flexural
strength and compressive strength. This feature is crucial for the simulation of ice-structure
interactions.

Table 3. Parameters for ice modeling in the Bohai Sea.

Parameter Three-Point Bending Uniaxial Compressive

Particle Poisson ratio (ν) 0.3 0.3
Particle friction coefficient (µ) 0.015 0.015

Particle diameter (d; mm) 5, 10 5, 10
Particle density (ρ; kg/m3) 920 920
Coefficient of restitution (e) 0.3 0.3

Time step (∆t; s) 2.0 × 10−6 2.0 × 10−6

Bond Young’s modulus (Eb; GPa) 0.66 0.815
Bond stiffness ratio (λns) 2.0 2.0
Bond width (2Rb; mm) d d

Bond strength (σb; MPa) 0.7/1.56 0.63/1.48

Figure 11. Stress–deformation curve for validation: (a) flexural strength; (b) compressive strength.

Table 4. Flexural strength and compressive strength in the Bohai Sea.

Particle
Diameter
(d; mm)

Flexural Strength (σf) Compressive Strength (σc)

Present Bohai
Sea [35]

Difference
(%) Present Bohai

Sea [35]
Difference

(%)

10 Mean 1.07 1.08 −0.92 2.63 2.56 2.73
Max 2.41 2.42 −0.41 6.14 5.98 2.67

5 Mean 1.06 1.08 −1.85 2.58 2.56 0.78
Max 2.40 2.42 −0.82 6.00 5.98 0.33

4. Conclusions

In the present paper, the three-point bending simulation was performed using the
DEM. The open-source DEM libraries were used for the simulation [13,28,29]. The focus
was to figure out the relationship between the model parameters and the mechanical prop-
erties of ice because there is a unique relationship in the regular particle arrangement [27].
This relationship is important for predicting an ice breaking load caused by the interaction
with ships or offshore structures. To simulate the ice fracture, we used the bonds to connect
the particles. The ice fracture occurred when the maximum stress acting on the bond
exceeded the bond strength. The relationship between the parameters for ice modeling
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and the mechanical properties of the simulated ice was investigated. The effects of the
bond Young’s modulus (Eb), the bond strength (σb), and the relative particle size ratio (h/d)
on the mechanical properties of the simulated ice were studied. The simulated Young’s
modulus (Es) increased in proportion to the bond Young’s modulus (Eb), while the flexural
strength was not affected by the bond Young’s modulus. This was because that the normal
stiffness of the bond was proportional to the bond Young’s modulus. The simulated flexural
strength (σf ) and the compressive strength (σc) increased linearly with respect to the bond
strength (σb). The normalized strength was constant for given simulation conditions. This
was the key relationship for predicting the simulated flexural strength. The influence of
the relative particle size ratio (h/d) was investigated to obtain the converged value. The
simulated Young’s modulus for the three-point bending tests tended to converge to the
constant ratio (Es/Eb) of 1.5 at a sufficiently high h/d. The simulated Young’s modulus
for the uniaxial compressive tests increased as the bond Young’s modulus increased. As
per the results, the normalized flexural strength and compressive strength were 1.55 and
4.04, respectively. From the ice modelling in the Bohai Sea, the obtained parameters of the
contact and bond models could be used to assess and predict the mechanical properties of
the sea ice. In future research, ice breaking by a ship will be carried out.
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