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Abstract: Heavy metals are a dangerous source of pollution due to their toxicity, permanence in the
environment and chemical nature. It is well known that long-term exposure to heavy metals is related
to several chronic degenerative diseases (cardiovascular diseases, neoplasms, neurodegenerative
syndromes, etc.). In this work, we propose a machine learning framework to evaluate the severity of
cardiovascular diseases (CVD) from Human scalp hair analysis (HSHA) tests and genetic analysis
and identify a small group of these clinical features mostly associated with the CVD risk. Using
a private dataset provided by the DD Clinic foundation in Caserta, Italy, we cross-validated the
classification performance of a Random Forests model with 90 subjects affected by CVD. The proposed
model reached an AUC of 0.78 & 0.01 on a three class classification problem. The robustness of the
predictions was assessed by comparison with different cross-validation schemes and two state-of-
the-art classifiers, such as Artificial Neural Network and General Linear Model. Thus, is the first
work that studies, through a machine learning approach, the tight link between CVD severity, heavy
metal concentrations and SNPs. Then, the selected features appear highly correlated with the CVD
phenotype, and they could represent targets for future CVD therapies.

Keywords: machine learning approaches; human scalp hair analysis (HSHA); cardiovascular
diseases (CVD)

1. Introduction

Heavy metals, such as lead, mercury, aluminium, arsenic, and others, pose severe
threats to human health [1]. In fact, their absorption by human bodies, in several hetero-
geneous ways and doses, can perturb and eventually damage the normal health balance;
besides, they can affect human health at different scales, ranging from cellular DNA to
anatomical structures such as the nervous system [2]. Heavy metals have a strong penetrat-
ing power allowing them, in some cases, to overcome the different protective structures of
the human body, such as the blood-brain barrier, restricting, amongst other functions, the
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access of pathogens into the cerebrospinal fluid or the placenta which can protect the fetus
from maternal toxins [3].

The effects of the so-called external poisons (or xenobiotics) are not new to medical
science. In fact, heavy metals have been present in a variety of natural sources, including
air, drinking water and food, and have been since at least the dawn of human life. Thanks
to evolution, human beings have elaborated a series of techniques and processes of defense.
However, since the Industrial Revolution, concentrations of xenobiotics in the environment
have increased dramatically [4]. Several studies by the Agency for Toxic Substances and
Disease Registry (ATSDR) stated that different chemicals containing heavy metals are
released into the environment and interact with entire biological ecosystems [5-11].

Depending on the concentration and exposure time, heavy metal damage can be
divided into three different increasing levels: (i) toxic overload, a slow accumulation of
damaging substances; (ii) chronic poisoning, a regular exposure to toxic but not lethal
concentrations of metals; and (iii) acute poisoning. The concentration, the exposure time
and especially the type of heavy metal determine the toxicity degree and affect the bio-
logical processes which are involved. Xenobiotics can take over the biological tasks that
in a normal metabolism are occupied by essential nutritional minerals, thus creating an
obstacle to the normal development of vital processes. Moreover, they can significantly
increase the production of free radicals that alter the structural and functional integrity
of healthy cells making the organism more vulnerable to degenerative pathologies such
as neoplasia, cardiovascular diseases, Alzheimer’s and early aging caused by DNA dam-
age [12]. Another factor that influences heavy metals’ toxicity is their non-biodegradability;
therefore, once released in the environment, they tend to bio-concentrate and make their
way to humans. For example, mercury compounds, once released in the sea as industrial
waste, can change into methylmercury due to bacteria metabolism, thus representing a
very strong toxic substance for human neurons [13].

Heavy metals in the human body damage DNA causing the formation of reactive
oxygen species and alterations in cells. They produce mutation and induce an inhibition
in the DNA repair mechanism contributing to genetic damage and double strand breaks
(DSBs) [14,15]. For example, elements like arsenic, nickel and cadmium are considered
among the activators of mutagenic changes in cell [16]. Furthermore, oxidative deterio-
ration of biological macromolecules is mainly caused by the binding of heavy metals to
DNA and nuclear proteins [14]. Heavy metals can damage not only the genetic makeup
of somatic cells but also of germ cells. Benoff et al. found that environmental cadmium
exposures could reduce human male sperm concentration and motility [17].

