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Abstract: Some infectious diseases such as COVID-19 have the characteristics of long incubation
period, high infectivity during the incubation period, and carriers with mild or no symptoms which
are more likely to cause negligence. Global researchers are working to find out more about the
transmission of infectious diseases. Modeling plays a crucial role in understanding the transmission
of the new virus and helps show the evolution of the epidemic in stages. In this paper, we propose a
new general transmission model of infectious diseases based on the generalized stochastic Petri net
(GSPN). First, we qualitatively analyze the transmission mode of each stage of infectious diseases
such as COVID-19 and explain the factors that affect the spread of the epidemic. Second, the GSPN
model is built to simulate the evolution of the epidemic. Based on this model’s isomorphic Markov
chain, the equilibrium state of the system and its changing laws under different influencing factors
are analyzed. Our paper demonstrates that the proposed GSPN model is a compelling tool for
representing and analyzing the transmission of infectious diseases from system-level understand-
ing, and thus contributes to providing decision support for effective surveillance and response to
epidemic development.

Keywords: infectious diseases; generalized stochastic Petri nets; epidemic models; Markov chain

1. Introduction

In recent years, non-traditional and unusually public health emergencies have oc-
curred frequently such as the severe acute respiratory syndrome (SARS) in 2003, the H1N1
influenza A virus in 2009, the Ebola virus in 2014, and the Middle East respiratory syndrome
coronavirus (MERS) in 2015. Since December of 2019, the existence of convenient trans-
portation has also promoted the spread of the new coronavirus pneumonia (COVID-19).
These major infectious disease epidemic events have a sudden and long-lasting effect.
They seriously endanger human health and have a significant impact on socio-economic
development. For public health emergencies, one of the major challenges is how to build
an effective epidemic spread model. It can provide a valid explanation as what factors can
affect the spread of the virus and formulate effective prevention and control measures in a
timely manner. Therefore, it is very important to use a dynamic model method to assess
the transmission of infectious diseases.

Traditional mathematical epidemiology, as a quantitative research method, has been
widely used in the field of the epidemic spreading. The two typical epidemic spreading
models are the susceptible-infectious-recovered (SIR) [1] and the susceptible-infectious-
susceptible (SIS) [2]. In the SIR model, an individual has three possible statuses: susceptible
(S), infected (I), and recovered (R). A susceptible individual becomes infected through
the contact with an infected individual. An infected individual may eventually recover
from the disease becoming recovered forever, acquiring thus a permanent immunization,
a process described by the spontaneous reaction. The basic reproduction number (R0) is
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a very important parameter in the SIR. In the SIS model, an individual has two possible
statuses: susceptible (S) or infected (I). A susceptible individual may become infected once
it contacts an infected one. After a period of time, the infected individual can also be cured
and become susceptible again.

In response to different types of infectious diseases, such as SARS, H1N1, MERS-
CoV, Ebola virus, and COVID-19, during the last few decades, many researchers pro-
posed new epidemic models based on SIR and SIS such as SEIR (susceptible-exposed-
infectious-recovered) [3–10], SIRS (susceptible-infectious-recovered-susceptible) [11–14],
SEIRS (susceptible-exposed-infectious-recovered-susceptible) [15–18]. etc. Furthermore,
the spread of epidemics and information can be regarded as a Markov process. It is charac-
terized by a transition probability matrix each of whose entries is a transition probability
from one state to another state. The next state depends only on the current state and not on
any previous states.

