
applied  
sciences

Article

Development of a Hybrid Artificial Neural Network-Particle
Swarm Optimization Model for the Modelling of Traffic Flow
of Vehicles at Signalized Road Intersections

Isaac Oyeyemi Olayode * , Lagouge Kwanda Tartibu , Modestus O. Okwu and Uchechi Faithful Ukaegbu

����������
�������

Citation: Olayode, I.O.; Tartibu, L.K.;

Okwu, M.O.; Ukaegbu, U.F.

Development of a Hybrid Artificial

Neural Network-Particle Swarm

Optimization Model for the

Modelling of Traffic Flow of Vehicles

at Signalized Road Intersections.

Appl. Sci. 2021, 11, 8387. https://doi.

org/10.3390/app11188387

Academic Editor: Paola Pellegrini

Received: 3 August 2021

Accepted: 2 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical and Industrial Engineering, University of Johannesburg,
Johannesburg P.O. Box 2028, South Africa; ltartibu@uj.ac.za (L.K.T.); okwu.okechukwu@fupre.edu.ng (M.O.O.);
219120451@student.uj.ac.za (U.F.U.)
* Correspondence: 219123162@student.uj.ac.za; Tel.: +27-710-200947

Abstract: The tremendous increase in vehicular navigation often witnessed daily has elicited constant
and continuous traffic congestion at signalized road intersections. This study focuses on applying an
artificial neural network trained by particle swarm optimization (ANN-PSO) to unravel the problem
of traffic congestion. Traffic flow variables, such as the speed of vehicles on the road, number of
different categories of vehicles, traffic density, time, and traffic volumes, were considered input
and output variables for modelling traffic flow of non-autonomous vehicles at a signalized road
intersection. Four hundred and thirty-four (434) traffic datasets, divided into thirteen (13) inputs
and one (1) output, were obtained from seven roadsites connecting to the N1 Allandale interchange
identified as the busiest road in Southern Africa. The results obtained from this research have
shown a training and testing performance of 0.98356 and 0.98220. These results are indications of a
significant positive correlation between the inputs and output variables. Optimal performance of the
ANN-PSO model was achieved by tuning the number of neurons, accelerating factors, and swarm
population sizes concurrently. The evidence from this research study suggests that the ANN-PSO
model is an appropriate predictive model for the swift optimization of vehicular traffic flow at
signalized road intersections. This research extends our knowledge of traffic flow modelling at a
signalized road intersection using metaheuristics algorithms. The ANN-PSO model developed in
this research will assist traffic engineers in designing traffic lights and creation of traffic rules at
signalized road intersections.

Keywords: traffic congestion; artificial neural network-particle swarm optimization; signalized road
intersections; traffic flow modelling; traffic flow

1. Introduction

With the increase in urbanization, traffic congestion is becoming a serious issue, which
is equally considered catastrophic to road users [1–5]. Traffic congestions are an essential
part of daily human activities, such as driving to the workplace, shopping malls, etc. There
is a consistent and systemic trend of experiencing a delay in traffic flow on highways,
freeways, and road intersections. At pedestrians, there is a likelihood of a stop process
before crossing the road at any given time, until a point where traffic must have cleared
from all directions. Other busy areas are places like international airports. Passengers
struggle at the point of entry. In recent times, the observable queues at most airports
are alarming.

There is an urgent need to develop an intelligent approach to address traffic congestion
at signalized road intersections. Researchers in the field of transport systems and traffic
control [6–8] have suggested that autonomous vehicles are the future of transportation.
As much as that statement has been suggested to be accurate, some developing and devel-
oped countries are still far from achieving a fully autonomous vehicle. Traffic congestion
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has become a widely acknowledged issue challenging to solve. This societal problem has
spread majorly in the urban area of the world. The primary objectives of transportation
researchers and Government administrators nowadays are to eliminate traffic congestion
and assist urban planners with solutions to traffic congestion problems. Although efforts
have been made and incentives and strategies have been implemented to reduce traffic
congestion in megacities, new traffic congestion problems kept re-occurring and with a
high level of unpredictability, especially in developing countries even though pre-existing
traffic problems have been ameliorated. Sometimes, it is difficult to comprehend if the
traffic congestion measures that have been put in place by urban planners and transporta-
tion engineers will either work or not. Intelligent transportation systems provide efficient
transportation in terms of vehicles’ reduced traffic flow time on the road. It also improves
transportation safety and increases global connectivity in the road transportation network.
As a result of the energy crisis the world is currently experiencing because of severe carbon
monoxide from vehicles’ exhaust pipes, the need for artificial intelligence techniques cannot
be underemphasized. The revolution of the transportation sector and the fast-rising interest
in intelligent transportation systems are due to the persistent traffic congestion on high-
ways and freeways and the synergy of new information technology needed for real-time
traffic simulation. Reinvigorating road transportation systems is crucial for implementing
the fourth industrial revolution in road transportation networks.

This research study used the South African Road transportation network as a case
study. A holistic approach is needed to tackle traffic flow congestion at a signalized road
intersections in Gauteng province, South Africa. Gauteng is vital to the South African
economy; therefore, there is a need for an advanced and well-managed transportation
system [9]. The population of urban cities in South Africa has increased rapidly over the
last ten years [10]. According to documented reports on vehicular navigation, the total
traffic flow between Johannesburg and Pretoria during on-peak days on the N1 freeway is
over 160,000 vehicles per day [11]. This research study focuses on the South African Road
transportation system, especially the busiest N1 Allandale interchange road, which has the
highest traffic volume in Southern Africa. The novelty of this study is in the application
of a hybrid artificial neural network trained by a particle swarm optimization model for
modelling traffic flow at signalized road intersections. Also, transportation researchers to
date have focused majorly on road intersections rather than on signalized road intersections.
This study aimed to address the following research questions:

• Can a hybrid artificial intelligence algorithm such as an artificial neural network
trained by particle swarm optimization (ANN-PSO) be used as a predictive approach
in modeling traffic flow at a signalized road intersection?

• Can traffic flow parameters such as speed of vehicles, traffic density, time, number of
different classes of vehicles on the road, and traffic volume be used to model vehicular
traffic flow at a road intersection?

This paper is divided into five parts. The first section introduces the research study
and outlines the primary aim and significance of this research study. The second section
discusses prior research related to the engineering application of Artificial neural network-
particle swarm optimization (ANN-PSO) and the theoretical framework of the model.
The third section concerns the methodology used for this research study, including location,
collection of the traffic datasets, and how the model was developed. The fourth section
presents the findings of this research study. The final section comprises the conclusion and
implications of this study on the road transportation system.