Cardiovascular disease (CVD) is an increasing global health problem and represents
the number one cause of death in the occidental world [18]. In 2017, the annual world
mortality rate of CVD was approximately 18 million [19] and it is expected to reach
23.6 million deaths by 2030 [20]. CVD can be caused by a coincidence of different risk
factors that comprise genetic, behavioural and environmental factors in the broadest sense.
Recent studies have shown that exposure to heavy metals increases risks of diabetes
and hypertension [21,22]. Some essential (Co, Cu, Cr, Ni, Se) and toxic metals (As, Cd,
Pb, and Hg) for the human body may also increase the risk of CVD through endocrine
disruption [23]. Few epidemiologic studies in the US have highlighted a low and moderate
association between arsenic exposure contained in drinking water and cardiovascular
risks [24,25]. Furthermore, Wang et al. [26] reported that carotid atherosclerosis is linked
with ingested inorganic arsenic. The association between blood cadmium and blood
pressure is mentioned by Gallagher and Meliker [27] while Salonen et al. [28] found that
an accumulation of mercury in the body is linked with an excess risk of acute myocardial
infarction, just to name a few works. In general, in the last two decades evidence about
the role of exposure to environmental heavy metals in CVD risk has rapidly increased [29];
however, the true mechanism by which heavy metals affect cardiovascular risk factors
still remains quite unknown and difficult to identify [30]. Due to the complex physiology
of CVD, patients differ for some pathological aspects of disease such as: the time of



Appl. Sci. 2021, 11, 8405

30f17

onset, dynamics, and outcomes. This disease-related complexity makes the relevance of
environmental factors difficult to quantify and study despite a growing understanding of
the genetic, protein and molecular mechanisms involved in CVD [30].

Accordingly, in this work we investigate the association between single nucleotide
polymorphisms (SNPs) and pathological conditions related to environmental heavy metals
focusing on cardiovascular diseases.

Human scalp hair analysis (HSHA) is an alternative to blood and urine testing used
to monitor the environmental and occupational pollution [31-33]. It is highly reliable and
accurate even when heavy metal concentrations are very low. It is accepted by the US Food
and Drugs Administration and by several International Agencies and organizations such as
the Environmental Protection Agency (EPA) and World Health Organization (WHO). In this
context, the development of accurate diagnostic decision support systems, based on HSHA
tests, for the early detection of cardiovascular diseases to monitor patient conditions and
assess the severity of symptoms is of paramount importance. As far as we know, we are the
first to use a machine learning approach to correlate HSHA data with polymorphisms that
specifically affect the coagulation cascade and the integrity of the vascular endothelium.
In this context, machine learning methods can also help to clarify the connection between
environmental factors, in particular heavy metal exposure and CVD risks, since these
computational techniques do not require any a priori assumptions on the model and allow
to highlight even very complex relationships. For this purpose, we enrolled a cohort of
90 patients affected by CVD at the DD Clinic foundation (https:/ /www.ddclinicfoundation.
eu/, accessed on 31 August 2021) of Caserta, Italy. The DD Clinic foundation finds its
mission within the Integrated Personalized Medicine domain, specifically, aiming at the
elaboration of cellular detoxification protocols from heavy metals with a particular attention
to functional foods and nutraceutical supports to slow down or block the specific genetic
predispositions of chronic degenerative diseases. We examined HSHA tests of patients
involved and we grouped them into three clinical classes associated with three distinct
levels of clinical risk. We used a machine learning approach, to evaluate which are the
most important heavy metals associated to the aforementioned three clinical groups and
their predictive power. In this way, the study of specific heavy metals particularly linked
to CVD risk can facilitate the identification of true biological mechanisms through which
environmental aspects and heavy metals influence cardiovascular risk factors and can
shed light on the genetic basis of the disease. Thus, according to the best practices of the
explainable artificial intelligence framework, we tried to assess transparency, justification,
informativeness and uncertainty related to the proposed framework.

Based on the hypothesis that heavy metal concentrations and SNPs can accurately
model the severity of CVD, the proposed framework provides a tool for remotely monitor
and, eventually, diagnose the risk for cardiovascular risky conditions, thus representing an
opportunity to widen the available possibilities in the telemedicine domain. Our findings
could also pave the way for future therapies and the development of diagnostic tools to
better characterize the diseases caused by the accumulation of heavy metals.

