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Abstract: Mechano-biological processes in the aortic valve span multiple length scales ranging from
the molecular and cell to tissue and organ levels. The valvular interstitial cells residing within the
valve cusps sense and actively respond to leaflet tissue deformations caused by the valve opening
and closing during the cardiac cycle. Abnormalities in these biomechanical processes are believed to
impact the matrix-maintenance function of the valvular interstitial cells, thereby initiating valvular
disease processes such as calcific aortic stenosis. Understanding the mechanical behavior of valvular
interstitial cells in maintaining tissue homeostasis in response to leaflet tissue deformation is therefore
key to understanding the function of the aortic valve in health and disease. In this study, we applied
a multiscale computational homogenization technique (also known as “FE2”) to aortic valve leaflet
tissue to study the three-dimensional mechanical behavior of the valvular interstitial cells in response
to organ-scale mechanical loading. We further considered calcific aortic stenosis with the aim
of understanding the likely relationship between the valvular interstitial cell deformations and
calcification. We find that the presence of calcified nodules leads to an increased strain profile that
drives further growth of calcification.

Keywords: aortic heart valve; coupled multiscale mechanics; aortic stenosis; calcification

1. Introduction and Objective

Mechanotransduction is the process by which living cells and tissues respond to me-
chanical stimuli and activate biochemical pathways that influence a variety of intracellular
and extracellular biological functions. These processes span a wide spectrum of length
scales ranging from the molecular and sub-cellular to the tissue and organ levels. Due to
the importance of microscale behavior in biological systems, traditional biomechanical
modeling is limited in its capabilities. Multiscale modeling techniques, such as compu-
tational homogenization (also known as “FE2”), however, can be used to investigate the
micromechanical behavior of cells in biological systems, and hence mechanotransduction.
Such an approach is important for developing heart valve biomechanical models that
capture the essential roles of valvular interstitial cells in maintaining tissue homoestasis
and regulating pathology.

The aortic valve (AV) is the gateway for the delivery of pressurized, oxygenated blood
from the left ventricle to the aorta and thereby the rest of the body [1]. The function of
the AV in health and disease directly involves processes occurring at the cellular scale.
Biochemical pathways are activated from mechanical feedback loops between the valvular
interstitial cells (VICs) and the AV leaflet tissue [2,3]. Shape changes in valvular interstitial
cells (VICs), particularly the aspect ratios, have been proposed as a measure of cellular
mechanotransduction activity. Experiments have been performed by several laboratories
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that investigated this metric in response to the physiological loading of aortic valve leaflet
tissue. In an effort to better understand the nature of AV disease, researchers have been
exploring the central role of VICs by modeling the inherently multiscale behavior of AV
tissue [4–7]. Numerical simulations that mimic these experiments were carried out but
were limited to 2D and uncoupled 3D models (i.e., no interaction between the macroscale
and microscale).

Weinberg et al. [6,8,9] developed the first 3D, multiscale, transient model of the aortic
valve in health and disease, where they coupled the organ-level (whole valve) mechanical
strains to tissue and cell-level events, and found agreeable results to the ex vivo experiments
that related whole valve deformations to VIC deformations. Missing from the literature,
however, are fully coupled multiscale models, i.e., models that allow for two-way interaction
between the disparate length scales. Naturally, a meaningful model of the full resolution
of the AV, incorporating the cells that make up its microstructure, is a computationally
intractable problem. An alternative is computational homogenization, sometimes known
as FE2, where a statistical representation of the microstructure (the “representative volume
element” or RVE) is embedded into a macroscale model.

Computational homogenization is a viable way of coupling multiscale behavior [10].
We use this approach to study the valvular interstitial cell’s aspect ratio (VICAR) as a
representation of cellular deformations. VICAR is defined as the ratio of the valvular
interstitial cell’s longest length dimension to its shortest, and it is often used as a suitable
metric for cellular shape changes, i.e., the stimuli for mechanotransduction, as proposed by
Huang [4]. We are able identify that the perceived aspect ratio from experiments may not
be consistent with the actual 3D VIC deformations. With this methodology, we introduce a
framework for more complex multiscale and multiphysics AV models.