2. Literature Review
Related Studies

In recent years, there has been a growing body of literature review on particle swarm
optimization (PSO) and its application in the field of engineering. Prior studies have stated
that the application of particle swarm optimization in engineering applications is broad.
However, its application to the best of authors’ knowledge in the area of road intersections



Appl. Sci. 2021, 11, 8387 3 of 28

is limited. The importance of particle swarm optimization cannot be underemphasized due
to its hybrid properties and its superior artificial intelligence. Wu et al. propose various
applications of particle swarm optimization for the scheduling of railway operations and
planning of the railway network layout [12]. They used PSO to find the best optimal railway
schedules. AlRashidi et al. [12] Implemented PSO in the effective electric power system.
Jain et al. [13] used different forms of objectives to solve a multi-objective load problem
by applying PSO. Furthermore, additional related studies on particle swarm optimization
are its application in determining the optimal performance of power flow [14,15], load
flow [16,17], and the design of a proportional integral derivative (PID) controller in a
system that uses an automatic voltage regulator (AVR) [18] and finally in the decreasing
of power loss [19]. In civil engineering, especially in construction, [20] came up with a
PSO algorithm to design a rectangular flow in the form of a beam slab. Mac et al. [21]
suggested an efficient hierarchical global path planning technique for non-stagnant robots
in a chaotic engineering environment by applying particle swarm optimization. Islam
et al. [22] proposed a function called time-varying transfer, which can be found in binary
particle swarm optimization (BPSO). This BPSO is called time-varying transfer function-
based binary PSO (TVT-BPSO). The aim was to use this BPSO to evaluate its exploration
and exploitation abilities critically. Suresh et al. [23] used PSO in the medical field to
predict the duration of stay of sick patients in the hospital, and the key finding of this
research was that PSO was efficient compared to other predictive models. Some other
applications of PSO over the years have expanded to other engineering applications such
as source seeking problem [24], elevator door conceptual framework [25], the problem of
quad assignment [26], determining the quantity of equipment in possession [27], and the
problem of job shop scheduling [28]. Table 1 below shows previous research been done by
researchers on different types of particle swarm optimization (PSO).

Table 1. Types of particle swarm optimization (PSO).

Author(s) Types of PSO Aims Key Findings

[29] Particle swarm optimization
and firefly algorithm (FFA)

This paper aimed to compare the performance of
PSO and the firefly algorithm by using almost
ten non-linear functions. The time and mean

values of the non-linear functions were used as
the input and output variables.

The result showed that the
non-linear functions and time

value is smaller compared
with the firefly algorithm.

[30] Particle swarm
optimization PSO

The aim was to apply PSO on four test functions
to achieve an adequate selection of particles.

The study implied that not all
test functions were improved

in terms of performance.

[31]

Particle swarm
optimization-recombination

and dynamic linkage
discovery (PSO-RDL)

The aim was to use this hybrid PSO-RDL to
solve economic dispatch in the power system.

They discovered that the
performance of PSO-RDL was
similar to a modified particle
swarm optimization (MPSO)

There are also different types of PSO that various researchers have used; they are:

• Multi-objective optimization by implementing PSO.

Researchers have used this approach in solving various optimization problems by
using a combination of PSO and discrete multi-objective PSO [32]. In addition to multi-
objective methods such as competitive cooperative and co-evolutionary approaches [33]
and a PSO evaluation by a vector [34].

• Modified Particle swarm optimization.

There have been many modifications to PSO to improve its optimization performance
and applicability. Notable among these modified PSOs are memory enhanced PSO [35],
predator-prey PSO [36]. However, there are newer modified PSOs such as comprehensive
learning particle swarm optimizer (CLPSO) [37], self-learning particle swarm optimiza-
tion (SLPSO) [38], and orthogonal learning particle swarm optimization (OLPSO) [39].
The unique thing about this newer variant of PSO is that they do not need tuning of
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parameters, and their structure is quite different from an older generation of PSOs. An-
other significant feature about them is that they only use information that is current and
not past information. A considerable number of researchers have used different types of
PSO in solving real-life problems. Researchers such as [40] used different kinds of PSO
variants on dixian-szego testing. Liu et al. [41] came up with an evolutionary game parti-
cle swarm optimization (EGPSO) to model particle behaviours and patterns by applying
replicator dynamics and multi-start methods. Hossen et al. [42] used an adaptive PSO that
is dependent on spider behaviour. Benmessahel et al. [43] explained the implications of
removing obsolete particles from a current PSO iteration. Ji et al. [44] used the combination
of gradient and PSO to eliminate immature convergence.

For the validation and predictions of different types of data, there are various pre-
existing models such as artificial neural networks (ANNs) [45,46], finite element method
(FEM), and finite strip method (FSM) [47,48]. The finite element method is a common
technique created by ABAQUS and ANSYS. They have been applied to different types
of experimental investigations to either validate or predict the structural properties of
certain specimens [49]. Even though the finite element has been widely applied over
the years for prediction, it still has disadvantages such as significant time executions,
a different variation of outputs, and a high number of data requisitions [50]. In recent
years, artificial intelligence (AI) methods have performed significant functions advancing
various engineering aims and objectives [51]. Artificial neural networks are a sub-branch
of Artificial intelligence techniques. They can solve three distinct types of issues such
as (1) approximation of functions, (2) classification, and (3) prediction of time series [52].
However, considering these issues, an ANN model is commonly trained and developed
by using optimization approaches. Conventional algorithms such as but not limited to
backpropagation algorithms have been used so many times in training artificial neural
networks [52]. However, the major setback of using conventional algorithms is that they
are usually stuck in local extremums and exhibiting difficulties in crossing plateaus of
the error function associated with the landscape. The error landscape is the deficiencies
of the conventional algorithms. To address these deficiencies, metaheuristic optimiza-
tion algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) [53],
and imperialist competitive algorithm [54] can be applied to trained artificial neural net-
works to address these deficiencies. The global search, a significant characteristic of these
algorithms, can improve the ANN model performance in some situations.

ANN-PSO was used in this study because many researchers have used particle swarm
optimization modelling to develop a predictive approach in different areas of studies, no-
tably among them is [55], who used the ANN-PSO model to predict thermal properties [56]
used different types of particle swarm optimization algorithms such as basic particle swarm
optimization (PSO), the second generation of particle swarm optimization (SGPSO) and a
new model of PSO (NMPSO) to find solutions to three primary aspects (synaptic weights,
architecture, and transfer functions neurons) of an ANN network. During this research
study, it was discovered that a hybrid ANN-PSO model has never been used before to
predict the traffic flow performance of vehicles at road intersections. Celtek et al. [57] used
another form of hybrid particle swarm optimization called social learning particle swarm
optimization (SL-PSO) to solve real-time traffic signal control. The primary reason why
a hybrid ANN-PSO was used in this study was that [57] stated that PSO is an algorithm
that performs a fast convergence to optimal solutions. This characteristic is desirable when
evaluating different traffic conditions (traffic flow, traffic density, and vehicular speed).
Besides, a PSO algorithm is easy to use and requires very few adjustment parameters.
The results of this research have proven that the ANN-PSO model is far more accurate, easy
to use, and efficient than other predictive models when it comes to traffic flow prediction
of vehicles at a signalized road intersection.
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3. Methodology
3.1. Research Design

This research study is designed to demonstrate how an artificial neural network
trained by particle swarm optimization can model vehicles’ traffic flow at signalized road
intersections using selected traffic flow inputs and output. Seven selected signalized road
intersections were selected due to their large traffic volume of vehicles on the selected
metropolitan section of Gauteng province in South Africa. Figure 1 shows the flowchart of
the research methodology applied in this research.
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3.2. Traffic Data

The size of the dataset considered in this study is four hundred and thirty-four,
and fourteen traffic flow parameters were considered as both inputs and output within the
investigation period.
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3.3. Data Collection

The method adopted for the collection of data includes the Primary and secondary
methods. The primary method used in this research involves collecting traffic data from
seven South African signalized road intersections through inductive loop detectors and
video cameras. The secondary data was obtained through visitations to the South African
Ministry of Transportation and South Africa National Roads Agency Limited (SANRAL)
and interaction with Traffic engineers and urban planners’ staff of Mikros traffic Monitoring
systems Ltd. (MTM) to obtain relevant information on transportation systems within
South Africa.