Some researches are based on Markov Chain Approach to describe the transmission
dynamics of epidemics. Buccellato et al. [19] proposed a continuous-time Markov chain to
describe the spread of an infective and non-mortal disease into a community numerically
limited and subjected to an external infection. Peng et al. [20] presented a weighted Markov
chain which assumed the standardized self-coefficients as weights based on the special
characteristics of infectious disease incidence being a dependent stochastic variable. Multi-
state Markov models are an important tool in epidemiologic studies. Eslahchi et al. [21]
used transition probabilities of a birth and death Markov process based on the matrix
method to obtain mathematical exception of the number of infected individuals after time
t. Ahn et al. [22] studied the mixing time of Markov chain model for epidemic spread over
a given complex network. Xiang et al. [23] used Markov chain Monte Carlo (MCMC)
algorithm for partially observed temporal epidemic models which was designed to be
adaptive so that it could easily be used by non-experts. Artalejo et al. [24] studied a
stochastic epidemic model of SEIR type and modeled the epidemic by a continuous-time
Markov chain. Li et al. [25,26] studied, respectively, the spread dynamics of a stochastic
SIRS epidemic model with nonlinear incidence as a piecewise deterministic Markov process
and the threshold dynamics and ergodicity with the disease transmission rate driven by
a semi-Markov process. Gao et al. [27] developed a theoretical framework of the intra-
and inter-layer dynamical processes with a microscopic Markov chain approach (MMCA)
and derived an analytic epidemic threshold. Zheng et al. [28] proposed a coupled multiplex
network framework to model the epidemic spreading. Based on the microscopic Markov
chain approach, they built a probability tree to describe the switching process between
different states. Wang et al. [29] proposed a novel epidemic model by using two-layer
multiplex networks to investigate the multiple influence between awareness diffusion and
epidemic propagation. They derived the epidemic threshold by using Micro-Markov chain
approach. Xiao et al. [30] proposed the Multiple information and Multiplex network-SIS
(MM-SIS) model to explore the detailed processes and characteristics of multiple informa-
tion in multiplex networks and used the Microscopic Markov Chain method to set dynamic
equations. Cao et al. [31] investigated dynamic characteristics of an SIS network epidemic
model with Markovian switching. Yang et al. [32] used the discrete-time Markov chain
approach to study the spreading process of diseases with recurrent population mobility.
Yang et al. [33] proposed an epidemic risk assessment model based on 12 indicators by com-
bining Markov chain and analytic hierarchy process (AHP). Zhang et al. [34] analyzed the
epidemic situation of COVID-19 based on the epidemiological Markov model and studied
the clinical risk factors of the patients based on the patient’s cardinal data and clinical symp-
toms. Guo et al. [35] proposed an epidemic model to investigate the interplay between
disease spread and information diffusion on two-layered networks and built the dynamical
equations for the epidemic dynamics by using the micro-Markov chain (MMC) method.

In addition to using mathematical models to study the spread of infectious diseases,
there are some researchers [36–38] that used the statistical phylogeography to track the
spread of the highly pathogenic H5N1, HIV-1, and H9N2, and some researchers [39]
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used machine learning models to speculate on the transmission and evolution mechanism
of COVID-19.

The above methods of mathematical modeling or statistics are generally based on
the epidemic data and then use the model to assess the development of the epidemic and
predict the future trend; however, the ability to evaluate the epidemic prevention measures
and countermeasures taken in the epidemic is insufficient. It is unable to analyze and
evaluate the effect of epidemic prevention measures from the system-level understanding.
Some infectious diseases have the characteristics of long incubation period, high infectivity
during the incubation period, and carriers with mild or no symptoms which are more
likely to cause negligence. Petri nets (PNs) originated from the dissertation of Carl Adam
Petri [40] in 1962 who proposed a powerful modeling formalism in computer science,
system engineering, and many other disciplines. PNs combine a well-defined mathemati-
cal theory with a graphical representation of the dynamic behavior of systems which are
suitable for representing and modeling the concurrent, asynchronous, distributed, or non-
deterministic systems. PNs have been successfully applied to the biological systems [41,42],
biological networks [43,44], the transmission of infectious diseases [45,46], healthcare
systems [47], etc. Therefore, in order to evaluate the effectiveness of epidemic prevention
measures, we use Petri net to model and simulate the epidemic transmission process of
infectious diseases such as COVID-19 from the management perspective, and analyze the
effects of anti-epidemic measures.

In this paper, the major contribution is that we propose a generalized stochastic Petri
net (GSPN) framework to model and analyze the spread of infectious diseases. At first,
the qualitative analyses are carried out for the infectious diseases transmission mode and
the main factors affecting the virus transmission at different stages. Then, the GSPN
framework is built to simulate the evolution process of the epidemic. Based on this
framework’s isomorphic Markov chain, we use the analysis techniques of Petri nets to
calculate the probability of the steady state of each stage in the process of virus propagation,
and analyze the equilibrium state of the system and its changing laws under different
influencing factors.

The rest of this paper is organized as follows. In Section 2, the definitions and
notations of generalized stochastic Petri nets are briefly reviewed. In Section 3, we propose
the general transmission model of infectious diseases based on the GSPN framework.
The experimental analysis is given in Section 4. Finally, Section 5 summarizes the paper.

2. A Brief Overview of GSPN

The Petri Net is a formal graphical and mathematical modeling tool which is appropriate
for specifying and analyzing the behaviour of complex, distributed, and concurrent systems.

A classical Petri Net is a 5-tuple PN = (P, T, F, W, M0), where

• P is a finite set of places. Places, drawn as circles, model conditions or objects.
• T is a finite set of transitions. Transitions, drawn as rectangles, are used to describe

events that may modify the system state.
• F is a set of arcs such that F ⊆ (P× T)∪ (T× P), which represents the arc connections

from places to transitions or transitions to places.
• W is a weight function that ranges from 1 to infinity, which represents the number of

tokens consumed from a place through an arc or the number of tokens deposited to a
place through an arc.

• M0 is the initial marking, which a marking represents the distribution of tokens over
the places.