2. Materials and Methods
2.1. Data Description

We analyzed a dataset collected by the DD Clinic foundation of Caserta in Italy
between September 2014 and February 2020. The DD Clinic foundation is a research
institute and consists of 13 sections distributed throughout the Italian territory. The main
research activities, carried out in collaboration with universities and public and/or private
health organisations, are in the field of oncological, neurodegenerative and cardiovascular
diseases. In this study, 90 patients with a CVD diagnosis were enrolled; they signed an
informed and underwent a HSHA test to evaluate the concentrations of 27 heavy metals in
their hair. The analysed subjects are Caucasians (55 males and 39 females) with median
age of 53.5 £ 6.4 years.
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In addition, every subject underwent a genomic analysis from which we selected SNPs
of 25 genes linked to a CVD phenotype. Specifically, the genetic analysis is a nutrigenomic
test and consists of a salivary swab to highlight genetic mutation that can cause metabolism
alterations and the onset of several cardiovascular diseases. We implemented an allenic
discrimination analysis using polymerase chain reaction (PCR) [34]. The enrolled subjects
lived near the so called ‘Land of Fire’ (in Italian: Terra dei Fuochi)—a defined geographical
area around the cities of Salerno and Naples in Campania. This area contains the largest
illegal waste dump in Europe [35]. The 52 features used in our analysis (27 heavy metals
and 25 SNDPs) are listed in Table 1. According to the patients’ clinical conditions, a three-
level risk index was assigned to each subject: moderate (MR), high (HR) and very high risk
(VHR). These levels are characterized by the same pathologies (heart attack, thrombosis,
stroke, etc.), the difference is linked to the severity of the clinical conditions in terms of
disability and risk of mortality. Further information is reported in Table 2. Specifically, the
analysed dataset was composed of:

* 34 subjects in Class MR;
* 18 subjects in Class HR;
e 38 subjects in Class VHR.

Table 1. List of analysed heavy metals and selected SNPs used as features in our analysis. The heavy
metal concentrations are extracted by means of TMA hair tests.

Heavy Metals
Aluminum Arsenic Barium Beryllium
Bismuth Boron Cadmium Calcium
Chromium Cobalt Copper Iron
Lead Lithium Magnesium Manganese
Mercury Molybdenum Nickel Phosphorus
Platinum Selenium Sodium Thallium
Titanium Vanadium Zinc
Polymorphisms
IL10 A1082G TNF o/G-308A CBS T1080C IL-1BC-551T
IL4AR 190A/G BCO1 VDR ACE
IL-10-899 (+4845) C>T GSTM1 IL-6 (-174)G/C BHMT (GA AA AG)
MTEFR CBS C6997 MTR A2756G MTR A66G BHMT (GG AG AA)
IL6 634C/G and 174C/G  IL6R > Asp358Ala; rs2228145 A>C MNSOD2 MNSOD3
MTHEFR C677T MTHER A1298C IFNG 874T/A AHCY 257A/G
CAT C262T

Table 2. Clinical conditions linked to the three considered classes. In particular each level risk is characterized by different

values of ESC SCORE RISK [36] and low-density lipoproteins (LDL) cholesterol.

Class Clinical Status

MR ESC SCORE RISK < 5% and LDL threshold < 115 mg/dL

Patients with familial dyslipidemia or severe hypertension, diabetics without cardiovascular risk factors and without organ damage and
HR patients with moderate chronic renal failure (GFR > 30-59 mL/min/1.73 mz). 5% < ESC SCORE RISK < 10% and
LDL threshold < 100 mg/dL

Patients with documented cardiovascular disease (from coronary angiography, stress echocardiography, radionuclide imaging,
ultrasound evidence of carotid plaque), previous myocardial infarction, previous acute coronary syndrome, previous coronary

VHR

revascularization surgery with aorto-coraric bypass or percutaneous transluminal coronary angioplasty or peripheral, previous

ischemic stroke and peripheral arterial disease, diabetic with one or more cardiovascular risk factors and/or markers of organ damage
(and microalbuminuria) and with severe renal insufficiency (GFR < 30-59 mL/min/1.73 m?). ESC SCORE RISK > 10% and
LDL threshold < 70 mg/dL
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All patient data were anonymised. No data or elements attributable to patients
were stored.

2.2. Methods

The goal of this study is the development of a diagnostic decision support system
to evaluate the existence of a relationship between heavy metals and the inherent genetic
mutations with the severity of associated CVD. We hypothesize here that the base of
knowledge consisting of heavy metal concentrations and SNPs can accurately predict the
severity of CVD. The proposed approach consists of four main steps: (i) data sampling;
(ii) comparison of three learning models to choose the best performing one; (iii) feature
selection; (iv) diagnosis through the most performing learning model. The data analysis
procedure is summarized in Figure 1.

Comparison of 3
learning models

l \ Diagnosis
. through the
Raw data ‘ Sampling \ ’ most performing

model

Features
selection

Figure 1. Flowchart of the proposed methodology. After sampling we selected the most performing
learning algorithm and implemented a feature reduction procedure. Finally we used the selected
learning model to classify the patients in the three CVD risk classes.