3.4. Sample and Sampling Techniques

Sampling has to do with choosing a subcategory of individuals from a statistical
population to assess the entire population quickly. In the case of this research, the traffic
dataset obtained from Mikros Traffic Monitoring Limited was unlimited. A fraction of four
hundred and thirty-four and fourteen traffic data was chosen to easily assess the entire
population of the South Africa Transportation Network, and we focused on seven roadsites
connected to the N1 Allandale freeway in Gauteng Province due to their higher traffic
density and traffic volume. The inputs and outputs variables used in this research are the
speed of the vehicles, number of different classifications of vehicles, traffic volume, traffic
density, the distance covered by the vehicles, and the time it takes the vehicles to travel the
road’s length.

3.5. Population of the Study

One of the top-rated companies known for traffic monitoring solutions, specializing
in collecting traffic data electronically, constitutes the study population. The company
is called Mikros Traffic Monitoring (MTM) Company, a Syntell group subsidiary. This
company works in conjunction with the South Africa Ministry of Transportation. Traffic
data obtained from MTM for this research study is concentrated on vehicles navigating
Gauteng province, South Africa.

3.6. Location of the Research Study

The Allandale interchange (N1 Ben Schoeman) is one of the busiest and best-rated
interchanges in South Africa regarding infrastructure and connectivity. It also connects
Johannesburg and Pretoria with an average travel distance of 14.7 km. The aerial drone
image of this interchange is shown in Figure 2. This interchange accommodates more than
80,000 vehicles traveling southbound and over 71,000 vehicles moving Northbound every
24-h. Figure 3 shows the N1 Allandale interchange’s description, a South Africa Govern-
ment (National) road network that connects Johannesburg through Pretoria, Bloemfontein,
Polokwane, Capetown, and Beit Bridge (which is located on the border of South Africa
and Zimbabwe).

The traffic dataset was obtained from the N1 Ben Schoemann, also known as the
Allandale interchange, using inductive loop detectors and roadside video cameras. This in-
terchange is connected to seven different road networks with different lanes and directions.
The characteristics of these roadsites are shown in the Appendix A (Table A1); these road
networks are:

• Brakfontein 1C N1 SB (Roadsite 1852).
• Old Johannesburg Road SB off-ramp (Roadsite 1854).
• Samrand Avenue SB off-ramp (Roadsite 1856).
• Olifantsfnt SB off-ramp (Roadsite 1858).
• New road SB off-ramp (Roadsite 1860).
• Allandale road SB IC off-ramp (Roadsite 1862).
• Allandale road SB on-ramp (Roadsite 1863).
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Note:

Off-ramp: When a vehicle drives off the freeway to connect with another road, usually a minor road.
On-ramp: This is when vehicles connect from the minor road to the freeway

The characteristics of these seven roadsites have been described in detail in Table A1
in Appendix A. The table comprises of the longitude and latitude of each of the roadsites,
the number of lanes on each road, number of vehicles on each road, lengths of the road,
speed limit, and the direction of the vehicular traffic flow on each roadsites.
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3.7. Size and Extraction of the Traffic Datasets

Four hundred and thirty-four traffic datasets were collected under different hetero-
geneous conditions. From seven road sites on the South Africa Road network, all these
road sites are connected to the N1 route, the busiest on the South Africa Road network.
The traffic datasets were collected from these seven sites with the aid of various traffic
collection equipment. Fourteen different traffic flow parameters were identified from
these traffic datasets. These traffic parameters are crucial in understanding the traffic
flow patterns of the South Africa Road network. Five traffic flow periods were identified
based on the period from the traffic datasets. The five traffic flow periods are identified
based on the traffic volume experienced on these roads depending on the day’s specific
time. These periods are either off-peak or on-peak, depending on the time during the day.
The periods are classified as 1, 2, 3, 4, 5 in this research; this is explained further in
Section 3.9. Fourteen of these parameters were used as inputs and output during the artifi-
cial neural network-particle swarm optimization modelling. The traffic flow parameters
identified in these seven road sites are shown in Table 2:
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• Traffic density: This is the number of vehicles per unit length. It is calculated as:

Table 2. Categorization of the traffic datasets into inputs and output.

Input Variables Output Variables

Traffic density Traffic Volume
Number of light vehicles

The average speed of light vehicles
Time of day of light vehicles

The average speed of a long truck
Time of day of long truck

Number of long trucks
The average speed of a medium truck

Time of day of medium truck
Number of medium trucks

Number of short trucks
The average speed of a short truck

Time of day of short truck

Traffic density =
Number of vehicles

length
(1)

• Traffic volume: This is the number of vehicles depending on a specific period.
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Traffic volume =
Number of vehicles

time
(2)

• The number of short/medium/long trucks: This is the overall total number of dif-
ferent types of trucks on a specific road depending on the time of the day and
traffic volume.

• The number of light vehicles: This is the overall total number of different types
of light vehicles on a specific road network considering the period of the day and
traffic volume.

• Time of day of light vehicles or short/medium/long trucks: This parameter is de-
pendent on the speed of the vehicles or truck and the distance of the specific road site.
For example, the road sites used as a case study in this research study have their
distance. Its mathematical expression is;

speed =
distance

time
therefore, time =

distance
speed

(3)

• The average speed of light vehicles or short/medium/long trucks: This is the speed
of the vehicles on the road at a specific period. Each road has its speed limit. The road
sites used for this study all have a speed limit of 120 km/h.

The South African Ministry of transportation classified different vehicles into Class
1, Class 2, Class 3, or Class 4. Light vehicles are usually classified as Class 1. In contrast,
trucks are classified between Class 2 to Class 4 depending on each truck’s number of axles.
In this research, the following are grouped under a light vehicle or short/medium/long
truck: 2 axles, 6 tyre unit + light trailer (max 4 axle); three-axle single units (+1 axle trailer);
four or fewer axle large trailer(s); five-axle single trailer; fight motor vehicle; light motor
vehicle towing; motorcycle; seven axle vehicles; six-axle multi-trailer; six-axle single trailers;
two-axle buses; two axles six tyre single unit. The definition of different classifications of
vehicles has been provided in the Appendix A section.

3.8. Method of Data Collection

Table 3 shows the traffic flow parameters collected by each traffic flow equipment’s.
The equipment used for the data collection by Mikros Traffic Monitoring (MTM), a sub-
sidiary of Syntell Group Limited, are:

Table 3. Collection of Traffic data.

Traffic Data Collection Equipment Traffic Data

Data Loggers Vehicular Speed

Loop Detectors
Vehicular Speed.

Distance.
Time.

Video Cameras Number of Vehicles

3.8.1. Data Loggers

Electronic equipment is used in road transportation networks to record data or infor-
mation garnered for some time by vehicles’ movement on highways and road intersections.
An example of a data logger is shown in Figure 4. This information gathered can be ana-
lyzed or documented for future purposes. They make use of sensors to record information
from vehicles.
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They are also called inductive loop detectors (shown in Figure 5). These detectors
are installed along with highway bumps or where there is a zebra crossing. Besides, they
are always relatively closed to traffic lights. They detect the number of vehicles passing,
the speed and distance covered by the vehicles, and the time it took the vehicle to arrive at
that position on the road.
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3.8.3. Video Cameras

These are installed on traffic light poles and usually found around road intersections,
road tunnels, highways, freeways, and sometimes roundabouts. A typical illustration of
this is shown in Figure 6. They are commonly used to catch traffic offenders or monitor the
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traffic flow of vehicles. The major limitation is that they are always affected by weather
conditions, especially during the rainy or harmattan period; during this period, it is difficult
for the video cameras to monitor vehicles’ traffic flow on the road.
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3.9. South Africa Vehicular Traffic Flow

Note that for this research study, the period of the day is divided as:

1: 00:00:00–04:59:59 (Off-peak)
2: 05:00:00–09:59:59 (On-peak)
3: 10:00:00–14:59:59 (On-peak)
4: 15:00:00–19:59:59 (On-peak)
5: 20:00:00–23:59:59 (Off-peak)

For clarity and understanding of the vehicular traffic volume of each roadsites,
the dates and days the traffic datasets were collected are from 15 July 2019 (Monday)
to 25 July 2019 (Thursday). Figure A1 (these figures can be found in the Appendix A
section, they are numbered A–G) shows the traffic volume of vehicles at each roadsites
considering the period of the day. The traffic volume tables for each roadsites can be found
in the Appendix A section. They are named Tables 2, A1 and A3–A7. The traffic flow
system depends on the traffic volume at a certain period of the day. For example, in each
of the roadsites, the period between (00:00:00–04:59:59) is when the traffic flow is gradually
building up. This is a period between midnight and the early morning when people are
just starting to their place of work. Between 05:00:00–09:59:59 and 10:00:00–14:59:59 is
the on-peak period, this when the traffic volume attains the maximum number of vehi-
cles on the road. This is usually when traffic congestion occurs due to high road traffic
density (large vehicle occupancy on the road). The traffic congestion can be either re-
current (this occurs when the route is heavily used because of its network connectivity)
and non-recurrent (this might be due to road accidents or unforeseeable circumstances on
the road). The exception among these vehicular traffic flows is that during the non-working
days, which are Saturday and Sunday, from critical observation, between the period of
00:00:00–04:59:59 and 05:00:00–09:59:59, there is a low traffic volume due to people not
going to place of work at this period of the day. During these days (Saturday and Sunday),
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the traffic flow only started to build up in the afternoon, around 15:00:00 and 19:59:59.
When the traffic flow is high, the traffic density will increase, which means that the traffic
volume will be high, i.e., high traffic volume means there are many vehicles on the road.
The traffic flow periods have shed light on one thing, to understand traffic flow, it is crucial
that we first have clarity on the traffic volume, traffic density, and the period of the day
(off-peak and on-peak).

3.10. The Goal, Data Inputs, and Data Processing Involved in the Development of the
ANN-PSO Model

Particle swarm optimization is a strong and effective metaheuristic algorithm that
resolves complicated and non-linear optimization problems [58]. This swarm optimization
technique can efficiently solve global optimization issues compared with other classical
optimization techniques. Particle swarm optimization is a modern optimization technique
dependent on social methods such as fish schooling and bird flocking [59]. Depending on
the mathematical conceptual framework of particle swarm optimization, these three signif-
icant parameters play important roles in PSO optimizations: position, velocity, and fitness.
The primary steps of PSO to solve any complex optimization issues is as follows:

• Initializing a population of individuals (particles) with random velocities and positions
in the domain of the problem.

• Computing the fitness value for all particles.
• Investigating fitness of particles.
• Updating the velocity and position of particles using Equations (4) and (5).

Vt
ij= χ

[
ωυt−1

ij + c1r1

(
pt−1

ij − xt−1
ij

)
+ c2r2

(
Gt−1

j − xt−1
ij

)]
(4)

xt
ij = xt−1

ij + υt
ij (5)

r1 and r2 are called random numbers.
c1 and c2 are the acceleration constants.
w, χ, Pt and Gt are all called the weight of inertia, pbest, and gbest.
When an artificial neural network is adequately trained in the MATLAB environment,

it will function as a black-box model, explaining the relationship between a complex
dataset, which comprises an input and output (irrespective of the number of variables).
An artificial neural network consists of mathematical processing units called neurons. These
neurons can be found in the black box during a neural network operation on MATLAB.
These neurons can form a relationship with each other via weights and biases. An artificial
neural network consists of three primary layers: the input, hidden, and output layers.
The neurons are placed in the hidden and output layers, while the input layers do not
contain any neurons. After the neural network toolbox has been opened in MATLAB,
training will be conducted with the input data and the corresponding output datasets.

The inputs in Table 2 were divided into 13 columns; the output datasets are in a single
column on another excel sheet. These are all carried out to determine the appropriate
weights and biases of the neurons. Neural network training of data (input and outputs)
means determining the optimum variables of different weights and biases of the neural
network. Generally, different methods are applied to determine the appropriate parameters
of weights and biases of the Artificial Neural Network. In this research, the suitable
optimum training of the network has been done by applying an artificial intelligence
technique called Artificial Neural Network—Particle Swarm Optimization, which can be
found in the MATLAB software environment.

Once the ANN-PSO training has been done adequately on the datasets, the network
validation is performed using the testing data-independent variables. An artificial neural
network is perfect if the fitness function values are lower or closer to one for the training and
validation of the traffic datasets. Particle swarm optimization is created through different
species’ social and cooperative behaviour to fill the loopholes in a multidimensional
search space. The PSO algorithm is based on the personal experience (Pbest), the overall
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personal experience of the species (Gbest), and the decision m particles’ decision-making
to determine the subsequent positions in the search space. Furthermore, the personal
experience of different types of species are accelerated by two (2) main factors called C1
and C2 and a pair of (no specific variables random) r1 and r2 which are created between a
variable ranging from 0 to 1, while the movement is multiplied by ‘w’, which is a crucial
inertia factor ‘w’.

VK+1
p,q = w×VK

p,q + c1r1

(
Pbestk

p,q − XK
p,q

)
+ c2r2

(
Gbestk

q − XK
p,q

)
(6)

XK+1
p,q = XK

p,q + VK+1
p,q (7)

In Equation (6), Pbestk
p,q denotes the personal best of the qth component of the pth

individual, while the Gbestk
q referred to qth component of the best individual species of

the population of iteration ‘k’. Figure 7 shows the search mode of operation of a particle
swarm optimization. The initial Pbest of each particle is the position, and the initial
Pbest is the most appropriate particle position between a randomly initialized population.
The Pbest and Gbest of each particle are:

I f f
(

XK+1
P

)
< f

(
PbestK

P

)
then PbestK+1

P = XK+1
P else PbestK+1

P = PbestK
P (8)

If f
(

XK+1
P

)
< f

(
GbestK

)
then GbestK+1 = XK+1

P else GbestK+1 = GbestK (9)

The flowchart below shows the steps been applied to train the artificial neural network
using particle swarm optimization. In the early stages, ‘N’ sets of weights and biases of
the size of particles ‘D’, directly proportional to ‘n*(m + 2) + 1’ applied randomly. Each
traffic dataset is a particle in particle swarm optimization, which is depicted as the particle
position. Presently, the initial velocity of each particle in the traffic dataset is applied as 10%
of the current position of the correlated particle (which is referred to as ‘V’). The fitness ‘f’
of each particle in the traffic dataset undergoes evaluation. The corresponding particles
to the optimum performance of the fitness named as Gbest while Pbest of each particle are
accepted as their corresponding bearings. Equations (6) and (9) are used to upgrade the
positions of each particle in the PSO, resulting in conclusive optimized weights and biases of
the ANN traffic model. A typical flowchart shows an ANN-PSO-based model in Figure 8.
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Figure 8. A framework of the ANN-PSO Model developed for the traffic flow prediction performance.

A programming language has been inbuilt in the MATLAB environment, assuming
that there is a three-layer artificial neural network architecture. The number of input and
output variables considered for developing the artificial neural network-particle swarm
optimization model is shown in Table 2. In this study, the number of neurons used varies
between five (5) and ten (10), respectively. The ANN-PSO model has variables, which
are dependent on particle swarm optimization or the artificial neural network. The PSO
variables include the overall number of particles in the swarm population size (swarm size,
N), acceleration factor associated with the particle velocity (C1 and C2), the inertial weight
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of the particles (w). The artificial neural network features are the network architecture
(i.e., the total number of neurons in the hidden layer ‘n’). The inertia weight of the particles
is commonly known as random numbers, which are primarily within the range of 0–1.

A comprehensive iteration was carried out on the ANN-PSO model for obtaining
an appropriate combination of variables related to the traffic data. Six different numbers
of neurons were considered; the variables are 5, 6, 7, 8, 9, and 10. Six (6) distinct swarm
population sizes were also considered. According to past research work [60], it was
discovered that the best possible optimum value of the acceleration factor of the particle
C1 and C2 is situated in-between 1–2.5 and 2–3. Five (5) various variables of accelerating
factors C1 and C2 were considered. Table 4 shows the overall number of neurons in the
hidden layer used to train the datasets. The table also presents the particle size and the
acceleration factor considered when training the traffic datasets. The variables of the PSO-
ANN hybrid model developed for the traffic data were established by performing frequent
training of the traffic data. An overall 1000 training runs were done on the MATLAB
environment to acquire the near-perfect integration of the ANN-PSO framework. Training
of the traffic data during the ANN-PSO training of the traffic data. The training will
only be stopped or terminated when the objective function iteration has been fulfilled.
The following benchmark was adhered to. The benchmark is:

• A maximum iteration of 1000.
• The training run will be terminated if the objective function is not up to a specific

fixed parameter.

Table 4. Values of parameters of the ANN-PSO model used for the traffic study.

Acceleration Factor Swarm Population Size Number of Neurons

Value of the parameters C1 C2

1 2.0 10 5
1.5 2.25 20 6
2 2.5 50 7

2.25 2.75 100 8
2.5 3.0 200 9

400 10

The ANN-PSO training was carried out in the MATLAB environment by following
these steps:

• Step One: Traffic data collection.
• Step Two: Creation of the hybrid network.
• Step Three: Configuration of the ANN-PSO network.
• Step Four: Initialization of the weight and biases.
• Step Five: Training the Neural network by applying particle swarm optimization.
• Step Six: Validation and testing of the ANN-PSO network.
• Step Seven: Using the Neural Network.

The inputs and outputs variables used for the development of the ANN-PSO net-
work are shown in Table 2. These input and output variables were categorized based
on the method used by [61,62]. Preparation of the dataset is followed by structuring the
architecture of the algorithms. MATLAB user interface tools and command-line func-
tionality are used to oversee the ANN-PSO model’s development, training, and testing.
The traffic datasets used in this traffic prediction study were obtained from seven major
road intersections connecting to the N1 Allandale Road, the busiest interchange in southern
Africa. The breakdown of how the traffic datasets were divided and used for the ANN-PSO
training and testing is shown in Table 5 below. We used 434 traffic datasets, 364 for training,
and 70 for testing the ANN-PSO model performance. The division of the traffic datasets
for training and testing is shown in Table 5 below. The MATLAB codes used to develop
the ANN-PSO model have been deposited in a GitHub repository. This is the link to the
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MATLAB codes https://github.com/Olayode1989/ANN-PSO-codes.git (accessed on 20
August 2021).

Table 5. The Breakdown of the Roadsites traffic datasets for ANN-PSO training.

Roadsites Training Testing Total

Brakfontein 1C N1 SB (Roadsite 1852) 51 10 61
Old Johannesburg road SB off-ramp (Roadsite 1854) 64 10 74

Samrand Avenue SB off-ramp (Roadsite 1856) 54 10 64
Olifantsfnt SB off-ramp (Roadsite 1858) 50 10 60
New road SB off-ramp (Roadsite 1860) 47 10 57

Allandale road SB IC off-ramp (Roadsite 1862) 64 10 74
Allandale road SB on-ramp (Roadsite 1863) 34 10 44

364 70 434

Allendale road SB on, Allendale Road IC (SB only), new road SB off, Olifantsfnt road
SB off, Samrand Ave SB off, Old Johannesburg Road SB off and Brakfontein IC N1 SB.
Equations (10) and (11) show the regression value’s statistical formulae and the mean
square error.

R2 = 1− ∑k(yk − ŷk)
2

∑k(yk − yk)
2 (10)

MSE =
1
2

n

∑
k=1

(yk − ŷk)
2 (11)

where yk, ŷk, yk n represents the experimental data sample, the values predicted by the
algorithm, the mean value of the experimental data samples, and the number of data
samples, respectively. The primary code file used for training the traffic datasets using
ANN-PSO was generated. These codes were saved as ‘m_pso_m’ before the ANN-PSO
was used to prepare the traffic data. The input and output datasets were created and
saved in a Microsoft Excel worksheet. In the Microsoft worksheet, two sheets were created,
namely sheet 1 and sheet 2. In sheet 1, it consists of the input datasets and sheet two,
which comprises the output (traffic volume) and the target data required to be placed in
the first column of the first row of sheet 2 in the excel file. This Microsoft excel of the
input and output data (target data) must be saved with the name ‘datafile.xlsx’ and kept
in the same directory as the ANN-PSO codes. These traffic data can be uploaded into
the MATLAB environment by inputting the following command codes in the MATLAB
command window:

[x,t] = traffic_dataset;
Inputs =X′;
Outputs = t′;
All three files were saved in the MATLAB directory ‘myfunc.m’, ‘nn_pso.m’,

and datafile. xslx to train the artificial neural network using Particle swarm optimiza-
tion effectively. The ‘nn_pso.m’ file is run consistently depending on the number of hidden
neurons, swarm population size, and accelerating factor. For example, if the number of
hidden neurons is five (5) and the swarm population size is 10, the best performing acceler-
ating factor is C1 = 2.25 and C2 = 2. These parameters will be changed in the ‘nn_pso.m’
codes inside the MATLAB environment.

4. Results and Discussions
The ANN-PSO Model Results and Discussions

The 434 traffic datasets obtained from the seven roadsites were divided into 367
and 70 for training and testing. To achieve the best optimum output, the trial-and-error
approach was used to discover the best value for the number of hidden nodes, iterations,
and acceleration factors. Sigmoid and linear functions were used for the ANN-PSO model

https://github.com/Olayode1989/ANN-PSO-codes.git
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for the hidden and output node activation functions. The best optimal parameters for both
training and testing performance of the ANN-PSO model of traffic flow at each roadsites,
as shown in Table 6, are:

(a) Number of hidden neurons = 5
(b) Swarm population size = 400
(c) Number of traffic datasets = 434
(d) C1 and C2 = 1.5 and 2
(e) Training (R2) = 0.98356
(f) Testing (R2) = 0.98220

Table 6. The Parametric analysis of ANN-PSO Hybrid Model for the Traffic Dataset.

Number of Neurons Swarm Population Size C1 C2 Training (R2) MSE Testing (R2)

5 10 2.25 2 0.97306 47.128 0.9314
5 20 2.25 2 0.96982 52.781 0.7838
5 50 1.5 2.25 0.98313 29.734 0.9769
5 100 1 2.75 0.97102 50.590 0.9784
5 200 1.5 2 0.98566 25.228 0.8660
5 400 1.5 2 0.98356 28.921 0.9822
6 10 1 3 0.98452 27.227 0.9423
6 20 2 2.25 0.97620 41.817 0.9781
6 50 1 2.5 0.98758 22.007 0.8595
6 100 1 2.5 0.99172 14.694 0.8917
6 200 1 2.75 0.96347 63.516 0.9681
6 400 1 2.25 0.98569 25.173 0.9140
7 10 1.5 2.5 0.98005 35.093 0.8268
7 20 1 2.75 0.98942 18.736 0.9353
7 50 1 2.5 0.98819 20.849 0.9411
7 100 1 2.5 0.99299 12.453 0.9591
7 200 1.5 2.25 0.99314 12.199 0.9486
7 400 2 2 0.98688 23.118 0.9661
8 10 1 2.75 0.97769 39.122 0.9546
8 20 1 2.5 0.98570 25.162 0.9401
8 50 1.5 2.25 0.99391 10.849 0.9276
8 100 1 2.5 0.98571 25.128 0.9100
8 200 1 2.75 0.98816 20.877 0.9716
8 400 1 2.25 0.99490 90.219 0.8880
9 10 1 2.75 0.98235 31.076 0.9356
9 20 1 3 0.96028 69.016 0.9800
9 50 1.5 2.25 0.99290 12.598 0.9090
9 100 2 2 0.98634 24.048 0.7637
9 200 1.5 2.25 0.98993 17.757 0.8790
9 400 1 2.5 0.99361 11.290 0.8218
10 10 1 2.75 0.97468 44.281 0.9897
10 20 1.5 2.5 0.97177 49.340 0.9564
10 50 1.5 2.5 0.97826 38.098 0.8602
10 100 1 2.75 0.99122 15.536 0.9627
10 200 1 2.75 0.99078 16.265 0.9056
10 400 1.5 2.5 0.98950 18.500 0.9246

Figure 9a below shows the result of the ANN-PSO training response of 0.98356,
considering the number of hidden neurons, accelerating factors, and swarm population
sizes. To evaluate the accuracy of the ANN-PSO model, observed and predicted output of
the traffic volume of vehicles at each roadsites were compared in Figure 9b, with the testing
performance of the model been 0.98220. The ANN-PSO model’s testing performance of the
traffic datasets from the roadsites was calculated by plotting a graph between the actual
value of the traffic volume and the simulated traffic volume achieved during the ANN-PSO
model training testing and validation. The existing traffic volume was compared with the
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simulated traffic volume to determine the ANN-PSO model’s validity of each roadsites
traffic dataset.

The study set out to determine if an artificial network trained by particle swarm
optimization can be used to model traffic flow at a signalized road intersection. The current
study has been able to answer that question, considering Table 6, which shows evidently
that the ANN-PSO model is capable of modelling traffic flow at a signalized road intersec-
tion. The most interesting finding from the ANN-PSO results shows that the best optimum
training and testing performed for the roadsites was obtained with a different number of
neurons, swarm population sizes, and acceleration factors C1 and C2. From the results,
it can be concluded that the ANN-PSO’s parameters affect the performance prediction
of the traffic flow datasets. Another significant finding from the ANN-PSO result is that
the accelerating factors and mean square error plays an essential role in determining the
optimum performance of each ANN-PSO model on each roadsites; for example, the lower
the MSE, the more likely there is going to be an optimum training or testing performance
of the ANN-PSO model. The most striking result to emerge from the research study
is that when an ANN-PSO model comprises the maximum correlation coefficient (R2)
and the minimum MSE, it can be said that the ANN-PSO model is superior. The training
and testing performance regression value for the roadsites indicates that the inputs and
target are well correlated. Another significant finding is that when R-value is closer to 1,
this means that there is an accurate linear relevance between the traffic inputs and target.
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Figure 9. (a) ANN-PSO training response of the best performance neural network of the traffic datasets of the roadsites
(13-5-1). (b) Comparison between the measured and predicted traffic volume of the roadsites for the testing performance of
the ANN-PSO model.
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5. Conclusions and Future Work

To achieve the aim of this research study, an in-depth and exhaustive research study
has been conducted to develop an ANN-PSO capable of modelling and analysing vehicular
traffic flow at a signalized road intersection. For the accurate modelling of traffic flow,
it was important to understand and identify some traffic flow parameters and have clarity
on how traffic flow affects the movement of vehicles at a signalized road intersection.
In this research study, the successful development of the ANN-PSO model for the traffic
flow of vehicles at a signalized road intersection has been achieved. The vehicular speed,
the time of the day, the traffic volume, and the traffic density of each class of vehicles (light
vehicles, long trucks, medium trucks, and short trucks) have been considered as the traffic
flow inputs and outputs variables. The following conclusions can be drawn from this
present study:

• ANN-PSO model is potentially suitable for the prediction and analysis of traffic flow
at a signalized road intersection. This model could be used to predict traffic flow
with a high level of accuracy. It explains the heterogeneous traffic flow conditions at
different periods of the day.

• Due to the stochastic nature of traffic information, it is difficult to determine the
volume of traffic flow at a signalized road intersection. This equally implies that the
specific time of the day determines the traffic density and vehicular speed on the
road. The evidence from this study suggests that traffic density and traffic volume
are significant in determining traffic congestion and understanding the traffic flow
patterns on a road transportation network.

• The ANN-PSO model developed in this study will assist transportation engineers and
urban planners in developing possible ways to use their respective country’s traffic
information to understudy traffic flow patterns and variables for effective predictive
models. Also, designing a traffic control system for traffic lights at road intersections
can be made possible and timely.

• The results of this study will serve as a base for future studies for engineers and
transportation researchers in understanding the complexity of traffic flow patterns at a
signalized road intersection. Also, it will assist drivers in the decision-making process,
such as which period of the day traffic congestion is likely to occur on a particular
road.

Based on the results obtained from this research study, this research study has thrown
up many questions in need of further investigation in the field of transportation:

• Further work needs to be done to establish whether other metaheuristic algorithms,
such as the second generation of particle swarm optimization (SGPSO), bee colony,
an artificial neural network trained by genetic algorithm (ANN-GA), adaptive neuro-
fuzzy inference system trained by particle swarm optimization (ANFIS-PSO)
and simulated annealing can be used in developing predictive models using traf-
fic flow parameters obtained from a signalized road intersection.

• A natural progression of this research study would be to focus on unsignalized road
intersections, traffic light timing response optimization, and the usability of traffic vol-
ume in determining traffic congestions at road intersections. Besides, demonstrating
other metaheuristic techniques’ strength and predictive power will be very useful as a
comparative measure for minimizing traffic issues in road transportation.

• Finally, another possible area of future research would be to investigate if the optimal
solution obtained in this research depends on factors affecting traffic flow and how
could the optimal solution change depending on these factors.
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Appendix A

• Two axles, six tyre unit + light trailer (max 4 axle): These include vehicles used to
carry sand and construction materials, including camping and recreational vehicles.
They have three axles.

• Three axle single unit (+1 axle trailer): These types of vehicles are called trucks, e.g.,
camping and recreational kinds of vehicles.

• Four or less axle large trailer(s): This type of vehicle consists of 2 units, one of which
can either be a tractor or a straight truck power unit.

• Five axle single trailer: They comprise of 2 units and a tractor; multi-national industries
usually use these types of trailers to move goods and services.

• Six or more axle single trucks: This type of vehicle always consists of 2 units, a tractor
or a straight truck power unit.

• Five or fewer axle multi-trailer trucks: These include five or fewer axles comprising
three or more units. It can either be a tractor or a straight truck power unit.

• Six axle multi-trailer trucks: This is either a tractor or a straight truck power unit.
• Seven or more axle multi-trailer trucks: This is also either a tractor or a truck power unit.

It is usually used to carry heavy construction materials or used for transporting fuels.
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Figure A1. Note: 1: 00:00:00–04:59:59 (Off-peak), 2: 05:00:00–09:59:59 (On-peak), 3: 10:00:00–14:59:59 (On-peak), 4: 15:00:00–
19:59:59 (On-peak), 5: 20:00:00–23:59:59 (Off-peak). Furthermore, it is important to note that for all the figures, the unit
of traffic volume is vehicles/day or vehicles/h. (A) Brakfontein 1C N1 SB; (B) Old Johannesburg Road SB (off-ramp);
(C) Samrand Avenue SB (off-ramp); (D) Olifantsfnt SouthBound off-ramp; (E) New road SB off-ramp; (F) Allandale road IC
off-ramp; (G) Allandale road SouthBound on-ramp.
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Table A1. Features of the Seven Roadsites.

Name of the
Roadsites Dates Number of

Lanes Lane Descriptions Directions
Number of

Vehicles at Each
Roadsites

Longitude Latitude Speed Limit
(km/hr)

Length of the
Roadsites (m)

Brakfontein 1C N1
SB

15–27 July
2019

7 01 Fastlane to Johannesburg Southbound 2,097,152 28.16857◦ E −25.88084◦ S 120 12.5
02 Middle to Johannesburg Southbound
03 Slow Lane to Johannesburg Southbound
04 On-Ramp joining N3 Southbound
05 Fastlane from N1 Southbound
06 Middle Lane from N1 (Polokwane) Southbound
07 Slow Lane from N1 (Polokwane) Southbound

Old Johannesburg
Road SB Off-Ramp

15–29 July
2019

5 01 Fastlane to Johannesburg Southbound 16,240,260 28.158402◦ E 25.90833◦ S 120 9.4
02 Middle to Johannesburg Southbound
03 Middle to Johannesburg Southbound
04 Slow Lane to Johannesburg Southbound
05 The Off-Ramp to R10 1N Southbound

Samrand Avenue
Southbound

Off-Ramp

15–29 July
2019

7 01 Fastlane to Johannesburg Southbound 18,448,023 28.146509◦ E −25.9271◦ S 120 7
02 Middle to Johannesburg Southbound
03 Middle to Johannesburg Southbound
04 Slow Lane to Johannesburg Southbound
05 Off-Ramp to Ultra city Southbound
06 Fastlane, Off- Ramp Southbound
07 Slow Lane, the Off-Ramp to
Samrand Avenue Southbound

Olifantsfnt SB
Off-Ramp

15–29 July
2019

5 01 Fastlane to Johannesburg Southbound 19,051,124 28.134396◦ E −25.95482◦ S 120 3.7
02 Middle to Johannesburg Southbound
03 Middle to Johannesburg Southbound
04 Slow Lane to Johannesburg Southbound
05 Off-Ramp to R56 2 Southbound

New Road
Southbound
(Off-Ramp)

15–29 July
2019

5 01 Fastlane to Johannesburg Southbound 18,262,048 28.128098◦ E 25.97556◦ S 120 1.3
02 Middle to Johannesburg Southbound
03 Middle to Johannesburg Southbound
04 Slow Lane to Johannesburg Southbound
05 Off-Ramp to New Road Southbound

Allandale Road
Southbound IC
(Southbound

Only)

15–29 July
2019

3 01 CD Road Southbound 5,815,648 28.116522◦ E −26.01489◦ S 120 54.5
02 Off-Ramp to Allandale Road Southbound
03 On-Ramp from Allandale Road to
N1 South Southbound
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Table A1. Cont.

Name of the
Roadsites Dates Number of

Lanes Lane Descriptions Directions
Number of

Vehicles at each
Roadsites

Longitude Latitude Speed Limit
(km/hr)

Length of the
Roadsites (m)

Allandale Road
Southbound

On-Ramp

15–29 July
2019

8 01 Fastlane to Johannesburg Southbound 24,292,818 28.11375◦ E −26.02054◦ S 120 53.7
02 Middle to Johannesburg Southbound
03 Middle to Johannesburg Southbound
04 Middle to Johannesburg Southbound
05 Fastlane to Johannesburg Southbound
06 The On-Ramp from Allandale
Road Eastbound Southbound

07 Fastlane On-Ramp from
Southbound Allandale Road
Westbound/ South

Southbound

08 Allandale Road Westbound South Southbound

Table A2. New Road SB Off-Ramp.

Dates

Period of
the Day 15 July 2019 16 July 2019 17 July 2019 18 July 2019 19 July 2019 20 July 2019 21 July 2019 22 July 2019 23 July 2019 24 July 2019 25 July 2019

1 3,341,710 2,983,388 2,641,849 2,801,686 3,149,121 4,001,741 3,672,468 3,072,077 3,018,337 2,580,080 2,972,918
2 53,977,726 57,151,756 58,909,411 58,997,111 55,141,717 31,656,476 18,118,469 57,166,991 52,530,890 45,540,650 50,633,314
3 44,563,790 51,774,523 53,660,753 54,200,042 55,202,710 49,038,868 39,984,691 51,207,120 52,552,942 50,879,340 55,267,964
4 37,314,172 44,059,377 42,247,899 43,742,987 44,436,625 35,664,486 40,107,832 43,313,392 43,933,290 44,450,832 46,201,607
5 6,681,025 7,303,247 7,879,124 8,042,897 10,606,950 11,862,415 8,520,364 6,689,887 7,055,296 7,722,493 9,165,914

Table A3. Brakfontein IC N1 SB.

Dates

Period of
the Day

15 July
2019

16 July
2019

17 July
2019

18 July
2019

19 July
2019

20 July
2019

21 July
2019

22 July
2019

23 July
2019

24 July
2019

25 July
2019

26 July
2019

27 July
2019

1 321,821 284,516 235,749 255,599 292,933 396,825 346,475 285,355 287,843 234,682 252,186 299,738 610,946
2 3,602,048 1,869,268 5,836,870 5,800,263 2,423,271 2,759,542 1,505,778 4,583,483 5,691,507 5,680,098 5,780,232 5,853,269 3,041,894
3 1,999,604 5,102,335 5,149,346 5,224,989 5,611,289 4,596,207 3,612,345 4,819,565 4,988,628 5,027,838 5,339,309 5,891,051 5,123,845
4 4,646,792 4,734,556 4,827,747 4,775,710 4,951,608 3,534,356 4,022,901 4,675,268 4,746,483 4,834,704 4,952,798 5,114,025 296,582
5 674,526 732,688 824,652 853,587 1,125,768 1,205,557 839,470 653,840 732,518 776,017 938,792 1,285,480
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Table A4. Old Johannesburg Road Southbound (Off-Ramp).

Dates

Period
of the
Day

15 July
2019

16 July
2019

17 July
2019

18 July
2019

19 July
2019

20 July
2019

21 July
2019

22 July
2019

23 July
2019

24 July
2019

25 July
2019

26 July
2019

27 July
2019

28 July
2019

29 July
2019

1 390,179 327,976 268,065 289,300 335,488 469,798 417,142 339,721 335,219 270,048 290,175 350,518 773,861 568,289 404,581
2 2,216,559 2,042,699 4,333,069 4,838,127 2,131,202 3,149,843 1,769,578 2,347,645 2,203,855 3,040,326 2,973,499 3,331,478 3,539,626 2,348,912 1,275,185
3 815,676 5,730,636 5,829,798 5,849,334 6,162,667 5,226,996 4,225,467 5,487,717 5,633,324 5,718,815 6,029,431 6,567,132 5,901,943 4,609,278 5,423,568
4 3,644,100 5,144,936 5,203,609 5,203,848 5,399,589 4,057,684 4,701,158 5,094,101 5,137,524 5,279,266 5,407,199 5,485,859 4,527,064 5,071,441 765,203
5 787,586 875,753 960,764 991,788 1,326,893 1,424,255 1,035,343 766,568 837,739 892,657 1,095,860 1,517,427 1,695,464 1,333,457

Table A5. Samrand Avenue Southbound (Off Ramp).

Dates

Period of
the Day

15 July
2019

16 July
2019

17 July
2019

18 July
2019

19 July
2019

20 July
2019

21 July
2019

22 July
2019

23 July
2019

24 July
2019

25 July
2019

26 July
2019

27 July
2019

1 574,868 504,994 425,123 468,260 531,622 710,172 623,026 520,392 522,734 434,026 477,027 549,520 1,099,849
2 5,416,190 4,544,699 6,666,994 6,469,966 3,682,757 5,135,566 2,821,822 5,240,023 5,280,114 5,273,322 5,765,438 5,956,048 5,588,665
3 6,882,973 9,543,915 9,737,896 9,880,675 10,412,641 8,544,563 6,737,959 9,095,988 9,350,828 9,518,832 10,046,177 10,928,995 9,559,681
4 7,996,735 8,120,977 8,284,089 8,244,838 8,571,413 6,335,493 7,167,665 7,948,635 8,063,400 8,284,807 8,576,608 8,947,607 366,385
5 1,163,614 1,323,411 1,431,353 1,481,270 1,993,989 2,103,922 1,490,162 1,145,786 1,259,688 1,339,216 1,640,843 2,286,731

Table A6. Olifantsfnt SB Off-Ramp.

Dates

Period of
the Day

15 July
2019

16 July
2019

17 July
2019

18 July
2019

19 July
2019

20 July
2019

21 July
2019

22 July
2019

23 July
2019

24 July
2019

25 July
2019

26 July
2019

1 1,021,527 945,044 797,486 833,213 961,670 1,255,697 1,106,365 968,462 962,808 817,024 883,234 997,146
2 10,823,115 9,909,632 11,188,930 11,043,824 11,309,548 9,732,065 5,347,205 11,174,255 10,663,524 9,850,399 10,791,670 12,106,587
3 12,567,075 12,259,622 17,256,690 17,241,171 17,338,897 15,446,793 12,179,020 16,316,704 15,960,378 16,765,428 17,689,342 18,360,307
4 14,038,494 14,120,725 14,320,182 14,195,183 10,090,051 11,135,014 12,679,847 13,810,047 14,025,189 14,115,094 14,698,109 15,520,252
5 2,045,141 2,287,602 2,457,236 2,557,637 3,472,005 3,738,633 2,645,941 2,023,783 2,193,621 2,314,826 2,820,308 607,144
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Table A7. Allandale Road IC Off Ramp.

Dates

Period
of the
Day

15 July
2019

16 July
2019

17 July
2019

18 July
2019

19 July
2019

20 July
2019

21 July
2019

22 July
2019

23 July
2019

24 July
2019

25 July
2019

26 July
2019

27 July
2019

28 July
2019

29 July
2019

1 6,983 7,617 6,508 6,883 8,209 11,286 10,399 7,839 6,941 6,185 228,716 7,956 14,480 11,976 6,939
2 224,281 218,494 224,619 227,947 215,095 77,622 46,099 227,613 225,165 162,713 175,226 227,637 80,516 54,909 205,804
3 138,796 165,058 167,919 165,493 178,113 150,937 120,560 160,484 164,332 162,785 189,282 196,424 167,500 137,369 161,353
4 174,386 177,442 183,483 179,768 179,424 117,872 114,460 171,007 177,787 115,017 33,283 189,045 137,601 122,157 176,988
5 23,199 27,515 28,339 31,839 36,712 38,355 25,727 22,364 25,031 29,796 42,752 42,704 30,649 25,172

Table A8. Allandale Road Southbound On-Ramp.

Dates

Period of the
Day 15 July 2019 16 July 2019 17 July 2019 18 July 2019 19 July 2019 20 July 2019 21 July 2019 22 July 2019 23 July 2019

1 546,367 482,234 457,114 468,548 531,924 692,344 735,485 477,644 495,049
2 7,285,542 7,808,757 7,881,875 7,160,722 10,484,089 5,601,963 3,155,617 6,150,666 8,831,958
3 8,182,853 8,606,634 9,160,064 9,709,841 9,954,823 8,455,720 6,619,302 8,703,442 9,203,793
4 8,119,554 4,207,789 8,323,528 8,310,533 8,384,411 6,353,075 6,625,680 7,849,427 7,542,791
5 1,222,441 1,352,689 1,424,097 1,495,007 1,889,016 2,097,680 1,472,727 1,197,611
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