Figure 1 is a simple net containing all components of a Petri Net. There are two types
of nodes: places and transitions. Places are represented by circles. Inside the places are
tokens, drawn as black dots, which represent the specific value of a condition or object.
A particular arrangement of the tokens across all the places is known as a marking or state.
The system begins in some initial configuration known as the initial marking. Transitions,
represented by rectangles, are used to describe events that may modify the system state.
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For example, in the Petri Net shown in Figure 1, place P1 and place P3 both have one token,
while place P2 has zero tokens. The state of the net is given by the marking of the net,
which is given by the number of tokens in the places. The initial marking of the Petri net
from Figure 1 is M0 = [1, 0, 1]. In this class of Petri Nets, all the transitions are immediate,
i.e., once they are enabled and fired, the new marking is instantly reached. The arcs of the
graph are classified as input arcs (arrow-headed arcs from places to transitions) and output
arcs (arrow-headed arcs from transitions to places). For instance, transition T2 takes places
P2 and P3 as its input places, while P1 is its output place. Arcs have capacity 1 by default.
If other than 1, the capacity is marked on the arc. Places have infinite capacity by default,
and transitions have no capacity, and cannot store tokens at all. A transition is enabled
when the number of tokens in each of its input places is at least equal to the arc weight
going from the place to the transition. This results in a new marking of the net, a state
description of all places.

Figure 1. A simple Petri net.

Although classical PNs are easy to analyze, they require more places and transitions
to model the behaviour of moderately complex systems, which may give rise to a state
explosion problem [48]. At the same time, it is problematic to model time-dependent be-
havior using classical PNs. To overcome the above mentioned limitations, the original Petri
net has seen much advancement. Stochastic Petri Nets (SPN) and Generalized Stochastic
Petri Nets (GSPN) are among a few widely used variants in a multitude of disciplines.

GSPN is defined by Bause and Kritzinger [49] based on SPN. GSPN has two types of
transitions: immediate transitions (to describe some logical behavior) and timed transitions
(to describe the execution of time consuming activities). An exponentially distributed delay
is associated with the firing of transition to provide a clear and intuitive formalism for
generating Markov processes. GSPN adds the inhibitor arcs to prevent the model from
becoming exceedingly large [50].

A GSPN is a 6-tuple GSPN = (P, T, F, W, M0, Λ), where

• P = (P1, P2, . . . Ps) is a finite set of places. Places, drawn as circles, model conditions
or objects.

• T = (T1, T2, . . . Tm) is a finite set of transitions. GSPN has two types of transitions:
timed transitions, represented by hollow rectangles, and immediate transitions, repre-
sented by filled rectangles.

• F is a set of arcs such that F ⊆ (P× T)∪ (T× P), which represents the arc connections
from places to transitions or transitions to places. In a GSPN, it can have an inhibitor
arc from a place to a transition which means the transition cannot fire if there is a
token in the place.

• W is a weight function that ranges from 1 to infinity, which represents the number of
tokens consumed from a place through an arc or the number of tokens deposited to a
place through an arc.

• M0 is the initial marking, which a marking represents the distribution of tokens over
the places.

• Λ = (λ1, λ2, . . . , λm) is the set of firing rates associated with the transitions. An en-
abled transition Ti can fire after an exponentially distributed time delay equals
1/λi elapses.
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3. Modeling the Transmission of Infectious Diseases Using GSPN
3.1. Infectious Diseases Evolution and Transmission Process

Figure 2 depicts flowchart of the evolution and transmission process of infectious
diseases. A completed process consists of three phases as depicted in Figure 2.

Figure 2. Flowchart of the evolution and transmission process of infectious diseases.
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The beginning of the infection and immunization phase. The virus first begins to infect
intermediate hosts, and then spread from intermediate hosts to the crowd. In this phase,
if there is already a vaccine, the virus will not infect people on a large scale. Otherwise,
the virus will start to infect people. The development and use of vaccines are key to
this process.

The virus spread phase. Because some infectious diseases such as COVID-19 have
the characteristics of long incubation period, high infectivity during the incubation period,
and carriers with mild or no symptoms which are more likely to cause negligence, this
phase includes four parts: the intracity and intercity transmission of asymptomatic infected
people, the diagnosis of infected people with symptoms, human-to-human transmission in
the hospitals, and epidemic information collection and reporting. The speed of government
response and the epidemic prevention response level are critical in this phase. If the
governments quickly identify the type and characteristics of the virus and adopt timely
quarantine and response measures, they will be able to effectively reduce the infection and
spread of the virus.

The development and use of specific drugs phase. The research of specific drugs and
effective treatment methods will be an important means to reduce the number of deaths
and infected people. As specific drugs research and development will take a relatively long
time, in the early stage of virus transmission, blocking the chain of transmission mainly
depends on government response measures. When the development of specific medicines
is successful, it will be able to effectively suppress the spread of the virus, treat patients,
and ultimately stop the epidemic.

3.2. The GSPN-Based General Transmission Model of Infectious Diseases

Based on infectious diseases evolution and transmission process which are shown
in Figure 2, we propose the GSPN framework to build the model of the transmission of
infectious diseases from the system-level understanding as follows.

• Step 1: Build GSPN model. Define the places, the timed transitions, and the immediate
transitions. Estimate the cycle time and obtain the virus spread states.

• Step 2: Generate the reachability graph; it allows us to compute all possible future
markings starting from the initial one. Assign each arc with corresponding firing rates,
and then generate the homogeneous state-transition Markov chain. All markings
are denoted as M0, M1, . . . , Mn−1, where n is the total number of states. Markings in
which at least one immediate transition are enabled are called vanishing markings.
On the other hand, markings in which only exponential transitions are enabled are
called tangible markings.

• Step 3: Analyze Markov Chain. The obtained reachability graph can be transformed
into a Markov model to calculate limiting state probabilities. Next, the steady state
probability of tangible markings P[Mi] can be calculated by solving the equation
group as follows:

P = (P[M0], P[M1], ..., P[Mn−1]) (1){
PQ = 0
∑n−1

i=0 P[Mi] = 1
(2)

where n is number of states in the model, i = {0, 1, . . . , n− 1}. P is the state probability
vector, and Q is the infinitesimal generator (transition probability matrix). Q = [qij],
i = {0, 1, . . . , n− 1} and j = {0, 1, . . . , n− 1}. For the elements qij outside the main
diagonal, if there is an arc from state Mi to state Mj, then the value is the firing rate
λk of the exponential distribution associated with the transition Tk from Mi to Mj; if
there is no arc connected, then this element is 0. The element qii on the main diagonal
follows −

(
∑i 6=j qij

)
that consequently makes the sum of each row equal to zero.

• Step 4: Analyze and evaluate system performance. After calculating the probability
of tangible markings, the token probability density function (PDF) can be calculated
which represents the steady state the probability of the number of tokens contained in
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a place. For a pi ∈ P, let P[Mpi = l] denote the probability of l tokens contained in
place pi, then the token probability density function can be obtained as

P[Mpi = l] =
n−1

∑
i=0

P[Mi = l] (3)

The average number of tokens (Ui) can be calculated by

Ui =
n−1

∑
i=0

l × P[Mpi = l] (4)

where in the proposed model, l = 0 or l = 1 means that all places can only contain
0 or 1 token. The performance of the infectious disease epidemic propagation and
evolution system described by GSPN is analyzed and evaluated.

The proposed GSPN model shown in Figure 3 is realized with PIPE tool [51]. In
Figure 3, the places, i.e., P1–P19 are drawn as circles, the immediate transitions i.e., T4,
T11, T13, T14, T16 are represented by filled rectangles, the timed transitions i.e., T1–T3,
T5–T10, T12, T15 are represented by hollow rectangles, and the circle-headed arcs from
P18 to T3 and from P17 to T14 are inhibitor arcs. Table 1 shows the meanings of places.
The meanings and category of transitions are shown in Table 2. The overall model depicts
the infection process in details, consisting of three phases as follows.

Figure 3. The GSPN model of the transmission of infectious diseases.

(1) The beginning of the infection and immunization phase. This phase is the process
of infection and immunity. P1 is the beginning of the virus spread. T1 represents that the
virus starts to infect intermediate hosts. P19 represents the susceptible population. T12 is a
timed and key transition that represents whether the vaccine is successfully developed and
vaccinated. If all of susceptible people have been vaccinated, the virus will not be able to
spread. The token will return to the place of P1. However, if the susceptible people have
no vaccine, the virus will start to infect people from intermediate hosts. T2 stands for the
virus from intermediate hosts to the people. Because the development of the vaccine needs
a relatively long time, the virus will infect people from intermediate hosts. The model will
go to the next phase.

(2) The virus spread phase. This phase is the process of the virus spread. P3 represents
the infected people. T3 is a timed and key transition that depicts whether the infected
people have symptoms. P4 stands for people with symptoms after infection. P5 stands for
people with mild or no symptoms after infection.
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Table 1. Meanings of places of the GSPN model in Figure 3.

Place Meaning of Place

P1 The beginning of the virus spread
P2 Intermediate hosts
P3 People with early viral infections
P4 People with symptoms after infection
P5 People with mild or no symptoms after infection
P6 Discovery the new virus
P7 Infected people with symptoms observed in the hospitals
P8 Measures formulated by relevant departments
P9 The new infected people in the hospitals

P10 Locally infected people in contact with asymptomatic infected people
P11 Infected people leaving from the infected areas after prevention and control
P12 Infected people leaving from the infected areas before prevention and control
P13 Infected people moving from infected areas to non-infected areas
P14 Infected people in non-infected areas
P15 Auxiliary place
P16 Start effective treatments and drugs research
P17 Auxiliary place
P18 Complete effective treatments and drugs research
P19 Susceptible population

Table 2. Meanings of transitions of the GSPN model in Figure 3.

Transition Meaning of Transition Category

T1 Virus to intermediate hosts Timed
T2 Intermediate hosts to human transmission Timed
T3 Whether the infected people have symptoms Timed
T4 Conduct relevant medical examinations Immediate
T5 Epidemic information collection and reporting Timed
T6 Human-to-human transmission in the hospitals Timed
T7 Human-to-human transmission in the infected areas Timed
T8 Government emergency response Timed
T9 Intercity transmission Timed

T10 Human-to-human transmission in the
non-infected areas Timed

T11 Spread of the virus Immediate
T12 Successful vaccine development and inoculation Timed
T13 Auxiliary transition Immediate
T14 Auxiliary transition Immediate

T15 Research specific drugs and formulate drug
countermeasures Timed

T16 Treatment of infected people Immediate

The immediate transition T4 is enabled when the place P4 contains one token, which
represents the fact that people with symptoms have been conducted by relevant medical
examinations such as nucleic acid detection. After T4 is fired, the places P6 and P7 will
contain a token at the same time, which represents that P6 and P7 occur concurrently.
The first process, from P6 through T5 to P8, illustrates the process of discovering new
epidemic situation, collecting and reporting the epidemic information, and the government
formulating countermeasures. The second process, from P7 through T6 to P9, shows
the process of cross-infection between infected and non-infected or medical personnel in
the hospitals.

T7 is a timed transition which represents human-to-human transmission in the infected
areas. After T7 is fired, P10 and P12 occur concurrently. P10 represents the locally infected
people in contact with asymptomatic infected people. P12 represents the infected people
leaving from the infected areas before prevention and control. T8 is also a timed and
important transition, which indicates that the government has discovered large-scale
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spread of the virus and has taken corresponding emergency response measures. After T8
is fired, there are two places P11 and P15. P11 stands for the infected people leaving from
the infected areas after prevention and control. P15 is an auxiliary place, which means that
the GSPN model goes to the development and use of special drugs phase. T9 represents
that the infected people move freely between the cities. The process, from T9 through P13,
T10, P14, T11 return to P3, illustrates the infected people moving from infected areas to
non-infected areas. The virus begins to spread from city to city. This process will be a rapid
growth in the number of infected people.

(3) The development and use of specific drugs phase. This phase describes the process
of research and treatment of specific drugs. T15 is a timed and key transition that represents
the research of specific drugs and the formulation of drug countermeasures. Because the
development of the specific drugs is a relatively long time, T15 is delayed to fire which
may lead to the tokens accumulation. Therefore, P15 and P17 are the auxiliary places. T13
and T14 are the auxiliary transitions. They are used to prevent the tokens redundancy.
P16 represents to start effective treatments and drugs research. P18 represents to complete
effective treatments and drugs research. The inhibitor arc from P18 to T3 describes that the
specific drugs will be able to suppress the incidence of infected people. At the same time,
T16 is an immediate transition which means the infected people can be cured. The state of
model returns to the beginning of P1.

The constructed GSPN model gives the boundary conditions of the system. It can
identify the number of possible states of the model. As the token moves, the marking
changes. Each marking represents a state of the model. The total possible markings
represents the total possible states which can be shown as a Mi × Ps matrix. For the GSPN
model of the transmission of infectious diseases in Figure 3, there are i = 40 states and
s = 19 places, and the state reachable graph can be shown as a 40 × 19 large matrix.
To simplify the matrix representation, in Table 3, we only list the places that have one token
in each state Mi. In Table 3, the first column is the types of markings, the second column is
the name of the states, and the third column is the serial number of the places having one
token. For example, on the second row, (P2, P19) means that the places of P2 and P19 have
one token in M1 state and the other places have zero token in M1 state.

Table 3. The total possible markings of the GSPN model in Figure 3.

Type Markings The Places Having a Token

Tangible markings M0 (P1)
M1 (P2, P19)
M2 (P3)
M4 (P5, P6, P7)
M5 (P5, P7, P8)
M6 (P5, P8, P9)
M7 (P8, P9, P10, P12)
M9 (P11, P12, P16, P17)
M10 (P11, P12, P17, P18)
M11 (P13, P17, P18)
M14 (P13, P16, P17)
M16 (P3, P16, P17)
M18 (P5, P6, P7, P16,P17)
M19 (P5, P7, P8, P16, P17)
M20 (P8, P9, P10, P12, P16,P17)
M22 (P8, P9, P10, P12, P17, P18)
M24 (P5, P8, P9, P17, P18)
M25 (P7, P8, P10, P12, P16, P17)
M26 (P5, P7, P8, P17, P18)
M27 (P5, P6, P9, P16, P17)
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Table 3. Cont.