A detailed description of these steps is provided in the following sections.

2.2.1. Data Sampling

First of all, since the data used in this work are characterized by high heterogeneity,
the features have wide and poorly comparable range of values; accordingly, a data stan-
dardization was performed as a preliminary in which we rescaled data to have a mean
of 0 and a standard deviation of 1. For the modelling phase, the data presented a typical
issues of a learning analysis—data imbalance. A dataset is balanced if the classes are
approximately equally represented. Learning algorithms require a balanced dataset in
order to yield accurate predictions, which, otherwise, would be severely biased towards
the majority class. The data imbalance can be solved using two opposite strategies: on
the one hand, it is possible to over-sample the classes less populated; on the other hand
it is possible to under-sample the majority class. Every strategy has its own advantages
and drawbacks, for the present case we chose an oversampling technique because of the
limited available sample size.

In particular, in this work we used the Synthetic Minority Over-sampling Technique
(SMOTE) sampling method. This technique creates new instances of the minority classes
from combinations of preexisting instances. A particular advantage of such an approach
is to create novel synthetic examples rather than using duplicates, which is the case of
other more standard approaches such as bootstrap. A peculiar aspect of SMOTE is that
it generates synthetic examples by operating in feature space rather than data space [37].
To over-sample the minority class, each minority class observation is taken into account
and its n minority-class neighbors are also considered; then, new synthetic examples are
introduced along the directions connecting the considered example and its neighbors, thus
resulting in n novel synthetic observations.
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2.2.2. Feature Selection

After having the data standardized and the three classes balanced, we performed a
feature selection procedure based on the Boruta algorithm [38]. Boruta is a wrapper method
that exploits the Random Forest classifier to perform a robust and efficient supervised
feature selection. Given the relatively small number of features, we might not even apply
a feature selection strategy, but through Boruta we reduce the noise or redundant data,
thus we can improve our model by using only those features that are uncorrelated and
non-redundant. In fact, a wrapper method like Boruta plays an important role not only
reducing the computational time of the algorithm but decreasing the complexity of the
model and improving the model performances. Briefly, Boruta (Boruta is a god of the forest
in the Slavic mythology) exploits the same idea behind the Random Forest classifier, that is,
by inserting elements of randomness into the system and calculating results from the set of
randomized samples, it is possible to reduce the negative effect of random fluctuations and
correlations [38]. In Boruta, Random Forest trees are independently grown on different
bagging samples of the training set. Then, feature importance is computed through the
loss of classification accuracy caused by random permutation of the variables.

2.2.3. Classification Model

Parallel to the feature selection procedure, we compared the classification perfor-
mances of three different algorithms: General Linear Model, Random Forest and Neural
Networks. These models have been fed with the 52 considered features (27 heavy metals
concentration + 25 polymorphisms). We started with a linear hypothesis and then we
applied machine learning models to improve the classification performances. To increase
the robustness of our findings, we used two very different machine learning algorithms as
neural networks based on the artificial neuron as fundamental unit and Random Forest
composed of an ensemble of decision trees. These algorithms are very versatile and not
require any a priori assumption.

The Generalized Linear Model (GLM) expands and, in a sense, completes the perspec-
tive and the applications field of the linear regression model [39]. It was formulated by John
Nelder and Robert Wedderburn as a way to uniform different statistical models within a
single model including the linear model, logistic regression and Poisson regression [40].
While in the classical linear model it is assumed that the dependent variable has a normal
distribution, in the GLM the dependent variable can be distributed as any variable belong-
ing to exponential family: binomial, poissonian, gamma, etc. .. The linear model presumes
that the expected value of the dependent variable y is provided by a linear combination
of the independent variables x. This introduces a limitation of linearity that restricts the
practical application field. Instead, GLM introduces a linearizing link function which
transforms the expectation value of the dependent variable [41]. In this way, non-normal
and discrete distributions of y can also be described through this model [42]. Specifically,
GLM is composed of three components [43]:

1. A random component that specifies the conditional distribution of the dependent
variable y = v, ...,y composed of n independent observations in relation to the
values of the independent variables of the model.

2. Alinear function of regressors.

Vi = 01X +&1Xp + .o+ e X+ y 1)
3. Alinearizing link function g() that converts the expectation of y;, x; in v;.

g(xi) = vi = a1xpn +arxp + .. F X+ )
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Random Forest (RF) is a machine learning algorithm which exploits a set of decision
trees built through resampling with repetitions (bootstrapping) of the training dataset [44].
In the training phase, at each node of a RF tree, a subset of features is randomly selected
so that the RF trees are poorly correlated with each other. Then, the classification task is
performed through a majority vote procedure; each tree yields its own prediction and the
final decision is obtained by majority voting.