The objective of this study was to apply FE2 to aortic valve leaflet tissue in 3D to study
the mechanical behavior of the VIC in response to organ-scale mechanical loading. The
modeling scheme importantly utilizes self-consistent material models based on layer-wise
experimental data from aortic valve tissue. Our simulations demonstrate a viable method
for the fully multiscale modeling of aortic valve tissue. We find that the “apparent” VIC
aspect ratio observed in experiments may not necessarily be consistent with the actual 3D
deformations of the cells. We further consider calcific aortic stenosis, the most prevalent
aortic valve disease featuring the calcification of the valve leaflet tissues [11]. The aim here
was to understand the relationship between the VIC aspect ratios and calcification. We find
behavior that is consistent with previous single-scale studies in the literature, namely that
the presence of calcified nodules leads to an increased strain profile that drives the further
growth of calcification.

Aortic valve function: details regarding AV physiology may be found, e.g., in [12].
We briefly revisit them here. The AV complex consists of the aortic root, the sinus, the
leaflets, and the ascending aorta, as depicted in Figure 1. Our main focus here are the
leaflets (or cusps), shown in color in Figure 1.

Healthy AVs have three leaflets that open and close to allow blood flow from the
ventricle into the ascending aorta and prevent retrograde flow. During the cardiac cycle
(illustrated in Figure 2), blood flows in from the left atrium into the left ventricle during
diastole, and the AV leaflets open (close) at the beginning (end) of systole.

Huang carried out a series of in vitro experiments to measure the VICAR in response
to AV tissue loading during the cardiac cycle. AV leaflet samples were fixed in a tank and a
pressure head was applied at five different levels, as shown in Table 1. Note that, in [4],
the maximum pressure used was 90 mmHg; thus, for comparison purposes, all of our
computations were also carried out to this pressure, as opposed to the conventional normal
systolic pressure of 120 mmHg. The average VICAR was then measured at each pressure
by image processing procedures of sections through the tissue thickness. Huang notes
that the VICAR reported was the observed value, i.e., the apparent 2D elliptical aspect
ratio that, in general, is not concentric with the presumed ellipsoidal shape. Further details
regarding the experimental procedure can be found in [4]. Note that the net pressure load is
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on the aortic side of the leaflet. Physiologically, this corresponds to the period between the
systole and diastole (Figure 2), right after the valve closes and the transvalvular pressure is
the greatest.

Figure 1. One-sixth of a symmetric idealized aortic valve geometry, as obtained from Weinberg and
Mofrad [6]. The leaflet is highlighted. The one-sixth geometry with symmetry planes is used in our
models for computational efficiency. Rendering generated with ParaView [13].
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Figure 2. Aortic valve cardiac cycle pressures, as adapted from [12]. The figure shows the ventricular
and aortic pressures during systole and diastole phases in three consecutive cardiac cycles.

Table 1. Pressure loading protocol in mmHg.

Load Step 1 2 3 4 5

Pressure 1 2 4 60 90

Aortic valve tissue calcification: calcified aortic stenosis (CAS) is the most prevalent
aortic valve (AV) disease, affecting approximately 25% of adults over 65 years of age [14].
It is characterized by a failure of the valve leaflets to fully open due to the formation of
calcified lesions similar to bone tissue [15].

The calcification process is hypothesized to begin with the differentiation of the
valvular interstitial cell (VIC) phenotype into osteoblast-like cells that alter the structure of
the extracellular matrix (ECM) [16]. The calcified lesions begin as nodules that grow into
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non-random patterns [9]. A few common patterns have been identified, with the two most
common being the “arc” and “partial arc” patterns (Figure 3) [17,18]. Halevi et al. [18] used
reverse computed tomography (CT) to classify these patterns and how they progressed
temporally and spatially. The calcification occurs more frequently on the aortic side of the
valve (fibrosa) and the stiffening results in altered valve function [19–22].

