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Abstract: The development of regenerative medicine turns attention toward native collagen as a
biocompatible material. Particularly interesting is fish skin collagen, which is relatively easy to
extract comparing mammalian tissues and free of some pathogens that are dangerous to humans. The
paper presents results of IR Raman spectroscopy studies of silver carp (Hypophthalmichthys molitrix)
skin collagen. As collagen properties result from its structure and conformation, both sensitive to
temperature, FT NIR Raman spectroscopy is an excellent tool to characterize the molecular structure
of fish skin collagen, particularly in temperature range typical for the manufacturing processes of
biomedical products. Therefore, the Raman spectra were recorded in a temperature range of 300
to 403 K. The analysis of Raman spectra of prepared collagen films, particularly in the range of the
bands related to amide I and amide III entities, showed a high content of α-helix and α-helix type
molecular organization in fish skin collagen. Additionally, the secondary structure of the studied fish
skin collagen is stable up to ~358 K. Heating to 403 K leads to irreversible changes in the molecular
structure of fish skin collagen. It was found that the Raman spectrum of fish skin collagen preheated
in this manner becomes similar to the spectrum of the collagen obtained from bovine Achilles tendon,
whose secondary structure does not change up to 403 K.

Keywords: Raman spectroscopy; fish skin collagen; molecular structure; thermal stability

1. Introduction

Collagen is the main constituent of connective tissue in living organisms. Collagen
is the basic structural and protective protein, constituting about 30% of the total protein
content and more than 50% of the skin [1]. Collagen is responsible for the mechanical
functions of the skin, its elasticity and tensile strength. It is an important element in
the process of healing injuries, representing 50% of all proteins of a properly healing
wound. The uncovering of collagen fibers in damaged tissues triggers a chain of cellular
and biochemical reactions initiating the process of blood clotting and healing of tissues.
This property of collagen is utilized in the process of homeostasis initiated by means of a
collagen sponge applied on the wound [2–4].

The proper process of synthesis and maturation of collagen fibers has a significant
influence on the final properties of the scar, its arrangement and strength. Therefore, exoge-
nous collagen, which can additionally convey other substances, such as, e.g., antibiotics, is
frequently used to treat wounds [5–8]. Moreover, collagen is a main component of many
biomedical hybrid materials [9–11]. Exogenous collagen is applied in tissue engineering
and cosmetology. Additionally, some conclusions have been drawn on the correlation of
primary fish collagen structure and conformation to film-forming abilities [12]. Medical
and cosmetic applications of collagen result from a variety of forms in which it is available
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and its ability to bond with other polymers, both natural and synthetic [13,14]. Collagen,
including that of animal origin, which is recognized by the organism as its component
and not a foreign matter [11,15–18], is characterized by a high degree of biocompatibil-
ity [15]. The biocompatibility of collagen is connected with its structure and conformation
of molecules. This fact justifies the importance of research into its structure and thermal
stability.

Fish collagen, contrary to mammalian collagen, is usually free of some pathogens
dangerous to humans. The advantages of fish collagen involve ethical issues related to
customs and religions and economic considerations, which are equally important, as fish
waste products are a cheap source of collagen [19].

Thus, attention was turned towards fish collagen due to its native structure main-
tained during the extraction process [20–22]. Collagens originating from different fish
species differ in their denaturation temperature. Generally, the lower the temperature of
the feeding ground (water) for fish, the lower the denaturation temperature of collagen
macromolecules. Particularly interesting, from the point of view of economy, is silver carp
(Hypophthalmichthys molitrix), a freshwater fish. The denaturation temperature of silver
carp skin collagen is reported to be either 302 K [1] or 307 K [3,23,24] depending on the
experimental technique. The closer the denaturation temperature of fish skin collagen to
mammalian collagen, the higher the potential in supplementing/replacing the skin of land
vertebrates as a collagen source and substituting mammalian collagen. Moreover, fish
skin collagen extraction is easier and has a higher yield comparing the extraction from
mammalian skin [17,25,26].