Type Markings The Places Having a Token

M28 (P5, P6, P9, P17, P18)
M29 (P6, P9, P10, P12, P17, P18)
M30 (P6, P9, P10, P12, P16, P17)
M31 (P5, P8, P9, P16, P17)
M32 (P6, P7, P10, P12, P16, P17)
M33 (P6, P7, P10, P12, P17, P18)
M34 (P5, P6, P7, P17, P18)
M35 (P7, P8, P10, P12)
M37 (P6, P9, P10, P12)
M38 (P6, P7, P10, P12)
M39 (P7, P8, P10, P12, P17, P18)

Vanishing markings M3 (P4, P5)
M8 (P11, P12, P15)
M12 (P14, P17, P18)
M13 (P3, P17, P18)
M15 (P14, P16, P17)
M17 (P4, P5, P16, P17)
M21 (P11, P12,P15, P16, P17)
M23 (P11, P12, P15, P17, P18)
M36 (P5, P6, P9)

Table 4 is the transition probability matrix (Q) based on Table 3. Because there are
40 states, the transition probability matrix of the proposed model is a 40× 40 very large
matrix. Similarly, to simplify the matrix representation, in Table 4, we only list the firing
rate if there is an arc from state Mi to state Mj. We can obtain the relationship between the
state probabilities by retrieving the columns with the same number. For example, the val
is λ1 in the row of M0 and the column of M1, and then it can find −(λ2 + λ12) in the row
of M1 and the column of M1, so the relationship between the state M0 and M1 can be
obtained as follows:

λ1 × P[M0]− (λ2 + λ12)× P[M1] = 0 (5)

The steady state probability of tangible markings P[Mi] can be calculated by solving
the equation group according to Formula (2). Then, the token probability density function
and the average number of tokens can be calculated by Formulas (3) and (4).

Table 4. Transition probability matrix of the GSPN model.

Row Column Val Row Column Val Row Column Val

M0 M1 λ1 M1 M0 λ12 M1 M2 λ2
M2 M3 λ3 M4 M5 λ5 M4 M36 λ6
M4 M38 λ7 M5 M6 λ6 M5 M35 λ7
M6 M7 λ7 M7 M8 λ8 M9 M10 λ15
M9 M14 λ9 M10 M11 λ9 M11 M12 λ10
M14 M15 λ10 M16 M17 λ3 M16 M13 λ15
M18 M19 λ5 M18 M27 λ6 M18 M32 λ7
M18 M34 λ15 M19 M31 λ6 M19 M25 λ7
M19 M26 λ15 M20 M22 λ15 M20 M21 λ8
M22 M23 λ8 M24 M22 λ7 M25 M20 λ6
M25 M39 λ15 M26 M39 λ7 M26 M24 λ6
M27 M31 λ5 M27 M28 λ15 M27 M30 λ7
M28 M24 λ5 M28 M29 λ7 M29 M22 λ5
M30 M29 λ15 M30 M20 λ5 M31 M20 λ7
M31 M24 λ15 M32 M25 λ5 M32 M30 λ6
M32 M25 λ15 M33 M39 λ5 M33 M29 λ6
M34 M26 λ5 M34 M28 λ6 M34 M33 λ7
M14 M11 λ15 M35 M7 λ6 M36 M6 λ5
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Table 4. Cont.

Row Column Val Row Column Val Row Column Val

M36 M37 λ7 M37 M7 λ5 M38 M35 λ5
M38 M37 λ6 M39 M22 λ6
M0 M0 −λ1 M1 M1 −(λ2 + λ12) M2 M2 −λ3
M4 M4 −(λ5 + λ6 + λ7) M5 M5 −(λ6 + λ7) M6 M6 −λ7
M7 M7 −λ8 M9 M9 −(λ9 + λ15) M10 M10 −λ9
M11 M11 −λ10 M14 M14 −(λ10 + λ15) M16 M16 −(λ3 + λ15)
M18 M18 −(λ5 + λ6 + λ7 + λ15) M19 M19 −(λ6 + λ7 + λ15) M20 M20 −(λ8 + λ15)
M22 M22 −λ8 M24 M24 −λ7 M25 M25 −(λ6 + λ15)
M26 M26 −(λ6 + λ7) M27 M27 −(λ5 + λ7 + λ15) M28 M28 −(λ5 + λ7)
M29 M29 −λ5 M30 M30 −(λ5 + λ15) M31 M31 −(λ7 + λ15)
M32 M32 −(λ5 + λ6 + λ15) M33 M33 −(λ5 + λ6) M34 M34 −(λ5 + λ6 + λ7)
M35 M35 −λ6 M36 M36 −λ7 M38 M38 −(λ5 + λ6)
M39 M39 −λ6

4. Experimental Analysis

By using the proposed GSPN model of infectious diseases, the steady-state probability
can be analyzed according to the Markov process, and then the average number of tokens
(U) in each place is calculated according to Formula (4). Through analyzing the key
transitions including T5, T6, T7, T8, T9, T10, T12, T15, it can find how to change some
links to improve the operating efficiency of the entire system. It has important practical
significance for improving the efficiency of emergency decision-making for epidemic
emergencies. In the experimental analysis, the initial parameters of the firing rates are
simulated data, not real infectious disease experimental data. The initial transition firing
rates are set as λ4 = λ11 = λ13 = λ14 = λ16 = ∞, λ1 = λ2 = 1, λ3 = 5, λ5 = 4,
λ6 = λ7 = λ10 = 2, λ8 = λ9 = 3, λ12 = λ15 = 1. In order to display the number of people
in each stage of the epidemic evolution, we define that N represents the number unit of
the population. The number of people in a place can be calculated by U × N. Note that
the value of each λi can correspond to the measured or predicted value of the real data.
Therefore, epidemiologists can input the parameters of different infectious diseases such as
the reproduction number (R0), the probability of the virus transmission, the probability of
contacts, and the proportion of the people, etc. into λi as the firing rates.

Figure 4 shows the impact of epidemic information reporting time (T5) on the evo-
lution of the epidemic. It can be seen that the sum of the average number of tokens
U(9) + U(10) in P9 and P10 gradually increases with the delay time of T5 from 1 h to 9 h.
The average number of tokens U(12) in P12 also gradually increases. It indicates that with
the longer the time for virus identification and information collection, the speed of virus
infection from the initial infected people through hospitals and communities will gradually
increase. Especially when the time of T5 is greater than 8 h, the rate of increase in the num-
ber of infections in the hospitals and communities will be significantly accelerated. For the
social emergency system, it can improve the efficiency of responding to major infectious
diseases by speeding up the collection of information on major epidemic diseases and
shortening the virus identification cycle.
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Figure 4. Impact of epidemic information reporting time (T5) on the evolution of the epidemic.

Figure 5 shows the change in the number of infected people in the hospitals with the
basic reproduction number (R0). As R0 changes from 1 to 10, the virus spreads faster in the
hospitals where the early-onset patients are located. The average number of tokens U(9)
of P9 rapidly increases. It indicates that the new infected people in the hospitals increase
significantly with the increase of R0. At the same time, the average number of tokens
U(11) and U(13) in P11 and P13 will gradually rise with the increasing of R0. This shows
that hospital infections are the main source of nosocomial infection to quickly spread the
virus to other areas of the community. According to the analysis in Figure 5, as hospitals
are places of early contact with infected persons, more attention should be paid to the
prevention and control works in hospitals, such as immediately isolating infected patients
and avoiding contact with other patients, so as to effectively reduce the transmission rate
of the virus and thus curb the spread of the virus in hospitals. Establishing the mobile
cabin hospitals in China is the effective way to reduce the rate of nosocomial infections.

Figure 6 shows the changes in the number of infected people in the infected areas at
different values of R0. The mild or no symptoms cases are more likely to cause negligence
and accelerate the spread of the virus in the communities. As R0 changes from 1 to 10,
the average number of tokens U(10), U(12) in the places of P10, and P12 are both rapidly
increasing. P10 and P12 are the new infected people inside and outside the infected areas
before prevention and control. It indicates that human-to-human transmission in the
communities by carriers with mild or no symptoms is the main driving force for the spread
of the epidemic. In addition, the average number of tokens U(11) in the places of P11 is
slowly increasing. P11 is the new infected people after prevention and control. It indicates
that government emergency response can effectively prevent the output of infected people
in the infected areas.
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Figure 5. Relationship between the basic reproduction number (R0) and the number of infected
people in the hospitals.

Figure 6. Relationship between the basic reproduction number (R0) and the number of infected
people in the infected areas.
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Figure 7 shows the impact of government emergency response (T8) on the evolution
of the epidemic. The National Emergency Response Plan for Public Health Emergencies in
China stipulates that public health emergencies are classified into four levels including the
fourth level (IV), the third level (I I I), the second level (I I), and the first level (I). Level I is
the highest epidemic prevention response level. The rise of the response level from level IV
to level I means strengthening of epidemic prevention and control measures. The control
range and time for the people are expanded, and the crowd mobility is decreased. Based
on the analysis of the results in Figure 7, it can find that the mobility of the crowd slows
down as the response level increases. The average number of tokens in the places of P3,
P11 and P13 all decline. This reflects that the level of government response affects the flow
of people, thereby affecting the speed of virus transmission. Because the infectious diseases
such as COVID-19 have the characteristics of high infectivity and covert transmission, it
is necessary to adopt a higher epidemic prevention response level which can control the
wide spread of the virus in the early stage of the outbreak.

Figure 7. Impact of government emergency response (T8) on the evolution of the epidemic.

Figure 8 shows the impact of population movement on the spread of the epidemic. Set
different values to T9 according to different population movement speed. When the speed
of population movement increases from 10,000/day to 100,000/day, the average number
of tokens U(13) in the place of P13 gradually rises. This means that if the population
movement between the infected areas and the non-infected areas is not controlled, the in-
fected people in the infected areas will move into the non-infected areas in large quantities.
Furthermore, from Figure 8 we can also observe that the average numbers of tokens U(3),
U(5) + U(7) and U(9) + U(10) in the places of P3, P5, P7, P9, and P10 all go up. This
reflects that the newly infected people will form new nosocomial infections and community
infections in non-infected areas and result in the spread of the virus between different cities.
Therefore, the effective population movement control is an important measure to prevent
the spread of the virus. The governments should strengthen the control of population flow
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after knowing the outbreak of the new virus to prevent the input of infected people from
causing the outbreak of the virus locally.

Figure 8. Impact of the speed population movement on the virus transmission.

Figure 9 shows the changes in the number of infections in the non-infected areas at
different values of R0. P3 denotes the new infected people in the non-infected areas. As R0
changes from 1 to 10, the average numbers of tokens U(3), U(5) + U(7) and U(9) + U(10)
in the places of P3, P5, P7, P9, and P10 all rise. Based on the analysis of the results
in Figures 8 and 9, it can be seen that the speed of population movement and the basic
reproduction number are the two important factors that lead to the spread of the virus
from the infected areas to the non-infected areas. The governments should actively take
measures to detect and treat the infected patients, identify and require people who enter
from the virus outbreak areas or have travel history in the infected areas to take self-
isolation. These people, as potential sources of transmission, play an important role in
virus transmission and control.

Figures 10 and 11, respectively, show the impact of changes in vaccines and specific
drugs development time on the evolution of the epidemic. According to development
cycles of different vaccines and specific drugs, different rates for T12 and T15 are set.
During the evolution of the epidemic, the vaccine development cycles vary from 1 to
12 months and the specific drugs development cycles vary from 5 to 70 days. Based on
the analysis of the results in Figures 10 and 11, the average number of tokens of infected
people at P11, P12, P13, P3, P5, P7, P9, P10 has all increased. It indicates that the longer the
vaccine and specific drugs development time, the more patients may be infected. Especially
after the vaccine development time exceeds 10 months and the specific drugs development
time exceeds 55 days, if no other control measures are taken, the number of infected people
will accelerate. According to the above analysis, the development of vaccines and specific
drugs plays a key role in the final elimination of the virus. The shorter the development
cycle is, the fewer infections there are. Therefore, scientists and governments worldwide
need to work together to shorten the development cycle and save more patients.
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Figure 9. Relationship between the basic reproduction number (R0) and the number of infected
people in the non-infected areas.

Figure 10. Relationship between duration of vaccine development and the number of infected people.
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Figure 11. Relationship between duration of specific drugs development and the number of in-
fected people.

5. Conclusions

Infectious diseases are a major health problem throughout the world. Mathematical
models based on an ordinary differential equation (ODE) system have an important role in
predicting the outcome of infectious diseases. Markov models for analyzing the dynam-
ics of the spread of epidemics and information have been studied by many researchers.
The models based on stochastic Petri nets and their variants are the important evolution of
Markov models, which are suitable for modeling the complex and large-scale systems.

In this paper, a new general transmission model of infectious diseases based on the
generalized stochastic Petri net (GSPN) is proposed. The advantage of this method is that,
with the concurrency and state analysis methods of Petri net, it can analyze the relationship
between the associated attribute variables of the development and evolution processes
for different events in the infectious disease epidemic event chain. It provides a new
analysis model and tool for the infectious disease experts. By setting relevant parameters
of different infectious diseases to the firing rates in this Petri model, they can analyze the
spread of various diseases, as well as the effect and trend analysis of vaccines, specific
drugs, response levels, and restrictions on epidemic control and so on. The experimental
results have shown that the proposed GSPN model is an attractive tool and can provide
decision support for effective surveillance and response to epidemic development.

In the future work, further cooperations with epidemiologists are needed to map the
transmission parameters of various infectious diseases into this model.
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