(a) Typical calcification initiation. (b) Partial arc pattern.

(c) Mature arc pattern.

Figure 3. Prevalent calcification patterns on the aortic valve. Note that calcification is typically found
on the aortic side of the leaflet, as shown in blue [17,18].

The underlying cause of calcification is still under investigation, however, tissue strain
and hemodynamic shear stresses have been identified as important biomechanical factors
driving their growth [23–27]. These factors result in a biochemical signaling processes
between the endothelial cells and the VICs, promoting VIC differentiation into a calcific
phenotype [28].

Multiscale modeling: in an effort to capture the multiscale feedback inherent to the
behavior of AV tissue in health and disease, we will introduce a full 3D coupled multiscale
model via FE2. We first detail the theory and implementation of the model. Then, we
calibrate the tissue model to the experimental data. We use the calibrated data to study VIC
behavior in response to macroscale pressure loading in two states: healthy and calcified.
We further investigate different stages of diseased valves, as mentioned above, to study the
evolution of calcification in the tissue. The calcified states are considered by introducing
regions of the tissue along the aortic face of the valve leaflet with material properties
representing calcification in patterns similar to those observed in the diseased valves. We
are able to identify a clear change in the VIC behavior in the non-calcified regions of the
tissue which form a basis for the further progression and saturation of the calcified tissue.

2. Materials and Methods

In this section, we present our multiscale modeling approach (cf. Figure 4). We begin
by introducing a continuum mechanics framework and then develop a finite element
discretization to solve the governing equations. Finally, we contextualize the approach to
the AV tissue model.
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2.1. Multiscale Modeling Framework

We modeled the AV tissue within a classical continuum mechanics framework (see
e.g., [29] or [30]), wherein we seek to solve the governing equations of motion for a body,
i.e., the manifold with boundaries, subject to boundary conditions, specifying tractions
and displacements. We define a one-parameter (time t) family of finite deformation maps
ϕt : R3 7→ R3 of a hyperelastic body from a reference configuration (B0) to a current
(deformed) configuration (Bt) (see Fung [31] or Holzapfel [29]); viz., Bt = ϕt(B0).

We define the deformation gradient F = ∇ϕ. Note that F is a 2-point tensor mapping
vectors from the reference manifold to the deformed manifold. We define the left and right
Cauchy–Green deformation tensors by C = FT F and b = FFT , respectively. We further
define the associated strain tensors: the Green–Lagrange strain tensor E = 1

2 (C − I) for
the reference configuration and the Almansi strain tensor e = 1

2 (I − b−1) for the current
configuration. I is the identity tensor for vectors in R3.

The equilibrium deformation map at time t is the one that minimizes the potential
energy (Π) of the elastic system subject to conservative traction loading t̄t:

ϕ
eq
t = arg inf

ϕt
Π(ϕt; t̄t). (1)

Under the assumption of hyperelasticity, the 1st Piola–Kirchhoff stress of the system,
P, is obtained from the Helmholtz free energy, ψ̂, of the material:

P =
∂ψ̂

∂F
. (2)

Although the solution to (1) is in general not unique, the polyconvexity (in the sense
of Ball [32] along with suitable growth conditions) of the energy function guarantees the
existence of a solution. We solve the problem with a standard finite element (FE) numerical
procedure (Section 2.1). Our challenge is to specify ψ̂ such that the FE model is consistent
with the observed experimental response.