The basic structural unit of collagen and collagen structure is described
elsewhere [27–32]. Collagen polypeptide chains are rich in glycine (Gly), proline (Pro)
and 3hdroxyproline (Hyp) (Figure 1), linked together in the characteristic pattern XPro-
YHyp-Gly [29].
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Other amino acids residues, such as alanine, lysosine and tyrosine, may occur in the 
X or Y locations of the polypeptide chain. In the α-chain of fibrous collagen, about 25% of 
amino acids are proline and hydroxyproline. They stabilize the triple-helical structure and 
effectively block internal rotations of collagen chains at these sites [33]. Moreover, hydrox-
yproline is an important amino acid in maintaining thermal stability of collagen molecules 
[34,35]. The most common secondary structure in collagen type I is the α-helix forming a 
triple helix along with the β-sheet and irregular conformation [36,37]. 

The triple helix structure is upheld mainly by hydrogen bonds between the glycine -
NH group and carbonyl group C=O of residues of another polypeptide chains. Addition-
ally, the triple helix’s stability is due to hydrogen bonds between the CαH group from 
glycine and C=O and hydrogen bonds with water molecules.  

The tree of hydrogen bonds is essential for maintaining the triple helix’s stability. On 
the contrary, its absence leads to a variety of pathological situations [32,38]. The collagen 
helix is additionally stabilized by van der Waals forces, along with hydrophobic and elec-
trostatic short range interactions [39]. 

Figure 1. Schematic model of glycine (a), proline (b) and hydroxyproline (c).

Other amino acids residues, such as alanine, lysosine and tyrosine, may occur in the
X or Y locations of the polypeptide chain. In the α-chain of fibrous collagen, about 25%
of amino acids are proline and hydroxyproline. They stabilize the triple-helical structure
and effectively block internal rotations of collagen chains at these sites [33]. Moreover,
hydroxyproline is an important amino acid in maintaining thermal stability of collagen
molecules [34,35]. The most common secondary structure in collagen type I is the α-helix
forming a triple helix along with the β-sheet and irregular conformation [36,37].

The triple helix structure is upheld mainly by hydrogen bonds between the glycine -
NH group and carbonyl group C=O of residues of another polypeptide chains. Additionally,
the triple helix’s stability is due to hydrogen bonds between the CαH group from glycine
and C=O and hydrogen bonds with water molecules.

The tree of hydrogen bonds is essential for maintaining the triple helix’s stability. On
the contrary, its absence leads to a variety of pathological situations [32,38]. The collagen
helix is additionally stabilized by van der Waals forces, along with hydrophobic and
electrostatic short range interactions [39].

The secondary structure of native collagen can be affected by different factors such
as temperature, mechanical forces and chemicals [40–45]. Any deformation in colla-
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gen/protein structure and conformation can be followed by means of Raman spectroscopy,
which is particularly useful for this purpose. Any alteration/variation in collagen molecules
is noticed in the shift of the position of Raman bands, their intensity and spectral width.
The aim of the study was to characterize the secondary structure of silver carp skin colla-
gen in terms of exposure to temperature by means of Fourier transform near IR Raman
spectroscopy. NIR Raman spectroscopy appears to be an extremely useful in biomaterials
studies. Using laser excitation with wavelength of 1064 nm, beyond the range of electronic
absorption, we avoid fluorescence effects. Additionally, lower energy excitation allows us
to avoid decomposition (e.g., thermal, photochemical, chemical) of the biomaterials during
study. As the reference material, bovine Achilles tendon collagen was used.

2. Materials and Methods

The collagen gel used in the experiment was obtained from silver carp (Hypoph-
thalmichthys molitrix) skin (FS collagen) Collagen was purchased from Collagen Active
Science Sp. z o. o. Poznan, Poland.The FS collagen obtained by means of the method pre-
sented in [21] most probably exhibits a triple helix conformation which is unique to living
organisms, which was verified by viscosity measurements and electrophoresis [3,46,47].

Collagen native conformation was determined by means of temperature dependence
of viscosity using the Ubbelohde viscometer, in the temperature range of 293–333 K. The
denaturation temperature was established as (306.3 ± 1.5) K [3,24,47]. The molecular
weight characteristics found by electrophoresis showed two distinct lines at ~130 and
~200 kDa, related to α- and β-chains, respectively [44]. The amino acid content can be
found elsewhere [46].

Collagen gel was dissolved in water and the acquired 10% solution was poured into
a Petri dish and dried at room temperature. Obtained films were used in further studies.
Raman spectra were recorded with a Bruker IFS66FT IR spectrometer equipped with an
FRA106 Raman module. The samples were excited by a diode pumped Nd:YAG laser
operated at λ = 1064 nm with output power of ~50 mW. Raman spectra were measured in
the 303–403 K range of temperature using a Linkam cooling–heating stage in 180◦ geometry.
The temperature range of approximately 300–400 K covers the temperature range expected
in many biomedical applications as well as collagen stability against temperature [48].

Moreover, the application of IR radiation permitted us to avoid any effect of UV
radiation on collagen structure [49].

The molecular structure and the temperature effects on the secondary structure of fish
skin (FS) collagen were compared with bovine Achilles tendon (BAT) collagen purchased
from Sigma-Aldrich, Poland. Its amino acid composition can be found in [50].

3. Results and Discussion
3.1. Raman Spectra of FS and BAT Collagen Measured at Room Temperature

The Raman spectra of FS and BAT collagen recorded at 303 K are presented in Figure 2.
Table 1 presents the assignment of the Raman bands for FS and BAT type collagen at

room temperature. To assign the Raman bands of samples used in this study, the results of
vibrational studies of different samples containing different kinds of collagen as well as
proline, hydroxyproline and glycine separately were utilized [35–37,45,51–59].

In the Raman spectra of collagen, one can distinguish four principal frequency ranges:
the first at 200–600 cm−1, assigned to the vibrations of the triple helix [44,59], the second at
800–1200 cm−1, assigned mainly to the vibration of proline and hydroxyproline as well as
secondary structure of collagen, and the third at 1200–1750 cm−1, where the bands related
to amide I and amide III vibrations were observed. The fourth frequency range from 2800
to 3200 cm−1 presents the band related to CH2 group vibrations.
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bands related to amide I and amide III vibrations were observed. The fourth frequency 
range from 2800 to 3200 cm−1 presents the band related to CH2 group vibrations.  

The Raman lines at 282 and 314 cm−1 are clearly visible for FS collagen, whereas sim-
ilar lines at ~292 and 307 cm−1 for BAT collagen are broadened and exhibit low intensities. 
Some authors [41,53] assign the lines in the range 200 to 400 cm−1 to the vibrations related 
to a triple helicity of the collagen. A significant difference between FS collagen and BAT 
collagen is observed in the frequency range 830–900 cm −1. The doublet of lines at 854 and 
874 cm−1 for BAT collagen is assigned to δ(CCH) aromatic and ν(CC) proline and hydrox-
yproline vibrations, respectively. In the case of FS collagen, one intense band with weak 
shoulders is observed at 861 cm−1. After deconvolution of the band, the shoulders occur at 
~854 cm−1 and ~870 cm−1. The band centered at 861 cm−1 may be assigned to the vibrations 
related to tyrosine. The shoulders with low intensities at ~854 and ~870 cm−1 may be re-
lated to the vibrations of proline and hydroxyproline. The remaining Raman bands occur-
ring in this frequency range appear in similar positions and are characterized by similar 
intensities, both for BAT and FS.  

As was discussed in the earlier papers [42,43], the lines related to C-C stretching vi-
brations in the range 890 to 1060 cm−1 may also characterize the secondary structure of 
collagen. The lines at 918 and 936 cm−1 are characteristic of α-helices and the lines in the 
range from 1020 to 1060 cm−1 are related to β-sheet structure. A gradual loss of these struc-
tures leads to a broadening and weakening in the intensity of the bands which are as-
signed to these vibrations [43]. The Raman band positions of these vibrations are similar 
for FS and BAT types of collagen. There are, however, some differences in the ratio of the 
band intensities. The band at 918 cm−1 for FS exhibits higher intensity compared to the 
same line for BAT. It could also be related to a higher content of the α-chain conformation 
in FS. Another difference between the Raman spectra of BAT and FS collagen appears for 
the line at 1171 cm−1, which is assigned to ν(CCC) out-of-phase vibration related to the 
vibrations of tyrosine residue. The line, which is sharp and intense for FS collagen, has 
very low intensity for BAT.  
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1607 s 1604 ν(CCH) aromatic ring  

Figure 2. Raman spectra of FS and BAT types of collagen in the range from 250 to 1200 cm−1 (a), in the range of amide I,
amide III and the range of CH2 vibrations (b). Raman spectra were recorded at 303 K.

Table 1. Assignment of the Raman bands of FS and BAT types of collagen at room temperature.

FS
Band Position/cm−1

BAT
Band Position/cm−1 Assignment Assignment

282 w 292 vw 3-helix

314 w 307 vw 3-helix

388 vw 396 w

535 w 530 w δ(CCN)

639 w 644 vw δ,ω(COO−)

649 w

760 w 760 w ν(CCO)

813 w 815 w ν(COC), ν(CC)

822 w

850 wsh 854 m ν(COC), ν(CC) Pro

861 m

870 wsh 874 m ν(CC) Hyp

918 m 918 m ν(C-COO−) α-helix

935 m 935 m ν(CC) α-helix

962 w 964 w

975 w 974

1003 w 1002 m ν(CC) aromatic ring phenylalanine,
tyrosine, tryptophane

1029 wsh 1030 m ν(CCN) phenylalanine

1045 w 1042 wsh β-sheet

1060 sh 1064 m ω(CH2) β-sheet

1085 w 1082 m ν(CN)

1096 w 1096 msh ν(CN)

1124 1123 msh
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Table 1. Cont.

FS
Band Position/cm−1

BAT
Band Position/cm−1 Assignment Assignment

1171 m δ(CH), ν(CCC)
out-of-phase tyrosine

1233 m ν(CN), δ(CH), δ(NH)

1245 ssh δ(NH) disordered (amide III)

1275 m 1270 s δ(NH) α-helix (amide III)

1301 s

1318 w 1318 sh γ(CH2)

1340 wsh 1340 msh δ(CH2)

1391 vw δ(CH2), ν(COO−)

1449 s 1445 s δ(CH2)

1588 wsh 1583 s ν(CCH) aromatic ring

1607 s 1604 ν(CCH) aromatic ring

1633 wsh ν(C=O) 3-helix

1666 s 1656 s ν(C=O) α-helix (amide I)

1671 s β-sheet (amide I)

1680 disordered (amide I)

2861 ssh 2853 ssh νas(CH2)

2888 ssh

2938 vs 2934 vs νs (CH2)

2982 ssh

3071 w ν(C=CH)
Abbreviations: s: strong, m: medium, w: weak, v: very, sh: shoulder, ν: stretching, δ: in plane bending symmetric,
γ: in plane bending antisymmetric,ω: out of plane bending symmetric.

The Raman lines at 282 and 314 cm−1 are clearly visible for FS collagen, whereas similar
lines at ~292 and 307 cm−1 for BAT collagen are broadened and exhibit low intensities.
Some authors [41,53] assign the lines in the range 200 to 400 cm−1 to the vibrations related
to a triple helicity of the collagen. A significant difference between FS collagen and BAT
collagen is observed in the frequency range 830–900 cm −1. The doublet of lines at 854
and 874 cm−1 for BAT collagen is assigned to δ(CCH) aromatic and ν(CC) proline and
hydroxyproline vibrations, respectively. In the case of FS collagen, one intense band with
weak shoulders is observed at 861 cm−1. After deconvolution of the band, the shoulders
occur at ~854 cm−1 and ~870 cm−1. The band centered at 861 cm−1 may be assigned to the
vibrations related to tyrosine. The shoulders with low intensities at ~854 and ~870 cm−1

may be related to the vibrations of proline and hydroxyproline. The remaining Raman
bands occurring in this frequency range appear in similar positions and are characterized
by similar intensities, both for BAT and FS.

As was discussed in the earlier papers [42,43], the lines related to C-C stretching
vibrations in the range 890 to 1060 cm−1 may also characterize the secondary structure
of collagen. The lines at 918 and 936 cm−1 are characteristic of α-helices and the lines in
the range from 1020 to 1060 cm−1 are related to β-sheet structure. A gradual loss of these
structures leads to a broadening and weakening in the intensity of the bands which are
assigned to these vibrations [43]. The Raman band positions of these vibrations are similar
for FS and BAT types of collagen. There are, however, some differences in the ratio of the
band intensities. The band at 918 cm−1 for FS exhibits higher intensity compared to the
same line for BAT. It could also be related to a higher content of the α-chain conformation
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in FS. Another difference between the Raman spectra of BAT and FS collagen appears for
the line at 1171 cm−1, which is assigned to ν(CCC) out-of-phase vibration related to the
vibrations of tyrosine residue. The line, which is sharp and intense for FS collagen, has
very low intensity for BAT.

The vibrations of amide I and amide III are most sensitive to changes in the confor-
mation of the secondary structures of collagen. The vibrations related to these molecular
groups appear in the spectral range from 1200–1750 cm−1. The bands between 1200 and
1350 cm−1 are assigned to the vibrations of amide III, where the modes related to C-N
stretching and N-H in-plane bending vibrations of the peptide bond as well as contribu-
tions from C-C stretching and C=O in-plane bending vibrations exist. The bands located
in the range around 1260–1300 cm−1 may be responsible for the α-helix conformation,
whereas the bands between 1240 and 1250 cm−1 could be related to both random coil and
β-sheet structures [43].

The bands revealed in the range ~1600–1680 cm−1 are mainly assigned to the stretching
vibrations C=O of the peptide bond and the bending vibrations of the N-H group. The
bands of amide I can characterize the hydrogen bonds of diverse structures. These diverse
hydrogen bonds in the polypeptide chain are responsible for the type of the secondary
structure of the protein that is an α-helix arranged in a spiral which is stabilized by
hydrogen bonds between the oxygen of the C=O group of one amino acid and nitrogen
of a second amino acid located four positions away. The β-sheet is conformation which
should contain a minimum of two strands and is stabilized by hydrogen bonds between
the C=O group of one strand and the NH group of the another strand as well as disordered
structures. The Raman band assigned to amide I of FS collagen consists of a narrow
line at ~1666 cm−1 and a shoulder at ~1633 cm−1. On the basis of the previous Raman
studies on collagen [37,57], this band can be attributed to a significant content of α-helix
structures. In the case of BAT collagen, a wide band of amide I having the local maximum
at ~1655 cm−1, along with extra shoulders at ~1671 cm−1 and ~1680 cm−1, was observed.
Such a wide, complex band related to amide I of BAT collagen can suggest that it contains
α-helix structures as well as β-sheet and other disordered structures. The most intense
bands presented in the range 2800–3200 cm−1 belong to the stretching vibrations of the
CH2 group and are similar for both FS and BAT types of collagen.

3.2. Temperature Effect on the FS Collagen

Temperature studies of Raman spectra of FS and BAT collagen were carried out in
the temperature range from 303 K to 403 K. In Figure 3a,b, temperature changes of FS
collagen and BAT collagen Raman spectra are presented, respectively. Raman spectra
of FS collagen do not change up to T ∼= 353 K, and above 353 K Raman spectra undergo
irreversible change. The most significant changes are observed for the lines at 860, ~918, 935,
1171 cm−1 and for the bands related to amide I and amide III vibrations. The sharp line at
860 cm−1 in the spectrum at 303 K, assigned to tyrosine, is significantly less intense at 403 K
(Figure 4a). The doublet of lines at 918 and 935 cm−1, assigned to α-helix conformation,
shows a considerable decrease in their intensities at 403 K. The most significant changes
in high temperature are observed for the bands related to both amide I and amide III
vibrations. A substantial shift of the band at 1274 cm−1 to ~1270 cm−1 (Figure 5a) assigned
to the α-helix may indicate its considerable decrease and an increase in the content of both
β-sheets and the disordered part of the polypeptide chain. On the other hand, in the part of
the Raman spectrum related to the vibrations of amide I (Figure 5c), one can observe a shift
of a narrow band centered at 1666 cm−1 to a higher frequency at ~1670 cm−1. Moreover, a
decreasing intensity of the line suggests a reduction in the content of α-helix conformation
and an increase in the content of the β-sheet phase. We can also observe a significant
widening of Raman bands, indicating increased structural disorder (Figure 5b).
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Figure 5. Temperature dependence of the Raman band position of FS related to amide III vibration (a) and its spectral width
(b), amide I vibration (c) and its spectral width (d). The lines are guides for the eye.

To conclude, the temperature studies of the Raman spectra of FS collagen revealed
conspicuous changes occurring in the ~358 K to ~363 K temperature range. Heating of FS
collagen to 403 K causes irreversible changes in its secondary structure.

Comparing the Raman spectra of BAT and FS collagen measured at 403 K (Figure 6),
one can see their striking similarity, whereas at room temperature considerable differences
can be observed (see Figure 2).
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Figure 6. Comparison of Raman spectra of FS and BAT collagen in the range of amide I and amide
III vibrations measured at 403 K.

Temperature studies of Raman spectra changes in BAT collagen showed that the
character of Raman spectra does not undergo any change in the temperature range from
300 K to 403 K (Figures 3b and 7). Additionally, the Raman band positions change linearly
with increasing temperature (Figure 8), not exhibiting any anomalous behavior.
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Figure 8. Temperature dependence of the Raman band position of BAT collagen related to amide I vibration. The line is a
guide for the eye.

Analyzing the thermal changes in the amide groups for both FS and BAT types of
collagen, we compare the Raman intensity ratios of the most intense bands at ~1270 cm−1

(precisely ~1275 cm−1 for FS and ~1270 cm−1 for BAT) for amide III and ~1660 cm−1

(1666 cm−1 for FS and ~1656 cm−1 for BAT) for amide I with the intensity of the band
at ~1450 cm−1. The band at ~1450 cm−1 is related to the CH2 bending vibration, which
is practically insensitive to the secondary structure. Table 2 presents the Raman band
intensity ratios at 303 K and 403 K for both types of collagen.
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Table 2. Raman intensity ratios of amide I and amide III bands to Raman intensity of CH2 band for
FS and BAT collagens.

Amide I
I(~1660)/I(~1450)

Amide III
I(~1270)/I(~1450)

Amide I
I(~1660)/I(~1450)

Amide III
I(~1270)/I(~1450)

Temperature 303 K 403 K

FS 1.56 1.16 0.65 0.49

BAT 0.62 0.39 0.63 0.36

As shown earlier, the Raman spectra of BAT collagen do not undergo any change
up to 403 K. The intensity ratios of the Raman bands characteristic of α-helix frequencies
of amide I and amide III to the CH2 bending band presented in Table 2 are nearly the
same for 303 K and 403 K. However, in the case of FS collagen, these dependences change
considerably. At 303 K, the intensity ratios of the bands assigned to the vibrations of α-helix
conformation are nearly three times higher for amide I and almost four times higher for
amide III, compared with BAT collagen, while at 403 K the values are comparable.

4. Conclusions

The analysis of the recorded Raman spectra of fish skin collagen at room temperature
revealed a relatively high content of α-helix structure in a film made of collagen gel.
The high intensity of the bands of amide I and amide III at ~1666 cm−1 and ~1274 cm−1,
respectively, suggested a significant content of α-helix structure in the studied material. The
intensities of the above bands were much higher than the intensities of the corresponding
bands for the BAT collagen.

The effect of temperature on the Raman spectra of FS collagen was insignificant up
to the temperature 358 K. Above this temperature, the content of α-helix structure was
reduced and beneficial to the β-sheet structure and other disordered structures. From this
temperature, the Raman spectrum of FS collagen resembled the Raman spectrum of BAT
collagen. Therefore, one could conclude that FS collagen is thermally stable up to ~358 K
and maintained its native structure. Opposite to fish skin collagen, studies on temperature
effects on Raman spectra of BAT collagen did not reveal any change in the secondary
structure up to temperature 403 K.

These results coincide with the results of studying the thermal stability of FS collagen
foil by means of the DSC method presented in [40,41]. It was shown in these works that
the thermal stability temperature of the foil collagen from swim bladders obtained from a
variety of fish is 338.9–347.8K [60], whereas for the collagen films from silver carp skin it is
350K or 352K [61,62]. This indicates an ideal agreement of denaturation temperature of
collagen foil determined by means of the DSC method with the temperature at which the
changes in the secondary structure of FS collagen revealed by Raman spectroscopy were
observed in the present work.

A high content of α-helix structure in fish skin collagen suggests its high biocompati-
bility and a variety of possible applications in regenerative medicine and cosmetology.
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