In general, RF has some features that make it a suitable choice for many classification
problems: (i) RF is easy to tune with only two parameters to tune, the number of trees t used
to grow the forest and the number of features m sampled to grow each leaf within a tree; (ii)
it is robust to overfitting; (iii) using an out-of-bag procedure, RF can compute an unbiased
estimation of the generalization error. Node impurity is measured by the Gini index, in
supervised classification tasks, this metric allows the forest to learn the optimal cuts and
how to optimally separate the available classes [45]. In our analysis, in order to obtain
results independent from the model tuning, we adopted a standard configuration with
each forest grown with t = 300 trees and m = f/3 (f being the total number of features).

Artificial neural networks (ANNSs) are constituted by computational networks repro-
ducing the human nervous system that can learn from known examples and generalize to
unknown cases. In our work, we implemented multilayer perceptron networks (MLPs) [46],
the most commonly used ANNSs, that used the back-propagation algorithm in the super-
vised learning process. The MLP’s architecture provides three neural levels: input, hidden
and output layers. In the learning process a features array feeds the input layer. Then the
input flows to the next hidden layers through dendrites, i.e., neural connections; during
the crossing of the network, the signal can be inhibited or amplified through the connection
weights and the neurons add the input signals and transform them into output signals by
means of an activation function. Our MLP model was composed of one hidden layers with
3 neurons and used the sigmoid as an activation function.

2.2.4. Cross-Validation and Performance Metrics

In order to estimate the goodness and the robustness of our classification model a
cross validation framework was applied. In general, for a k-fold Cross Validation (CV)
procedure, the original dataset is randomly partitioned into k equal sized subsamples.
Of the k subsamples, a single subsample is retained for validation and the remaining
k — 1 subsamples are used to train the model. To select the most performing algorithms
between GLM, RF and ANNs we applied a common five-fold. Then we used the feature
set individuated by Boruta to feed this learning model and to distinguish the three-levels
CVD risk. To make our model more robust we studied the trend of the classification
accuracy while varying the k parameter: k = 10,5,3 and Leave One Out (LOO) Cross
Validation. However, for the present case such procedure could greatly affect the model
accuracy. Accordingly, we also assessed a LOO cross validation in order to maximize the
number of observations used for training. It is well known that the results obtained with
such procedure should be considered cum grano salis as they could lead to an accuracy
overestimation. A figurative example of our procedure is shown in Figure 2.

The model performance were firstly evaluated in terms of Area Under Roc Curve
(AUC) and accuracy, namely the rate of correct classifications. In a classification problem
with M classes, the accuracy for the class i, withi =1,..., M is defined as:

TP, + TN;

Acc; =
“i= TP+ TN, + FP, + FN;

®)

where TP;, TN;, FP;, FN; represent true positives, true negatives, false positives and false
negatives, respectively, for i — th class. The overall accuracy is obtained from the average
on all classes. In addition, we also evaluated the model sensitivity and precision and the F1
score for each class i:
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TP,

il S 4
Sensi = T FN @
TD;
Prec; = ——— L .
= TP Y FPy ®)
F1, =2 Prec; - Sens; ©)

" Prec; + Sens;’

All the data processing and the carried out statistical analyses were performed in R
version 4.1.0 (https://www.r-project.org/, accessed on 31 August 2021).

features

Diagnosis

concentrations
“ HR VHR
7]
2
)
2

A 4
selected model
features
Heavy metals 77 features

SMOTE ]

subjects

BORUTA

R

subjects

Figure 2. Pictorial representation of the implemented classification procedure. After balancing the dataset through SMOTE
method, we selected the most efficient feature subset by means of Boruta algorithm and the most performing learning model
in 5-fold CV. We used the chosen feature array to feed the selected classifier and distinguish the three-levels CVD risk.

3. Results
3.1. Comparing Different Machine Learning Strategies

First of all, we evaluated to which extent heavy metals concentrations and SNPs
provide a valuable tool to predict the severity of CVD conditions. To this aim, we performed
a repeated (100 times) 5-fold cross-validation and compared the performance of GLM, RF
and ANN; see Figure 3.
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Figure 3. Accuracy and AUC for the three implemented models: GLM, RF and ANN. Each distribu-
tion was computed through a 5-fold cross validation procedure repeated 100 times. Empty bullets

represent the outliers of distributions.

RF resulted the best performing method in term of accuracy (0.61 £ 0.03) and AUC
(0.69 £ 0.03). GLM and ANN obtained accuracy values of 0.41 4= 0.04 and 0.42 £ 0.05, and
AUC equal to 0.59 £ 0.04 and 0.58 £ 0.04, respectively. For further detail, other metrics for

each class of each model are reported in the following Table 3.

Table 3. Sensitivity, precision and F1 score of the three models GLM, RF and ANN for each class. The
classification performances are reported with the respective standard deviations.

Sensitivity
Class GLM RF ANN
MR (43.35 £ 6.62)% (63.21 £ 5.60)% (41.77 £ 8.74)%
HR (30.00 + 10.27)% (47.94 +7.88)% (36.00 £+ 11.80)%
VHR (44.26 £ 6.46)% (65.21 +4.68)% (45.63 +7.88)%
Precision
Class GLM RF ANN
MR (49.34 £ 6.64)% (59.12 £ 4.19)% (47.35 £ 6.19)%
HR (19.88 £ 5.68)% (45.16 + 6.80)% (23.54 +£7.01)%
VHR (50.18 £ 5.80)% (72.30 £ 4.13)% (53.59 + 6.51)%
F1
Class GLM RF ANN
MR (45.36 4 5.86)% (60.99 +4.18)% (44.11 £ 7.09)%
HR (23.77 +7.13)% (46.28 £ 6.66)% (28.27 +8.43)%
VHR (46.87 +5.56)% (68.47 +3.62)% (49.02 £+ 6.43)%

In terms of classification performance, according to a Kruskal-Wallis test [47], no

significant difference among tested methodologies were detected.
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Besides, we evaluated the consistency of predictions of all three classifiers through
pairwise contingency tables, see Figure 4.

A B C

VHR 9.1% 71% 218% ViR 121 % 8.8% 19.4% VHR 109 % 71% 20.0%

Zwi 89% 164% 88% Lwi  91% 147% 87 % gmw 98% 166% 7.8%

HR 9.2% 8.9 % 9.7% HR- 79 % 9.4 % 9.9 % HR 8.4% 9.2% 10.2%

HR MH VHR HR MH VHR HR MH VHR
RF GLM GLM

Figure 4. Contingency tables with pairwise comparisons of the implemented algorithms predictions:
RF vs. ANN (panel A), RF vs. GLM (panel B), ANN vs. GLM (panel C). The value are averaged over
100 rounds of 5-fold cross validation.

It is worth noting that, in all three cases, the agreement between the classification
models exceeds the 42%. Accordingly, for further analyses only RF models were taken
into account.

3.2. Clinical Features Affecting CVDs

A additional goal of this study was to evaluate which were the clinical features mostly
affecting the CVD severity. For this purpose, we performed a feature importance analysis.
Starting from the 52 initial features, through Boruta algorithm we selected the features
maximizing the classification performance, as shown in Figure 5.
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Figure 5. Boxplots of attribute importance defined by Boruta’s algorithm. The wrapper algorithm
selects 13 important features (in green). The importance is computed in term of Z-score. Shadow
Boruta predictors are shown in blue. Red colors indicate unimportant features, and yellow colors
tentative attributes, i.e., features that are almost as important as their best shadow attributes and
Boruta cannot make a decision about them with the desired confidence. Empty bullets represent the
outliers of distributions.
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The figure shows how 13 features were recognized as important for the classification.
Among the chosen features, 6 heavy metals and 7 SNP were selected; the list is provided in
Table 4.

Table 4. List of the selected features. The feature are achieved by means of Boruta algorithm.

Selected Metals Selected Polymorphisms
Se IL10 A1082G
Cr VDR
Hg BCO1
Fe IL4R 190A /G
Pb IL-1BC-551T
Mg CBS T1080C

TNF o/G-308A

These results suggested to consider a restricted number of features to possibly improve
the classification performance.

3.3. Assessing the CVD Severity

Finally, we used the 13 features selected by Boruta to feed RF classifier and investigate
if any classification performance was achieved; see Figure 6.

0.80
|

o
81
2

0.70
|

o f
B
B

0.65
|
i
i

0.60
|
F

0.55
|

B Accuracy @ AUC

0.50

3-fold 5-fold 10-fold LOO

Figure 6. Accuracy and AUC values for different cross validation frameworks. All CV frameworks
100 times have been repeated. Empty bullets represent the outliers of distributions.

These results show how the selected features improve significantly the classifica-
tion performances. For 5-fold CV procedure the accuracy value goes from 0.61 £ 0.03 to
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0.68 + 0.03. Furthermore, the AUC value increases from 0.69 £ 0.03 to 0.75 4= 0.03. To eval-
uate the effect of sample size over the reported performance, we also compared different
cross-validation schemes. The best performance was obtained with a LOO framework,
in this case maximum values of both accuracy (0.69 & 0.02) and AUC (0.78 £ 0.01) were
reported; nevertheless, no significant differences arise with other cross-validation schemes.

In Table 5, the mean sensitivity, precision and F1 values computing through a LOO
framework for the three risk classes are reported.

Table 5. Summary table of sensitivity, precision and F1 measures for the three considered classes. The
classification metrics were obtained with RF and were averaged over 100 rounds of cross-validation.
All values are reported with the relative standard deviations.

Class Sensitivity Precision F1
Moderate risk (7744 £3.04)% (65.71 £2.15)% (71.08 £ 2.24)%
High risk (46.78 +3.88)% (48.96 +3.41)% (47.79 £3.27)%
Very high risk (7294 £1.68)% (84.84 £2.47)% (7841 +1.44)%

3.4. Heavy Metals vs. SNPs Informative Power

As the feature importance analysis showed that both heavy metals and SNPs con-
tributed to best discriminating the CVD severity, we finally investigated the informative
power of these features, separately. To this aim, we trained two RF models, the first one
with the 27 heavy metals concentrations and the second one with the 25 SNPs. We com-
pared these models with the model obtained using the 13 features selected by Boruta; see
Figure 7.
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Figure 7. Accuracy and AUC values for 3 different RF models. The first classifier has been fed
with the features selected by Boruta; the second with 27 heavy metals concentrations; the third with
25 polymorphisms. Each distribution was computed through a LOO cross validation procedure
repeated 100 times. Empty bullets represent the outliers of distributions.



Appl. Sci. 2021, 11, 8405

13 0f 17

Boruta features yielded the most accurate model. Although SNPs provide an ex-
cellent base of knowledge, compared with the discriminating power of heavy metals
concentrations, these results show that the combined use of both concentrations and ge-
netic polymorphisms significantly (p-value < 0.05 whatever test you used) improves the
classification results.

4. Discussion

The presence of heavy metals in the environment where humans live, represents a
factor of great importance in the onset of degenerative pathologies (cardiovascular and
neurodegenerative diseases, neoplasia, etc. . .) as clearly demonstrated by a lot of scientific
works. For example, Buonovato et al. by means of scalp hair analysis implemented in the
industrial city of Taranto reported an increase of lung cancer risk among residents due to
the high concentration of heavy metals [48]. In the present work, we focused on the relation
between heavy metals and cardiovascular diseases. We applied a learning methodology
based on Artificial Intelligence algorithm to analyze a private database containing 27
heavy metal concentrations and 25 polymorphisms linked to the cardiovascular diseases
of 90 patients enrolled by DD Clinic foundation of Caserta in Italy. Through a machine
learning procedure based on three state of the art algorithms, we classified patients with
cardiovascular diseases in three classes of risk. Furthermore, we adopted a sampling
strategy based on SMOTE method to allow the best operational conditions for each classifier.
The best-performing method was RF in terms of all used classification metrics as shown in
are shown in Figure 3 and in Table 3. We observed that, for all pairwise comparisons, the
agreement between the classification models is not very high (42-46%). We investigated,
by means of the Boruta wrapper method, which features were best at characterizing the
differences between the three levels of cardiovascular risk. We observed that a small amount
of features (25% of the initial dataset, as reported in Table 4) was sufficient for an accurate
classification. Furthermore, we adopted different cross validation frameworks to maximize
the performance of each RF classifier. We obtained good classification performances (0.78
of AUC), considering a three classes problem, when we used RF fed by the Boruta features
in LOO cross validation, as shown in Figure 6 and in Table 5. The discriminating power of
these selected features is higher than that of the entire set of features; but also of the heavy
metal concentrations and of the polymorphisms taken separately, as displayed in Figure 7.
This means that Boruta has efficiently eliminated noise and redundant feature. The use of
Boruta is also important to assess the importance of different predictors and thus provide
clinical interpretable findings. Furthermore, the results summarized in Figure 7 show
how the implemented wrapper method strategy improves the classification performance.
Although the size of input data could appear small for a machine learning approach,
our findings show RE, with SMOTE, Boruta and cross validation, is a robust framework
for CVD classification. However the application of an oversampling technique does not
solve completely the data imbalance issue. In fact, the minority class HR presents ever
the worst performances. Our results show that the starting hypothesis that heavy metal
concentrations and SNPs can accurately model the severity of CVD was correct. However
the selected features displayed in Table 4 testify that the association between environmental
factors and CVD happens by means of complex biological and genetic pathways. The
presence of these pathways was highlighted thanks to a machine learning approach and
therefore without a priori assumptions about the relationship between the input features
and the severity of CVD. These pathways should be studied further to understand how
heavy metals affect cardiovascular disease.

To confirm the goodness of our findings in previous works, some of the selected
features had already been highlighted as linked to cardiovascular diseases. For example,
Chowdhury et al., by analyzing 37 unique studies comprising 348259 participants, con-
cluded that exposure to lead (as well as to arsenic, cadmium, and copper) is associated
with an increased risk of cardiovascular disease and coronary heart disease [49]. Batuman
et al. found that lead can have an important function in the renal disease of a cohort of
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patients usually designated as suffering from “essential” hypertension [50]. Furthermore,
the harmful effects due to a high concentration of lead, even in infancy, are well established
and documented [51-53].

The correlation between iron accumulation in the body and the onset of heart and
cardiovascular diseases has also been widely studied. Sullivan states that the greater
occurrence of heart illnesses in men and postmenopausal women respect to the incidence
in premenopausal women is due to higher amount of stocked iron in these two groups [54].
He also discovered that body iron stores are directly linked to coronary heart disease
risk, i.e., the greater the accumulation of iron the greater the risk [55]. These results have
been confirmed by Salonen et al, which found that men with levels of serum ferritin
(a measure of body iron stores) higher than 200 pg/L is subjected to double the risk
of having a heart attack [56]. In addition, it is known that an excessive accumulation
of iron could induce atherosclerosis by acting as a catalyst for oxidation of low-density
lipoproteins (LDL) cholesterol [57]. Many works claimed that the mercury has no known
physiological role in human metabolism and its high concentration is strongly related with
hypertension, coronary heart disease, myocardial infarction, cardiac arrhythmias, carotid
artery obstruction and cerebrovascular accident [58,59]. Moreover it represents a risk factor
in the atherosclerosis progression [60]. Selenium, and magnesium also appear to play an
important role in the development of cardiovascular disease, but in this case the effect
appears to be reversed. In fact, some authors assumed a possible protective role of these
elements against CVD.

There is a lot of evidence about the importance of selenium and its selenoproteins
in the cardiovascular system, due to its well-known antioxidant characteristics [61]. A
study conducted by Flores-Mateo et al. on a dataset of 25 patients discovered that Se
concentrations were inversely associated with coronary heart disease risk [62].

Some polymorphisms of genes highlighted through our feature selection procedure
have already been implicated in the progression of CVD in other studies. SNPs of a gene
involved in the vitamin D cascade as VDR could be risk factors for acute coronary and
cardiovascular syndrome [63,64]. It is known that BCOL1 is a gene implicated in carotenoid
metabolism and Cai et al. demonstrated that the associated polymorphisms are realated to
the risk of coronary atherosclerosis [65]. TNF alpha/G-308A polymorphism might interact
with some factors linked to coronary heart disease to induce an insulin resistance [66]. A
research conduced by Ma et al. on over 1000 subjects found that mutation at the IL — 1
promoter region (C — 5117T) predisposed in diabetic patients the development of coronary
artery diseases evidence [67].

In general, our findings would suggest that our machine learning tool can also be
effectively used to assess the CVD risk although deeper validation is needed on a larger
sample of patients.

5. Conclusions

It is well known that high concentrations of heavy metals may be harmful to human
health and are related to the onset of degenerative pathologies such as cardiovascular
pathologies, neoplasia and neurodegenerative diseases, just to mention a few. Human
scalp hair analysis (HSHA) is a minimally invasive test that detects the toxic minerals in the
human body with high accuracy. In this work, we designed a machine learning framework
to assess the cardiovascular diseases risk from HSHA tests and genetic analysis and inves-
tigate which clinical features (heavy metal concentrations and SNPs) are mostly associated
with the CVD severity. We implemented and compared different cross-validation schemes
and machine learning strategies to grant the robustness of our findings. Using private
cohort of 90 patients affected by CVD with different levels of severity, we observed that
heavy metals and SNPs can achieve an AUC of 0.78 & 0.01 on a three classes classification
problem. Although the clinical role of the best performing features, among the 57 adopted
here, detected in our analysis have been partially outlined in other CVD studies, this is the
first study to emphasize their combined importance. In this perspective, our findings may
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be useful to shed further light over the underlying molecular mechanisms of CVD and
eventually identify possible targets for the development of novel therapies and drugs [68].
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