We can further define two additional stress tensors: the 2nd Piola–Kirchhoff stress
tensor S and the Cauchy stress tensor T . The relationship between the stress tensors is:

T = J−1FP = J−1FSFT , (3)

where J = det(F) is the Jacobian (of the deformation gradient).
To use an FE approach to solve (1), let ∂Bu and ∂Bt denote the partitions of the

boundary (∂B0) of the body, B0, where deformation and tractions are imposed, respectively,
with ∂Bu ∩ ∂Bt = ∅, ∂Bu ∪ ∂Bt = ∂B0. Equation (1) is solved by satisfying the weak
form statement:

Find:
ϕ ∈ S := {ϕ |ϕ = ϕ̄ on ∂Bu},

such that: ∫
B0

P · ∇(δϕ) dV =
������
∫
B0

B · δϕ dV +
∫

∂Bt
t̄ · δϕ dA, (4)

∀δϕ ∈ V := {δϕ | δϕ = 0 on Bu},

where we assume there is no body force B. The FE solution begins with a tessellation of the
domain (cf. Figure 5) into a finite set of discrete nodes and elements. Letting the superscript
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g denote discretized parameters, and NA(x) denote interpolating shape functions at each
node, we construct a Galerkin discretization as

Bh
0 =

nel

A
e=1
Be

0, ug =
nn

∑
A=1

NAuA, δug =
nn

∑
A=1

NAδuA, (5)

where e indexes the nel elements in the domain, u denotes displacements, δu denotes
variational displacements, uA denotes nodal displacements indexed by A over nn nodes in

the tessellation, and
nel

A
e=1

is the assembly operator [33]. Substituting (5) into (4) leads to the

nonlinear (static) equilibrium equations:

R(ut) = ft −
nel

A
e=1

∫
Be

0

∇NT
e Pe dVe = 0, (6)

where R is the residual for a state of displacements ut at time t, which must be in equi-
librium with the applied nodal forces ft at time t, and ∇N is the matrix formed from
derivatives of the shape functions NA(X) with respect to X. The reader is referred to
Zienkiewicz and Taylor [33] for a comprehensive treatment of the FE procedure.

We use an iterative Newton–Rhapson approach to solve (6). Given an initial state u0
t ,

the updated equations are:

uk+1
t ← uk

t − K−1
T (uk

t ) ft, (7)

where:

KT =
∂R
∂u

=

nel

A
e=1

(ke,mat + ke,geom), (8)

is the linearized tangent stiffness. The element material stiffness is:

ke,mat =
∫
Be
∇̄NT

e c∇̄Ne dV, (9)

where ∇̄ is the gradient operator with respect to the spatial manifold, and c is the spatial
material tangent, defined as

cijkl =
1
J

FiAFjBFkCFlDCABCD, (10)

the push-forward of the material tangent C = 2∂S/∂C. The element geometric stiffness is:

kAB
e,geom =

( ∫
Be

NA
,i TijNB

,j dV
)

I. (11)

The summation convention is implied throughout, with lower-case subscripts indicat-
ing the spatial coordinates, subscript commas indicating partial differentiation, upper-case
subscripts indicating the reference coordinates, and upper-case superscripts indicating
nodal numbers.

Note that the integrals for the stiffnesses are taken over the deformed element. The
iterations are carried out until a stopping criterion, such as the satisfaction of (6), is achieved
within some tolerance. For the Newton–Rhapson strategy to converge, the initial guess
must be in the neighborhood of the solution. This requirement poses an issue for the highly
nonlinear AV tissue, particularly in the low stiffness regime.

To address this problem, we incrementally and adaptively apply the load. We start
with a small load factor αt ( ft = αt f0) and adjust the factor heuristically based on the
number of iterations (ni) it takes for (7) to converge (αt ∝ n−1

i ). In this manner, we are able
to circumvent the use of unreasonably small load factors (i.e., excessive computational
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time) during the entire load path. If a load factor is too large and the Newton–Rhapson
algorithm diverges, we appropriately scale the load factor down.

To proceed with computational homogenization, we begin with (4), the weak form
statement of the FE problem. The integrals in (4) are computed via numerical quadrature.
At each quadrature point, the macroscopic P is generally obtained from a constitutive
model (for hyperelastic materials, viz. (2)).

In computational homogenization, or FE2, the macroscopic stress, now denoted PM, is
obtained from an embedded FE problem representative of the microstructure of the mate-
rial, referred to as the representative volume element (RVE). The macroscopic deformation
gradient, now denoted as FM, is passed from the macroscale model to the RVE (with the
domain given by Ω) as a constraint condition. Then, the energy of the RVE is minimized
(i.e., an FE solution is obtained for the RVE) subject to the condition that the volume aver-
age of the pointwise RVE deformation gradient, Fm, is equal to the imposed macroscopic
deformation gradient FM. This procedure is depicted in Figure 4. The resulting stress and
tangent stiffness are computed from the Hill–Mandel principle:

PM · δFM =
1

V(Ω)

∫
Ω

Pm · δFm dV, (12)

where, as introduced, the superscript M denotes macroscale quantities and m denotes
microscale quantities.

Figure 4. Computational homogenization, i.e., FE2. The macro problem passes the deformation
gradient FM to the RVE (micro problem), where (1) is solved. The homogenized stress and tangent
(as given by (15) and (18)) are then computed and passed up to the macro problem. The process is
typically iterated as in (7). This graphic was adapted from Kouznetsova [10].
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We now outline the homogenization procedure (see Kouznetsova [10] for a compre-
hensive treatment). We begin by imposing FM on ∂Ω, the boundary of the representative
volume element (RVE). We partition the displacements accordingly:

u = ud ∪ u f , ud ∩ u f = 0. (13)

We refer to u f as the free displacements in the RVE domain and:

ud = (FM − I)X, ∀X ∈ ∂Ω. (14)

The free displacements are computed by satisfying (1) for the RVE, under the as-
sumption of an appropriate material description (e.g., hyperelasticity), using a standard
FE procedure as in Section 2.1. One interesting extension to the material description is
a two-stage FE2 procedure with a “nanoscale” RVE. The application of (12) leads to an
expression for the homogenized stress:

PM =
1

V(Ω)

∫
Ω

Pm dV. (15)

We then turn to an expression for the homogenized tangent stiffness. We begin by
forming the Schur complement of the partitioned tangent stiffness as given by (13)

Kc = Km
dd − Km

d f (K
m
f f )
−1Km

f d. (16)

We define the order-4 tangent stiffness AM that satisfies the variational inner product:

δPM = AM · δFM. (17)

It is not difficult to show that the application of (12) reveals:

AM =
1

V(Ω)

nd

∑
A=1

nd

∑
B=1

(
X A ⊗ KAB

c ⊗ XB)L, (18)

where nd is the number of boundary nodes, and thus KAB
c refers to the 3 degrees of freedom

at nodes A, B leading to AM ∈ R3×3×3×3. The superscript L denotes the left conjugation of
a 4-tensor (Dijkl)

L = Djikl .

RVE Boundary Conditions

The Dirichlet boundary condition specified in (14) is not unique. In fact, any boundary
conditions that are compatible with (12) are feasible. Other examples include traction,
periodic, and Taylor boundary conditions (where FM is imposed everywhere in Ω, not
just the boundary). As a rule of thumb, Taylor and Dirichlet boundary conditions tend to
overestimate the stiffness of the RVE, traction boundary conditions tend to underestimate
the stiffness, and periodic boundary conditions seem to be closer to the ground truth. The
latter, however, demands a structured mesh which may not be possible (as in our case).

Taylor boundary conditons are used in the remainder of this work. This implies in (13)
that we have u f = ∅ and thus in (16) Kc = Km

d = Km
T (FM), the ordinary tangent stiffness

of the global micro problem at the deformation state FM. In our case, this provides speed
without negatively impacting the results.

2.2. Implementation of FE2 Approach to Aortic Valve Leaflet Tissue

We used FEAP [34] to conduct the FE2 analysis. The macroscale model is the AV
leaflet and the RVE is a VIC embedded in the extracellular matrix (ECM). FEAP provides
functionality for users to define macroscale FE meshes where by the material models for
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the macroscale problem are given through the definition of RVEs based on microscale FE
meshes using continuum mechanics models.

2.2.1. Macroscale Model

Our geometric representation of the AV leaflet is shown in Figure 5 via the mesh.
Dimensions were obtained from Hajali et al. [35], Weinberg and Mofrad [6], Huang [4], and
Stella and Sacks [36]. Eight node mixed-formulation elements were used in a hexahedral
mesh generated with FEAP’s built-in tools and a custom algorithm. We exploited the
symmetry and model of only half of the leaflet with appropriate boundary conditions at the
symmetry plane. The remaining edges around the leaflet were fixed as in the experiments.

t

c
r

Figure 5. Macroscale AV leaflet (symmetric) mesh generated with a custom algorithm and FEAP
built-in tools. The r and c directions represent a curvilinear set of coordinates in the surface of
the leaflet and t is the coordinate orthogonal to the surface of the leaflet. Paraview was used for
visualization [13].

As is typical in AV leaflet literature, we define the circumferential, radial, and transmu-
ral (CRT) curvilinear basis. Referencing Figure 5, the circumferential direction is tangential
to the curved surface and orthogonal to the symmetry plane, the radial direction is tan-
gential to the curved surface and orthogonal to the circumferential direction, and the
transmural direction is orthogonal to the curved surface through the thickness of the leaflet.

An important characteristic of the AV leaflet is its natural curvature (hence the name
cusp). Exact data on the curvature of the cusp used in the experiments of Huang are not
available, so we approximated the surface curvature with the following out-of-plane (OOP)
surface deformation:

ω(x, y) =
rρ2

π2

(
cos
(

π

ρ
(x− x0)

)
+ 1
)(

cos
(

π

ρ
(y− y0)

)
+ 1
)

, (19)

where (r, ρ) are parameters that control the shape and are dictated by the experimental
geometry. (x0, y0) is the planar center of curvature in a Cartesian system. We define x0 = 0
for symmetry, leaving y0 as a free parameter.

The trilayer structure of the AV leaflet tissue is explicitly modeled with three discrete
layers (ventricularis, spongiosa, and fibrosa). Interconnecting fibers through the thickness
are modeled with perfectly bonded layers [37,38]. The in-plane fibers are embedded in the
RVE via (20), but the OOP orientations are computed from (19) in the macroscale mesh and
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passed down to each RVE. Note that due to the lack of available data, we did not pre-stress
the layers [39].

2.2.2. Microscale Model (RVE)

The geometric representation of the RVE is shown in Figure 6 via the mesh. Mixed-
formulation four-node tetrahedral elements were used in an unstructured mesh generated
with the open source package Iso2mesh [40]. A coarse mesh (Figure 6 right) was chosen for
computational efficiency.

r

c
t

Figure 6. Right: Low-fidelity RVE mesh used for FE2 computation; Left: High-fidelity RVE mesh
used for post-processing calculation. Both meshes enforce the same volume ratio. Meshes generated
and visualized with Iso2mesh [40].

The VIC is approximated as an ellipsoid, with aspect ratios (in CRT coordinates):
C/T = 1.8, C/R = 1.3, and a major axis length of 9.6 µm. The VIC volume ratio (VR) is
approximated from Huang et al. [5] but allowed to vary. We assume that the cell behaves
as a Neohookean material, i.e., (20) with C1m = C2m = C1 f = C2 f = 0, µ = 400 Pa
and [4] K = 2.2 MPa and is perfectly bonded with the ECM. The ECM material is given by
Bakhaty et al. [39]:

ψ = C1m
{

exp
[
C2m(I1 − 3)

]
− 1
}
+

n f

∑
i=1

C1 f

2C2 f

{
exp

[
C2 f (Ji

4 − 1)3
+

]
− 1
}

+c1(I1 − 3) + c2(J2 − 1) + c3 ln(J).

(20)

with the parameters defined in Table 2. We used Taylor boundary conditions; i.e., the
deformation gradient is imposed everywhere in the domain. Let Fk

t be the deformation
gradient at time t and iteration k passed to an RVE (Ω). Then, the displacement field is:

uk
t (X) = (Fk

t − I)X, ∀X ∈ Ω. (21)

Table 2. Summary of calibrated model parameters (see (20)). µ = 1.62 kPa and K = 2.2 MPa.

Model C1m (Pa) C2m (-) C1 f (Pa) C2 f (-) σ f (◦)

Fibrosa 4.72× 10−2 6.7 16.31 43.19 0.64

Ventricularis 0.25 0.39 1.51 3.63 9.71

Spongiosa 0 0 0 0 0

In the spirit of the experiments, we fixed the macroscale model around the edges
(with the exception of the symmetry boundary conditions) and applied a uniform pressure
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loading (Table 1) on the aortic side (with the curvature). Note that the large deformation
necessitates the use of convecting “follower” pressure loads [33].

We computed the VICAR by tracking the deformation of nodes at the ends of the
major and minor axes (circumferential and transmural directions, respectively) of the VIC
during the loading. To compute the “apparent” aspect ratio, we tracked nodes at the ends
of the major and minor axes of the elliptical projection of the ellipsoidal VIC on a cutting
plane (Figure 7), similar to the procedure followed in the experiments. The cutting plane is
a subset of the circumferential–transmural plane and convects with the deformed body
to maintain the same reference configuration. The initial cutting plane is defined with a
random (normal) perturbation from the center of the ellipsoid.

r
t c

Figure 7. Visualization [40] of the VICAR measurement. Blue circles indicate the actual VICAR while
red circles indicate the “apparent” VICAR as measured via the projection of the ellipsoidal cell on the
cutting plane convecting with the deformation.

Let P0 define the reference cutting plane, then:

Pt = ϕt(P0). (22)

We computed the VICAR in a post-processing step of the analysis. The deformation
gradients at each quadrature point in space and time were applied to a higher fidelity RVE
mesh (see Figure 6). Furthermore, we randomly perturbed the location and orientation of
the VIC inside the RVE for each quadrature point. We assumed that the major axis of the
ellipsoid is randomly oriented in a normal cone about the circumferential direction. Let:

E = [ac, ar, at], (23)

represent the axes of the ellipsoid with ETE = EET = I. Then, we define the rotated
axes as

E ′ = Rcr(θ2)Rct(θ1)ERct(θ1)
T Rcr(θ2)

T , (24)

where:

R(θ)ab := cos(θ)(ea ⊗ ea + eb ⊗ eb) + sin(θ)(eb ⊗ ea − ea ⊗ eb) + ed ⊗ ed, (25)

is a counterclockwise planar rotation matrix for the unit vector ed = ea × eb. Furthermore:

θi ∼ N (0, σθ) (26)
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are angles drawn from a zero-mean normal distribution. The parameters σθ and the volume
ratio of the cell VR are discussed in the sequel.

It is worth noting that with Taylor boundary conditions, we only need to track the
extrema of the VIC ellipsoid during the deformation. We include the RVE mesh to illustrate
a more general procedure for VICAR computations.

2.3. Application to Calcific Aortic Valve Leaflet Tissue

We make use of the same model specified in our macroscale model (cf. Section 2.2.1)
with the exception of pre-defined calcified elements. These elements follow the patterns
depicted in Figure 3 and the macroscale meshes are shown in Figure 8. Only the topmost
layer of elements in the fibrosa are calcified. The calcification-free RVEs are exactly as in
Section 2.2.2, with parameters as given in Table 2. The material for the calcified RVEs is
identical to the fibrosa but with µ = 1 GPa, based on fully developed bone tissue [41].
Furthermore, the bulk parameter K for the calcified elements was scaled to 22 GPa to
improve conditioning and guarantee the convergence of the nonlinear equation solving.

(a) Early-stage calcified nodules. (b) Partial arc pattern.

2
1

3

(c) Mature “arc” pattern.
Figure 8. Macroscale leaflet meshes with calcified regions highlighted in a teal.

3. Results
3.1. RVE Material Parameter Fitting

We fit the hyperelastic material in the RVE ECM, given by (20), to experimental
equibiaxial tissue stretch data [4]. The fitting procedure is described in [39]. Figure 9
demonstrates the fit and Table 2 summarizes the parameters. Note that the layers are not
pre-stressed as in [39].

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

10

20

30

40

50

60

Figure 9. Equibiaxial membrane stress vs. stretch for RVE material (colored: red is circumferential
and blue is radial) and experimental data (black); equibiaxial specimens are extracted from leaflets
with radial and circumferential directions as indicated in Figure 5 and detailed in [4]. See [39] for
details regarding the fitting of the experiments.
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3.2. Mesh Convergence

Macroscale: a mesh objectivity study is summarized in Figure 10. The sufficiently converged
mesh size, represented by the middle point, was chosen for computational considerations.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

-2.5

-2

-1.5

10 -3

[
]

Figure 10. Convergence study for the macroscale mesh. Each curve represents displacements (in the
belly region of the leaflet) at the load steps in Table 1. The mesh size represented by the middle point
was chosen for computational considerations.

Microscale: the convergence of the embedded RVE (Figure 6 right) in the FE2 procedure
is not of interest as it is intentionally downsampled. The postprocessing high-fidelity
mesh (Figure 6 left) mesh is relatively straightforward because we impose deformations
everywhere in the domain (Taylor boundary conditions). Our quantity of interest is the
VICAR, so the mesh must be sufficiently dense such that there is high probability that
nodes are close enough to the apexes of the ellipsoid in the (randomized) unstructured
tetrahedral mesh generation. We controlled the mesh density with a parameter that
enforces a maximum element area on the surface of the ellipsoid, Amax, in the Delaunay
triangulation [42].

3.3. FE2 Result: Healthy Valve

Simulations were tested on an in-house 32-node cluster, Iron, and run on 60 nodes
of the 8109 cluster SAVIO (http://research-it.berkeley.edu/services/high-performance-
computing accessed on 1 September 2021). Each simulation ran for approximately 20 h on
the latter.

The deformed shapes of the AV leaflet simulated under the five steps of the loading
protocol defined in Table 1 can be seen in Figure 11. We computed an average Jacobian
in all the elements throughout the loading of J = det F ≈ 1, within 1.5%, indicating the
desired quasi-incompressible behavior.

Valvular interstitial cell aspect ratio (VICAR): the VICAR plots are computed from
the RVEs at every Gauss point in the elements along the symmetry plane: a total of
144× 8 = 1152 RVEs. The average was reported, and where shown, error bars represent
standard deviation. Note that the authors of the experimental data did not specify whether
their error bars represented one standard deviation or one standard error.

Throughout this discussion, a two-tailed t-test was used to test significant differences
in means. We used the term significant to indicate that the p-value is p < 0.05 for the t-test,
i.e., the difference in means is statistically significant.

http://research-it.berkeley.edu/services/high-performance-computing
http://research-it.berkeley.edu/services/high-performance-computing
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(e) 90 mmHg.
Figure 11. Leaflet deformation under the load protocol defined in Table 1. Contours are the 11
Almansi strain component (non-dimensional) in the global laboratory frame.

Simulated VICAR ratios for σθ = 5◦ and the volume ratio VR = 0.01 were calculated
for different transvalvular pressures (see Figure 12). In the figure, the red curve indicates
“apparent” VICAR and the blue curve is the actual VIC aspect ratio (see Figure 7 and the
corresponding discussion). The black curve is experimental data from [5].

We then examined the effect of varying the parameters σθ and the volume ratio (VR)
on the “apparent” VICAR (see Figure 13). We only observed a significant difference in the
“apparent” VICAR at σθ = 20◦ vs. σθ = {5◦, 10◦}, with a remarkable decrease in the former.
No significant variation was found when varying VR over two orders of magnitude.

We then briefly looked at the initial cusp curvature defined by (19). