
applied
sciences

Article

An Optimization Methodology for Adapting Legacy SGX
Applications to Use Switchless Calls

Seongmin Kim

����������
�������

Citation: Kim, S. An Optimization

Methodology for Adapting Legacy

SGX Applications to Use Switchless

Calls. Appl. Sci. 2021, 11, 8379.

https://doi.org/10.3390/app11188379

Academic Editors: Konstantinos

Rantos, Konstantinos Demertzis

and George Drosatos

Received: 16 August 2021

Accepted: 7 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Convergence Security Engineering, Sungshin Women’s University, Seoul 02844, Korea;
sm.kim@sungshin.ac.kr; Tel.: +82-2-920-7449

Abstract: A recent innovation in the trusted execution environment (TEE) technologies enables
the delegation of privacy-preserving computation to the cloud system. In particular, Intel SGX,
an extension of x86 instruction set architecture (ISA), accelerates this trend by offering hardware-
protected isolation with near-native performance. However, SGX inherently suffers from performance
degradation depending on the workload characteristics due to the hardware restriction and design
decisions that primarily concern the security guarantee. The system-level optimizations on SGX
runtime and kernel module have been proposed to resolve this, but they cannot effectively reflect
application-specific characteristics that largely impact the performance of legacy SGX applications.
This work presents an optimization strategy to achieve application-level optimization by utilizing
asynchronous switchless calls to reduce enclave transition, one of the dominant overheads of using
SGX. Based on the systematic analysis, our methodology examines the performance benefit for each
enclave transition wrapper and selectively applies switchless calls without modifying the legacy
codebases. The evaluation shows that our optimization strategy successfully improves the end-to-end
performance of our showcasing application, an SGX-enabled network middlebox.

Keywords: intel SGX; enclave switches; benchmarking

1. Introduction

Cloud computing allows enterprises to migrate their services from traditional physical
servers to the virtualized environments. In particular, cloud computing has been widely
adopted for video streaming [1], data analytics [2,3], and networking [4,5] to utilize power-
ful computation and storage resources. However, cloud-based services suffer from the lack
of a mechanism to protect their software from the privileged software controlled by the
cloud platform provider, which means that they have to trust the cloud platform not to leak,
corrupt, or misuse their secrets. CPU vendors have released powerful hardware-based
protection mechanisms called trusted execution environments (TEEs) [6–8] to address
this. TEE ensures the integrity and confidentiality of the encrypted memory region and
provides a trusted computing base (TCB) to launch a secure execution environment from
the untrusted part of the system. These advantages overcome the limitations of previous
trusted platform modules (TPMs), suffering from limited functionality that only supports
cryptographic operations [6].

The recent innovation in cloud computing and trusted execution environment (TEE)
technology introduces a new paradigm, confidential computing [9]. Confidential com-
puting enables isolated execution of privacy-sensitive services in a hardware-protected
secure container—a CPU enclave. In particular, Intel software guard extension (SGX) [10]
accelerates the adoption of confidential computing, providing near to the native speed of
a processor and compatibility with x86 architecture. Such advantages inspire researchers
to leverage Intel SGX to various cloud-native applications for enhancing security and
privacy [11–15]. However, even if SGX guarantees isolated execution of applications run-
ning on the cloud, it suffers from performance degradation depending on the workload
characteristics.

Appl. Sci. 2021, 11, 8379. https://doi.org/10.3390/app11188379 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8183-0641
https://doi.org/10.3390/app11188379
https://doi.org/10.3390/app11188379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11188379
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11188379?type=check_update&version=2

Appl. Sci. 2021, 11, 8379 2 of 13

The hardware restriction and design decisions in the software counterpart of SGX
to preserve security guarantee introduces performance overhead [16–19]. Specifically,
the state-of-the-art SGX technology only supports an encrypted memory space up to
128 MB [18], which incurs enclave paging overhead when the memory footprint of the
target application is much larger than the physical memory available. In addition, invoking
enclave entry and exit to handle several operations (e.g., system calls) in a secure manner
leads to redundant CPU mode switches (e.g., secure mode vs. non-secure mode). Even a
tiny improvement in throughput or latency dramatically impacts the business, especially
for cloud-based services. In fact, a report from Amazon showed that only a second of
additional delay while loading a Web page will cost $1.6 billion in sales each year [20].
Therefore, performance optimization to minimize the systematic overhead caused by
applying a commoditized TEE is crucial for cloud-native applications.

Recent studies have focused on improving the performance of SGX applications based
on system-level optimization [16,21,22], while application-level optimization is underex-
plored. However, system-level optimization might be insufficient; design and implemen-
tation choices made by the developer and application-specific characteristics (e.g., I/O
intensive) would largely impact the performance of applications. Moreover, it requires
significant engineering effort when conducting manual tuning to achieve application-
level performance optimization, such as redesigning an application’s execution flow or
modifying its threading model [19].

This paper explores the optimization strategy to efficiently utilize SGX switchless calls,
a technique updated in a recent version of Linux SGX software development kit (SDK) [23].
The switchless call operates enclave entries and exits asynchronously with worker threads
to reduce enclave transition, similar to asynchronous I/O implementation in operating
systems. However, the switchless call is essentially designed for asynchronous threading
models, which makes applying it to legacy codes not always efficient. To this end, we
propose an optimization strategy of leveraging switchless calls on legacy SGX-ported appli-
cations. Specifically, we develop a heuristic method to derive a metric, switchless efficiency,
based on comprehensive analysis over switchless calls. To demonstrate the proposed strat-
egy satisfies our design goal, we perform a case study to optimize a performance-critical
network application, an SGX-enabled network middlebox [11]. The evaluation shows that
our optimization successfully improves the performance of the SGX-enabled middlebox
while a naive adoption of switchless calls degrades its performance.

The remainder of this paper is organized as follows. Related studies are reviewed
in Sections 2 and 3 explains the technical background of our paper. In Section 4, we
first describe the motivation, challenges, and the problem scope of our work. We then
demonstrate how we build our optimization strategy. Section 5 presents our evaluation
with micro-benchmarks and macro-benchmarks and Section 6 includes further discussion,
respectively. Finally, we conclude this chapter in Section 7.

2. Related Work
2.1. Optimizing SGX Performance

Several studies have been reported to reduce the overhead of using SGX. In particular,
they have focused on improving the SGX performance based on system-level optimization
by modifying SGX runtime or kernel module [16,21,22,24]. However, the system-level opti-
mization cannot precisely reflect the application’s characteristics (e.g., threading model),
so it does not always work perfectly for legacy SGX applications. Our proposed method-
ology achieves application-level optimization by measuring the efficiency of leveraging
switchless calls affected by the application-specific characteristics without modifying the
legacy codebase.

SCONE [24] suggests the container-based SGX framework that enables the execution
of legacy applications without modification by providing its library. Based on user-level
threading and asynchronous system call mechanism, SCONE avoids thread blocks due
to synchronization.

Appl. Sci. 2021, 11, 8379 3 of 13

Tian et al. [22] design SGXKernel that leverages library OS to execute unmodified
binaries to make it more practical, similar to the SCONE framework. The proposed system
includes asynchronous communication primitives between enclaves, called delegated
calls. With delegated calls, an SGX enclave does not trigger any enclave switches when
communicating with other enclaves.

Similar to switchless calls that we further explain in Section 3.2, Eleos [21] propose
exitless paging mechanism and exitless system calls to reduce both main factors of SGX
overhead, EPC paging, and enclave transition. In particular, they implement an exitless
system call service routine in a Remote Procedure Call (RPC) fashion, and the RPC-based
implementation can be transparently integrated with a vanilla SGX SDK.

Weisse et al. [16] explore the performance implications of running real-world applica-
tions on SGX hardware to achieve performance optimization. Based on the preliminary
evaluations with various micro-benchmarks, they build a new application-enclave inter-
action framework called HotCalls. The core idea of HotCalls is utilizing shared variables
located in the untrusted part of the SGX application and spin-lock synchronously. The
evaluation shows that HotCalls dramatically improves both latency and throughput of
popular macro-benchmarks, such as memcached, openVPN, and lighthttpd.

Meanwhile, Aublin et al. [17] extend existing transport layer security (TLS) libraries to
protect sensitive data, such as session contexts and private keys. While our methodology
optimizes the performance of legacy codebases, it ports and redesigns an existing TLS
library to reduce enclave transition overhead. To make it become SGX-friendly, they
modify the implementation of enclave entry-calls and out-calls. For this, it uses an in-
enclave memory pool and thread locks implementation to handle operations that raise
enclave transitions internally within an enclave.

2.2. SGX Performance Profiling

Similar to our proposal that conducts comprehensive performance profiling to identify
metrics and values associated with the performance of SGX-ported applications, there
also have been attempts to benchmark SGX applications and the SGX runtime [18,25,26].
Shanker et al. [25] quantify engineering effort to port legacy code of real-world applications
to SGX and compare the performance of ported applications running atop various SGX
frameworks [14,15]. Dinh et al. [18] figure out the actual available EPC memory space for
an SGX application is around 93MB in practice due to the reserved memory for metadata.
Weichbrodt et al. [26] provide a set of toolchains to precisely identify the critical factors
related to SGX during the performance analysis of SGX-ported workloads. The above
studies have focused on analyzing the intrinsic performance penalty of using SGX or the
cost of manual tuning for improving performance, while our approach enables performance
optimization with minimal engineering effort.

3. Background
3.1. Intel SGX Overview

The goal of Intel SGX technology is to provide a trusted execution environment (TEE)
for cloud-based systems. For SGX functionalities, Intel introduces new 24 instructions
(18 for revision 1 and 6 for revision 2, respectively) by extending Intel x86 Instruction Set
Architecture (ISA). The hardware support for SGX becomes available starting from Intel
Skylake CPUs. The purpose of SGX technology is to provide a secure container, called an
enclave, for cloud-native applications. An SGX enclave is protected against access from
privileged software (e.g., OS and hypervisor) to leak sensitive data or manipulate control
flow, which can be potentially malicious due to the untrustworthy nature of the cloud
environment [27–29]. Essentially, service providers who run their applications in the cloud
platform cannot access or control hardware components and the underlying privileged
software components. Moreover, they cannot even be unaware of whether data leakage
incidents [30] from the cloud happens unless a cloud platform provider notifies the leakage.
This means that service providers have to trust the cloud platform provider not to be

Appl. Sci. 2021, 11, 8379 4 of 13

malicious or curious [31]. Accordingly, SGX’s threat model assumes a powerful adversary
who can control hardware components except for CPU package (e.g., Memory and I/O
bus) and privileged software.

SGX memory protection: The trustworthy component of SGX consists of an SGX
processor and an enclave. An enclave is part of the virtual address space of an SGX
application, and it is a hardware-protected region mapped to a reserved physical memory
specialized for SGX memory protection, Enclave Page Cache (EPC). While launching an
SGX application, an EADD instruction copies each page to be protected into an enclave region
with the measurement using EEXTEND instructions. Once an enclave region is finalized with
EINIT, the memory content in the EPC region is encrypted with Memory Encryption Engine
(MEE) in the processor with a hardware-specific key.

To execute an enclave code, the processor calls an EENTER instruction to enter a new
CPU mode, called enclave mode. The plain-text of memory content stored in the region can
only be accessed when the processor switches to an enclave mode with an EENTER. When
the processor successfully passes the hardware checks (e.g., verifying the integrity of the
enclave measurement), MEE decrypts the content stored in the EPC region for executing
enclave code or accessing data. Again, the content is re-encrypted when leaving the CPU
package (switches to a normal mode with EEXIT) and stored in the EPC region. This
hardware-based protection occurs on every single memory access when entering/leaving
an enclave, such that memory access to an enclave region from privileged software or other
enclaves is prohibited.

Intel SGX SDK: To help developers implement an SGX program, Intel released SGX
SDK for both Windows and Linux environments. The SDK consists of trustworthy libraries
(e.g., cryptographic and standard libraries) that are securely ported for SGX functionalities,
toolchains, and sample projects. Note that toolchains include signature tools for signing an
enclave with the developer’s key and debugging tools. The procedure of implementing
an SGX program using SGX SDK is as follows. First, it requires specifying an enclave
configuration, such as the enclave heap and stack size, as an XML file. Then, a developer
generates an asymmetric key pair used for signing an enclave. Note that EINIT verifies the
signature before an enclave launch.

While implementing an SGX program with Intel SGX SDK, the program is divided
into an app region and an enclave region, where the app part resides in the untrusted
region. This means that a developer needs to separate privacy-sensitive operations to be
protected and put them into an enclave region when porting legacy code to SGX. After
the design choices, a developer writes the source code corresponding to the app and the
enclave, compiles it to acquire an SGX-compatible binary.

3.2. Enclave Transition Interface

ECALL/OCALL interface: Intel SGX SDK provides secure ECALL (enclave call) and
OCALL (outside call) interfaces to enter and leave an enclave region, respectively.

ECALL is a wrapper routine for EENTER that transfers control flow into the enclave
code. In contrast, OCALL is a wrapper code that invokes EEXIT instruction to leave an
enclave. In particular, the OCALL interface is frequently used for handling system calls,
which can not be executed in the enclave mode. Because an enclave mode runs in an
unprivileged user-level mode(e.g., ring 3), it cannot operate instructions that require kernel
privilege. For this, an enclave should rely on the untrusted code and switch back to the
enclave via EEXIT and ERESUME instructions.

Both ECALLs and OCALLs can be defined by an SGX developer in the Enclave Defi-
nition Language (EDL) file, an SGX-specific syntax provided by SGX SDK. Note that when
parameters of ECALLs and OCALLs contain a pointer variable, the corresponding size of
the pointer and their attributes (e.g., whether it is input argument or output argument)
should be necessarily specified together in the EDL for sanity checking against the pa-
rameter marshaling. During the compilation, an edger8r tool of the SGX SDK parses the

Appl. Sci. 2021, 11, 8379 5 of 13

EDL file and automatically generates a glue code for ECALL and OCALL declared by an
SGX developer.

Switchless calls: A recent patch in Linux SGX SDK contains switchless calls [32],
which reduces an enclave mode switch overhead during the enclave transition. The goal
of switchless calls is to eliminate enclave switches from SGX applications by making
ECALL and OCALL themselves switchless, which are functions used for entering/leaving
SGX enclaves. For this, an SGX run-time library executes two worker threads, one in the
application (untrusted) memory region and the other in the enclave (trusted) memory
region. The application worker thread handles ECALL, while the enclave worker thread
handles OCALL, respectively. There are two thread pools to handle switchless ECALL and
OCALL, and worker threads are executed asynchronously. For asynchronous execution,
switchless calls utilize two shared queues: a request queue and a response queue.

Figure 1 illustrates the workflow of a switchless OCALL. The implementation of
switchless calls adopts a sleep-wake approach for efficiency. When a caller thread inside an
enclave invokes an OCALL, it first updates the request queue. Then, one of the worker
threads from the thread pool in the untrusted region is assigned and handles the OCALL.
Finally, the worker thread updates the response queue. Note that the current version
of Linux SDK reflects switchless SGX implementation for common operations inside an
enclave, such as threading, file I/O, and system clock, to eliminate OCALLs [23].

Recent patch: Switchless Call

44

• Key Idea of Switchless Calls
• Shared queues (Request queue and Response queue)
• Asynchronous execution of worker threads
• The implementation of switchless calls adopts sleep-awake approach

Ex) How Switchless OCALL works

SGX application
Enclave region Untrusted regionRequest queue

Response queue
Trusted Caller(s) Worker thread pool

… …

Figure 1. Work flow of switchless OCALL.

SGX developers can quickly adopt switchless SGX by linking libraries and spec-
ifying which OCALLs and ECALLs to apply switchless SGX. Specifically, the source
code for switchless SGX is located in the ‘/sdk/switchless’ directory, and SGX develop-
ers can get two libraries after the SDK compilation, which are libsgx_tswitchless.a and
libsgx_uswitchless.so. The libsgx_tswitchless.a is used for the trusted region and the lib-
sgx_uswitchless.so for the untrusted region, respectively. When building an SGX binary, de-
velopers should link the two libraries to the compiled object files. Finally, developers specify
which OCALLs and ECALLs use switchless SGX by adding the ‘transition_using_threads’
configuration option in the EDL file. According to the Linux SGX SDK, switchless SGX
currently does not work for simulation mode and 32-bit CPUs, and the requirement for
utilizing switchless SGX is an installation of Linux SGX SDK version 2.2.

4. Approach

This section describes the problem scope and key challenges of utilizing switchless
calls to existing SGX-ported applications. Then, we present our key insight and propose
an optimization strategy to optimize the performance of an existing SGX application by
selectively adopting switchless calls depending on ECALL/OCALL characteristics.

4.1. Motivation, Challenges, and Problem Scope

Even if SGX guarantees isolated but secure execution of applications running on the
cloud, it suffers from performance degradation depending on application characteristics.
The main performance overhead of utilizing SGX can be categorized into EPC paging and
enclave transition. First, when an SGX enclave program demands a large enclave heap
space, secure paging occurs to reclaim EPC pages as SGX only provides 128 MB of the
EPC region due to the hardware restriction [18,33] . During the secure paging, an evicted

Appl. Sci. 2021, 11, 8379 6 of 13

EPC page should be encrypted before copying it to regular main memory and vice versa,
leading to an SGX application’s slowdown. In addition, an enclave transition—or called
enclave mode switch, incurs significant overhead when it frequently happens. The enclave
mode switch is expensive because it is accompanied by (1) saving and restoring the CPU
state and registers and (2) TLB flush.

Among the above two obstacles that hinder the performance of SGX applications, we
mainly focus on addressing enclave transition overhead for performance optimization.
SGX applications that heavily depend on ECALL/OCALL may suffer from performance
degradation caused by enclave transition. Batching system calls and I/O operations to
amortize the context switch cost is not a perfect solution, as it cannot reduce the inherent
enclave transition overhead. We believe switchless calls can be an alternative solution to
address this problem.

The switchless call aims to enhance the performance of SGX applications that use
the asynchronous threading model. However, building a proper optimization strategy for
adopting switchless calls to legacy applications that are implemented synchronously is
not trivial. Due to the lack of metrics to evaluate the switchless efficiency, SGX developers
cannot explicitly determine which ECALLs and OCALLs achieve the gain of adopting
switchless calls. In other words, a naive adoption of switchless SGX might be ineffective to
synchronous threading model, because it introduces pending application threads due to
the scheduling of switchless worker threads. Furthermore, modifying the internal structure
of software or conducting manual tuning to make it switchless-friendly requires lots of
sunk costs in terms of engineering effort.

Based on a comprehensive analysis of the SGX switchless call, we establish an op-
timization strategy and apply it to our prior work called SGX-Box [11], an SGX-enabled
network middlebox. Recent studies [11,12,34] leverage SGX to protect network middle-
boxes running on the cloud-based network function virtualization (NFV) architecture. In
particular, SGX protects deep packet inspection and a ruleset used for pattern matching in
the security-purpose in-network functions, such as Web firewalls and intrusion detection
systems (IDS). Note that SGX-Box processes each packet by a run-to-completion model on
a per-flow basis to achieve high performance, which makes threads of SGX-Box running
more synchronously. Moreover, network middleboxes, including SGX-Box, frequently
incur enclave mode switch to handle network I/O operations. In summary, our goal is to
establish an optimization strategy to improve the performance of SGX-Box by leveraging
switchless calls.

4.2. Building an Optimization Strategy

Our key insight to address this problem is that an application developer can selectively
determine whether utilize switchless calls for ECALL and OCALL. Rather than naively
adopting switchless calls to entire ECALLs and OCALLs, our approach selectively applies
switchless calls by examining the performance benefit for each ECALL and OCALL. To
achieve this, we explore factors that affect the efficiency of switchless SGX when adopting
it to legacy SGX applications. For simplicity, we assume that a caller thread and a worker
thread are allocated per core. A switchless call is efficient for an ECALL or OCALL when
it satisfies the below condition. For a unit of synchronous execution, the gain of using
switchless call is defined as:

Gain of using switchless =
The CPU time saved during ECALL or OCALL
The pended CPU time due to worker threads

=
Net ∗ Tet

The pended CPU time due to worker threads

> 1

(1)

where Net is the number of enclave transitions occurred and Tet is an enclave transition time.
However, calculating the pended CPU time due to worker threads is not trivial.

Therefore, we examine which factors of ECALL and OCALL affect the pended CPU time.

Appl. Sci. 2021, 11, 8379 7 of 13

Based on the analysis, we learn that two major factors are related to pending caller threads:
a frequency of ECALL/OCALL and a completion time of ECALL/OCALL.

Frequency of ECALL/OCALL: The pended CPU time raised by the worker thread is
affected how ECALL/OCALL is frequently called. For convenience, we will explain the
case of ECALL. We first take a look at the implementation of switchless calls to understand
the execution flow. The execution flow of switchless worker threads is divided into
three steps:

1. If there are sleeping workers, an SGX application wakes them up when an ECALL
is invoked.

2. Once a worker thread is scheduled, it looks up the request queue and processes an
enclave function.

3. If the request queue is empty, it retries until max_retries (default = 20,000) and
falls asleep.

As the Figure 2 shows, the workflow of worker threads depends on the emptiness
of the request queue. If an ECALL is rarely invoked, the corresponding worker thread
accesses the request queue until max_retries (Step 3) and waking up worker threads (Step 1)
frequently happens, which wastes the CPU time. Therefore, pended CPU time due to
worker threads is proportional to the frequency of enclave transition.

Metric1: Frequency of ECALL/OCALL

47

• Execution flow of Switchless Worker threads
1. If there are sleeping workers, wakeup them when an ECALL is invoked
2. Once worker is scheduled, it looks up request queue and process an enclave

function
3. If request queue is empty, it retries until max_retries (Default = 20000) and

sleep

Worker thread pool
W1 W2 W3 W4 Request queue

Request queue
W1: Schedule in core 0

If ECALL is rarely called, retries (3) and waking up worker threads (1)
are frequently happened, which wastes CPU time

Retry

Call
function

Figure 2. Execution flow of switchless worker threads depending on the queue’s emptiness.

Completion time: The other factor that affects the pending time is the completion time
of ECALL/OCALL. We bring the execution flow of the SGX-Box thread with switchless
calls as an example for better understanding. Figure 3 demonstrates workflows of the
SGX-Box caller thread and the corresponding ECALL conducted by the switchless worker
thread. When an ECALL (ecall_start_tls_process in Figure 3) is invoked by an SGX-Box
thread, it updates the request queue. Then, worker threads execute the corresponding
ECALL function once the worker is scheduled. While executing the ECALL, context
switches might occur if the completion time of the ECALL is long enough to make the
worker thread scheduling out. It leads to pending of the SGX-Box caller thread because it
works synchronously, which means that it cannot perform the remaining tasks until the
worker thread completes the execution of the ECALL. Therefore, a completion time of
ECALL/OCALL affects the number of context switching, which also involves the pending
time due to the switchless worker thread.

Metric2: Completion time of ECALL/OCALL

48

Ecall_reproduce tls_context

Ecall_start_tls_process

C1

<Execution flow of SGX-Box thread>

Packet reassemble

Alert or log

W1

Worker thread pool

…
W1 W2 Wn<ECALL func.>

Copy encrypted traffic

Packet inspection

Payload decryption

Update

Context switch

Pended

Request queue

Response queue

Completion time affects the number of context switching.

E.g., synchronous execution of SGX-Box

Figure 3. An example of Switchless ECALL in SGX-Box application. Context switches while executing
ECALL function introduce pending of the SGX-Box caller thread.

Appl. Sci. 2021, 11, 8379 8 of 13

In summary, we learned that

Pended CPU time due to worker threads ∝ Tw, ∝
1

Net
(2)

where Tw is a completion time of ECALL/OCALL.
Based on analysis, We formulate the gain of using switchless as:

Gain of using switchless =
CPU time saved during ECALL or OCALL
Pended CPU time due to worker threads

=
Net ∗ Tet

γ ∗ (α/Net) + (1− γ) ∗ β ∗ Tw

=
Net

2 ∗ Tet

γ ∗ α + (1− γ) ∗ β ∗ Tw ∗ Net

(3)

where α and β are constant, and γ is a ratio that worker faces an empty request queue.
If the above value is larger than one, we regard an ECALL or OCALL as switchless-

friendly. With the above formula, we define a metric to decide a switchless efficiency and
empirically determine the threshold as follows:

A Switchless call is efficient when Net ∗ Tet/Tw > 0.09. (4)

4.3. Determining Adaptiveness of Switchless Calls

Based on our metric to determine switchless efficiency, we perform profiling to es-
tablish a proper optimization strategy on our target application, SGX-Box. Note that we
adopt switchless calls to ECALLs used by SGX-Box only due to its internal implementa-
tion. SGX-Box threads rarely call OCALLs because the mOS framework [35] part in the
untrusted region handles the packet I/O and packet reassembly procedures by design.
Such design makes an enclave of SGX-Box threads not invoking system calls (and OCALLs)
to handle I/O operations (e.g., read and write). Instead, we measure the number of enclave
transitions and the completion time of seven ECALLs used by SGX-Box. Then, we calculate
the switchless efficiency and compare it with the threshold in (4). For estimation, we use
Quad-core Intel i7-6700 3.4 GHz CPU machines with Linux 3.19.0 and Linux SGX SDK
version 2.2 that supports switchless call functionality [23]. We use four worker threads for
ECALLs and enable hyperthreading. Finally, we configure max_retries as 1000, and the
enclave transition latency is 2.67 µs in our environment.

Based on our profiling, we adaptively utilize a switchless call for the ECALL and
make other ECALLs use the traditional ECALL interface for optimization. Figure 4
shows the calculated switchless efficiency of ECALLs defined in SGX-Box. As the fig-
ure shows, a single ECALL, ecall_reproduce_ssl_context, satisfies the condition among
seven ECALLs under our evaluation environment. Note that ecall_reproduce_ssl_context
reproduces SSL context within an enclave when a packet arrives in the untrusted region.
Therefore, it is less effective when applying switchless calls to other ECALLs, except for
ecall_reproduce_ssl_context.

1

of
Transitions

Completion
Time (us)

ecall_reproduce_ssl_context
0.09 / 𝑇𝑒𝑡

ecall_init_decryption_engine

ecall_init_out_
of_band_key_share

ecall_load_ruleset

ecall_start_tls_process

ecall_init_tls_process

ecall_set_info_flow

Figure 4. Switchless efficiency of each ECALL used by SGX-Box.

Appl. Sci. 2021, 11, 8379 9 of 13

5. Evaluation

To validate our optimization on our target application, we evaluate the performance of
SGX-enabled network middleboxes with micro-benchmarks and end-to-end performance
analysis. We use the same machine specification used for determining the adaptiveness of
switchless calls in Section 4.3. Also, we use 10 Gbps link in a lab environment for connecting
servers, clients, and an SGX-enabled middlebox to avoid network bandwidth becoming a
bottleneck. Finally, we use TLS v1.2 encryption protocol and select AES256-GCM-SHA384
as a cipher suite for packet encryption and decryption.

5.1. Micro-Bench Evaluation

Breakdown of CPU time: For the ECALL that satisfies the switchless efficiency con-
dition, we measure the breakdown of CPU time to compare the traditional ECALL in-
terface and switchless ECALL. For evaluation, we set clients to send 32 long-running
flows, and each flow sends 1 KB-sized random packets. Then, we measure the elapsed
time of ecall_reproduce_ssl_context for a single packet, starting from an SGX-Box thread
creation. Note that the elapsed time includes the packet I/O and payload reassembly
procedures. Figure 5 shows the result. For the case of a traditional ECALL, the elapsed time
consists of time consumed in an untrusted region, time consumed in an enclave region,
and an enclave transition, while switchless ECALL does not include the time consumed
for enclave transition, respectively. Our result shows that adopting a switchless call to
ecall_reproduce_ssl_context delivers 10% reduced elapsed time compared to traditional
ECALL. This improvement comes from the result that pended time by worker threads
(2.6 µs) is smaller than the total enclave transition latency (5.3 µs).

Microbench: breakdown of CPU time

52

• Traditional ECALL interface vs Switchless ECALL
• 32 long-running flows, each flow sends 1KB random packets
• Measures the completion time of “ecall_reproduce_ssl_context” for a

single packet, starting from an SGX-Box thread creation (including packet
I/O and payload reassembly)

Pended time by workers (2.6us) < total_enclave_transition_latency (5.3us)
• Switchless delivers 10% reduced completion time compared to traditional

ECALL.

0
10
20
30
40
50

tim
e

(u
s)

Time_untrusted
Time_trusted
Enclave tranistion

Traditional
ECALL

Switchless
ECALL

Figure 5. The comparison of CPU time breakdown between an ECALL and a switchless ECALL.

TLS Decryption Throughput: We measure the TLS decryption throughput by increas-
ing the TLS record size from 256 Bytes from 4 KB. As the Figure 6 shows, a naive adoption
of switchless call to every ECALL used by SGX-Box degrades the performance by 33%
on average. This result supports our claim that it requires an appropriate adoption of
switchless calls for SGX applications, which execute synchronously (e.g., run-to-completion
model). In contrast, SGX-Box that utilizes switchless SGX based on our strategy gives 5%
better throughput than the original SGX-Box with 256 Byte-sized TLS records, while it
delivers 2.7% of improvement for 4 KB record size, respectively. The benefit of adopting
switchless calls is reduced for larger record sizes because an execution time for record
decryption dominates the time consumed for enclave transition.

5.2. End-to-End Performance Evaluation

We evaluate the end-to-end performance of SGX-Box, including TLS decryption and
pattern matching, when applying switchless calls by varying the number of patterns in
the ruleset. We use the DFC [36] string pattern matching algorithm and a custom regular
expression matching engine with a commercial ET-Pro ruleset [37] for pattern matching.
We measure the throughput for 32 long-running flows where each flow sends 1 KB-sized
random packets. Figure 7 shows the end-to-end throughput of (1) using traditional ECALL,
(2) naively adopting switchless calls for every ECALL, and (3) adopting switchless calls
based on our optimization strategy. As the result shows, naive adoption of switchless

Appl. Sci. 2021, 11, 8379 10 of 13

calls significantly degrades the performance of SGX-Box by 80% on average compared
to utilizing the traditional ECALL interface. In contrast, our optimization delivers 1%
improved performance on average compared to the non-switchless version of SGX-Box.
Note that there is no enclave transition during the packet inspection, including exact string
matching and regular expression matching, and most of the CPU time is consumed by
packet inspection. In other words, it reduces the proportion of overhead that comes from
enclave transition, which makes switchless optimization less effective. Therefore, the end-
to-end throughput is saturated with the throughput of packet inspection. However, for the
case of naive adoption, redundant scheduling of worker threads hinders SGX-Box threads
from proceeding with packet inspection, which leads to the pending of the SGX-Box thread.

0

600

1200

1800

256B 512B 1KB 2KB 4KBT
h
ro

u
g
h
p
u
t
(M

p
b
s)

TLS Record Size

No switchless
Naïve switchless
Switchless optimization

Figure 6. Decryption throughput while varying the TLS record size.

0

400

800

1200

1k 2k 5kT
h
ro

u
g
h
p
u
t
(M

b
p
s)

of patterns in ruleset

Non-switchless
Naïve switchless
Switchless optimization

Figure 7. End-to-end pattern matching throughput while varying the number of ruleset patterns.

6. Discussion

In this section, We further investigate potential factors that affect switchless efficiency.
Inspired by the performance-critical elements in the traditional multi-core processing
architectures [38–42], we explore the impact of thread-to-core affinity and scheduling
policy on the performance of our proposed methodology.

Core Affinity: One factor affecting the switchless efficiency is the proper core affinity
methodology [38,39] when switchless worker threads and application threads run simul-
taneously. Note that a race condition between the threads might occur in the multi-core
environment if the total number of threads of an SGX application exceeds the number of
available cores. Let us assume that we configure two threads as switchless worker threads,
and an SGX application generates two threads containing an OCALL function, where the
SGX CPU has two available cores. In this scenario, there are two possible options to set core
pinning: (1) pins switchless worker threads together to a single core and pins the other for
application threads—we call it a grouping strategy; and (2) pairs a switchless worker thread
and an application thread and assign them for each core—we call it a pairing strategy.

To evaluate which method benefits the performance of switchless SGX, we first mea-
sure the time to operate a million empty ECALLs and OCALLs and calculates the context

Appl. Sci. 2021, 11, 8379 11 of 13

switch latency of single switchless ECALL and OCALL. We utilize two CPU cores during
the estimation and creates four threads in total, two for ECALL or OCALL worker threads
and two for application threads. While evaluating ECALL transition latency, we disabled
the usage of OCALL worker threads and vice versa. As the Table 1 shows, the grouping
strategy delivers lower enclave transition latency for both empty ECALL and OCALL
functions, compared to the pairing strategy.

Table 1. Comparison between two core affinity strategies for switchless ECALL and OCALL.

Operation Type Methodology ECALL OCALL

Empty Call Assigns CPU core for each thread group 0.902 µs (13.8%↑) 0.602 µs (27.7%↑)
Pairs worker and application thread 1.05 µs 0.833 µs

OCALL with I/O Assigns CPU core for each thread group - 8.90 µs
(1 KB Read) Pairs worker and application thread - 4.91 µs (44.9%↑)

We also perform the same estimation with an OCALL that contains file I/O operations.
The OCALL function reads 1 KB of data using read() system call. In contrast to an empty
OCALL, the evaluation result shows that the pairing strategy delivers lower latency. For
the case of the grouping strategy, worker threads are pended until the I/O operation
is finished, which leads to the overuse of the CPU core. Therefore, separating worker
threads into different CPU cores is a better option for OCALLs with a long completion
time (e.g., handling I/O). In summary, we learn that pairing strategy is better for network
applications when the ECALL/OCALL takes a long time, while grouping strategy is
appropriate for short-term ECALLs/OCALLs, respectively.

Saving CPU time consumed by workers: As we explained in the technical background
(Section 3.2) and workflow of switchless calls (Section 4.2), worker threads retry until
max_retries, set 20,000 as default, and fall asleep if the request queue is empty. It might
lead to a waste of CPU time when an SGX application is implemented synchronously.
We believe that it is possible to save the wasted CPU time by leveraging dependency-
aware scheduling [40–42]. It enables scheduling other tasks that can be independently
pre-executed, regardless of the completion of ECALL or OCALL. For example, when a
worker thread is scheduled and occupies the CPU core, it executes the corresponding
ECALL function if caller threads fill the request queue. Otherwise, it pre-executes other
enclave functions.

7. Conclusions and Further Work

This paper proposes an application-level optimization methodology by adaptively
leveraging switchless calls to reduce SGX overhead. Based on a systematic analysis, we
define a metric to measure the efficiency of leveraging switchless calls for each wrapper
function that raises enclave transitions. Compared with the previous optimization schemes,
our approach reflects the characteristics of legacy SGX applications without introducing a
significant engineering effort. Our evaluation shows that the adoption of our optimization
methodology improves the pattern matching throughput of SGX-enabled middleboxes,
one of the performance-critical cloud applications, while a naive adoption dramatically
degrades the performance.

Our scheme uses a heuristic to estimate the efficiency of utilizing switchless calls
based on a systematic study. To prove its validity or improve optimization efficiency,
leveraging machine learning techniques would be effective to precisely infer the threshold
of efficiency. The data acquisition for applying such schemes and accurate performance
profiling for cloud-native applications are also important and challenging issues to be
addressed. In future work, we will elaborate our methodology to find optimal or near-
optimal parameters with machine learning techniques based on the practical implications
that we have identified from this study.

Appl. Sci. 2021, 11, 8379 12 of 13

Funding: This work was supported by the Sungshin Women’s University Research Grant of H20200128.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, X.; Kwon, T.; Choi, Y.; Wang, H.; Liu, J. Cloud-assisted adaptive video streaming and social-aware video prefetching for

mobile users. IEEE Wirel. Commun. 2013, 20, 72–79. [CrossRef]
2. Simmhan, Y.; Aman, S.; Kumbhare, A.; Liu, R.; Stevens, S.; Zhou, Q.; Prasanna, V. Cloud-based software platform for big data

analytics in smart grids. Comput. Sci. Eng. 2013, 15, 38–47. [CrossRef]
3. Talia, D. Clouds for scalable big data analytics. Computer 2013, 46, 98–101. [CrossRef]
4. Barona Lopez, L.I.; Valdivieso Caraguay, Á.L.; Sotelo Monge, M.A.; García Villalba, L.J. Key technologies in the context of future

networks: Operational and management requirements. Future Internet 2017, 9, 1. [CrossRef]
5. Lv, Z.; Xiu, W. Interaction of edge-cloud computing based on SDN and NFV for next generation IoT. IEEE Internet Things J. 2019,

7, 5706–5712. [CrossRef]
6. Valadares, D.C.G.; Will, N.C.; Caminha, J.; Perkusich, M.B.; Perkusich, A.; Gorgônio, K.C. Systematic Literature Review on

the Use of Trusted Execution Environments to Protect Cloud/Fog-based Internet of Things Applications. IEEE Access 2021, 9,
80953–80969. [CrossRef]

7. Dai, W.; Jin, H.; Zou, D.; Xu, S.; Zheng, W.; Shi, L.; Yang, L.T. TEE: A virtual DRTM based execution environment for secure
cloud-end computing. Future Gener. Comput. Syst. 2015, 49, 47–57. [CrossRef]

8. Sun, H.; Lei, H. A design and verification methodology for a trustzone trusted execution environment. IEEE Access 2020,
8, 33870–33883. [CrossRef]

9. Confidential Computing Consortium. Available online: https://confidentialcomputing.io/ (accessed on 15 August 2021).
10. Hoekstra, M.; Lal, R.; Pappachan, P.; Phegade, V.; Del Cuvillo, J. Using innovative instructions to create trustworthy software

solutions. HASP@ ISCA 2013, 11, 2487726–2488370.
11. Han, J.; Kim, S.; Ha, J.; Han, D. SGX-Box: Enabling Visibility on Encrypted Traffic using a Secure Middlebox Module. In

Proceedings of the First Asia-Pacific Workshop on Networking, Hong Kong, China, 3–4 August 2017; pp. 99–105.
12. Wang, J.; Yu, Y.; Li, Y.; Fan, C.; Hao, S. Design and Implementation of Virtual Security Function Based on Multiple Enclaves.

Future Internet 2021, 13, 12. [CrossRef]
13. Yoon, H.; Moon, S.; Kim, Y.; Hahn, C.; Lee, W.; Hur, J. SPEKS: Forward Private SGX-Based Public Key Encryption with Keyword

Search. Appl. Sci. 2020, 10, 7842. [CrossRef]
14. Tsai, C.C.; Porter, D.E.; Vij, M. Graphene-sgx: A practical library OS for unmodified applications on SGX. In Proceedings of the

2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), Santa Clara, CA, USA, 12–14 July 2017; pp. 645–658.
15. Shinde, S.; Le Tien, D.; Tople, S.; Saxena, P. Panoply: Low-TCB Linux Applications with SGX Enclaves. In Proceedings of the

NDSS, San Diego, CA, USA, 26 February–1 March 2017.
16. Weisse, O.; Bertacco, V.; Austin, T. Regaining lost cycles with HotCalls: A fast interface for SGX secure enclaves. ACM Sigarch

Comput. Archit. News 2017, 45, 81–93. [CrossRef]
17. Aublin, P.L.; Kelbert, F.; O’keeffe, D.; Muthukumaran, D.; Priebe, C.; Lind, J.; Krahn, R.; Fetzer, C.; Eyers, D.; Pietzuch, P. TaLoS:

Secure and transparent TLS termination inside SGX enclaves. Imp. Coll. Lond. Tech. Rep. 2017, 5 , 1–4. [CrossRef]
18. Dinh Ngoc, T.; Bui, B.; Bitchebe, S.; Tchana, A.; Schiavoni, V.; Felber, P.; Hagimont, D. Everything you should know about Intel

SGX performance on virtualized systems. In Proceedings of the ACM on Measurement and Analysis of Computing Systems,
Phoenix, AZ, USA, 24–28 June 2019 ; Volume 3, pp. 1–21.

19. Mazzeo, G.; Arnautov, S.; Fetzer, C.; Romano, L. SGXTuner: Performance Enhancement of Intel SGX Applications via Stochastic
Optimization. IEEE Trans. Depend. Secur. Comput. 2021. [CrossRef]

20. How One Second Could Cost Amazon $1.6 Billion In Sales. Available online: http://www.fastcompany.com/1825005/how-one-
second-could-cost-amazon-16-billion-sales (accessed on 15 August 2021).

21. Orenbach, M.; Lifshits, P.; Minkin, M.; Silberstein, M. Eleos: ExitLess OS services for SGX enclaves. In Proceedings of the Twelfth
European Conference on Computer Systems, Belgrade, Serbia, 23–26 April 2017; pp. 238–253.

22. Tian, H.; Zhang, Y.; Xing, C.; Yan, S. Sgxkernel: A library operating system optimized for intel SGX. In Proceedings of the
Computing Frontiers Conference, Siena, Italy, 15–17 May 2017; pp. 35–44.

23. Intel Software Guard Extensions (Intel SGX) SDK. Available online: https://software.intel.com/content/www/us/en/develop/
topics/software-guard-extensions/sdk.html (accessed on 15 August 2021).

24. Arnautov, S.; Trach, B.; Gregor, F.; Knauth, T.; Martin, A.; Priebe, C.; Lind, J.; Muthukumaran, D.; O’keeffe, D.; Stillwell, M.L.;
Goltzsche, D.; Eyers, D.; Kapitza, R.; Pietzuch, P.; Fetzer, C. SCONE: Secure linux containers with intel SGX. In Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November
2016; pp. 689–703.

http://doi.org/10.1109/MWC.2013.6549285
http://dx.doi.org/10.1109/MCSE.2013.39
http://dx.doi.org/10.1109/MC.2013.162
http://dx.doi.org/10.3390/fi9010001
http://dx.doi.org/10.1109/JIOT.2019.2942719
http://dx.doi.org/10.1109/ACCESS.2021.3085524
http://dx.doi.org/10.1016/j.future.2014.08.005
http://dx.doi.org/10.1109/ACCESS.2020.2974487
https://confidentialcomputing.io/
http://dx.doi.org/10.3390/fi13010012
http://dx.doi.org/10.3390/app10217842
http://dx.doi.org/10.1145/3140659.3080208
http://dx.doi.org/10.13140/RG.2.2.13308.95368
http://dx.doi.org/10.1109/TDSC.2021.3064391
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html

Appl. Sci. 2021, 11, 8379 13 of 13

25. Shanker, K.; Joseph, A.; Ganapathy, V. An evaluation of methods to port legacy code to SGX enclaves. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, 8–13 November 2020; pp. 1077–1088.

26. Weichbrodt, N.; Aublin, P.L.; Kapitza, R. sgx-perf: A performance analysis tool for intel sgx enclaves. In Proceedings of the 19th
International Middleware Conference, Rennes, France, 10–14 December 2018; pp. 201–213.

27. Baumann, A.; Peinado, M.; Hunt, G. Shielding applications from an untrusted cloud with haven. ACM Trans. Comput. Syst.
TOCS 2015, 33, 1–26. [CrossRef]

28. Coppolino, L.; D’Antonio, S.; Formicola, V.; Mazzeo, G.; Romano, L. VISE: Combining Intel SGX and Homomorphic Encryption
for Cloud Industrial Control Systems. IEEE Trans. Comput. 2020, 70, 711–724. [CrossRef]

29. Sun, H.; He, R.; Zhang, Y.; Wang, R.; Ip, W.H.; Yung, K.L. eTPM: A trusted cloud platform enclave TPM scheme based on intel
SGX technology. Sensors 2018, 18, 3807. [CrossRef]

30. Jiang, J.; Han, G.; Shu, L.; Chan, S.; Wang, K. A trust model based on cloud theory in underwater acoustic sensor networks. IEEE
Trans. Ind. Inform. 2015, 13, 342–350. [CrossRef]

31. Ning, J.; Huang, X.; Susilo, W.; Liang, K.; Liu, X.; Zhang, Y. Dual access control for cloud-based data storage and sharing. IEEE
Trans. Depend. Secur. Comput. 2020. [CrossRef]

32. Tian, H.; Zhang, Q.; Yan, S.; Rudnitsky, A.; Shacham, L.; Yariv, R.; Milshten, N. Switchless Calls Made Practical in Intel SGX. In
Proceedings of the 3rd Workshop on System Software for Trusted Execution, Toronto, ON, Canada, 15 October 2018; pp. 22–27.

33. Kim, S.; Han, J.; Ha, J.; Kim, T.; Han, D. Sgx-tor: A secure and practical tor anonymity network with sgx enclaves. IEEE/ACM
Trans. Netw. 2018, 26, 2174–2187. [CrossRef]

34. Han, J.; Kim, S.; Cho, D.; Choi, B.; Ha, J.; Han, D. A secure middlebox framework for enabling visibility over multiple encryption
protocols. IEEE/ACM Trans. Netw. 2020, 28, 2727–2740. [CrossRef]

35. Jamshed, M.A.; Moon, Y.; Kim, D.; Han, D.; Park, K. mos: A reusable networking stack for flow monitoring middleboxes. In
Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA,
27–29 March 2017; pp. 113–129.

36. Choi, B.; Chae, J.; Jamshed, M.; Park, K.; Han, D. DFC: Accelerating String Pattern Matching for Network Applications. In
Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), Santa Clara, CA,
USA, 16–18 March 2016; pp. 551–565.

37. ET Pro Ruleset. Available online: https://www.proofpoint.com/us/threat-insight/et-pro-ruleset (accessed on 15 August 2021).
38. Paznikov, A.; Shichkina, Y. Algorithms for optimization of processor and memory affinity for Remote Core Locking synchroniza-

tion in multithreaded applications. Information 2018, 9, 21. [CrossRef]
39. Abbasi, S.I.; Kamal, S.; Gochoo, M.; Jalal, A.; Kim, K. Affinity-Based Task Scheduling on Heterogeneous Multicore Systems Using

CBS and QBICTM. Appl. Sci. 2021, 11, 5740. [CrossRef]
40. Grandl, R.; Kandula, S.; Rao, S.; Akella, A.; Kulkarni, J. GRAPHENE: Packing and Dependency-Aware Scheduling for Data-

Parallel Clusters. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),
USENIX Association, Savannah, GA, USA, 2–4 November 2016; pp. 81–97.

41. Liu, Y.; Wang, S.; Zhao, Q.; Du, S.; Zhou, A.; Ma, X.; Yang, F. Dependency-aware task scheduling in vehicular edge computing.
IEEE Internet Things J. 2020, 7, 4961–4971. [CrossRef]

42. Lee, J.; Ko, H.; Kim, J.; Pack, S. DATA: Dependency-aware task allocation scheme in distributed edge clouds. IEEE Trans. Ind.
Inform. 2020, 16, 7782–7790. [CrossRef]

http://dx.doi.org/10.1145/2799647
http://dx.doi.org/10.1109/TC.2020.2995638
http://dx.doi.org/10.3390/s18113807
http://dx.doi.org/10.1109/TII.2015.2510226
http://dx.doi.org/10.1109/TDSC.2020.3011525
http://dx.doi.org/10.1109/TNET.2018.2868054
http://dx.doi.org/10.1109/TNET.2020.3016785
https://www.proofpoint.com/us/threat-insight/et-pro-ruleset
http://dx.doi.org/10.3390/info9010021
http://dx.doi.org/10.3390/app11125740
http://dx.doi.org/10.1109/JIOT.2020.2972041
http://dx.doi.org/10.1109/TII.2020.2990674

	Introduction
	Related Work
	Optimizing SGX Performance
	SGX Performance Profiling

	Background
	Intel SGX Overview
	Enclave Transition Interface

	Approach
	Motivation, Challenges, and Problem Scope
	Building an Optimization Strategy
	Determining Adaptiveness of Switchless Calls

	Evaluation
	Micro-Bench Evaluation
	End-to-End Performance Evaluation

	Discussion
	Conclusions and Further Work
	References

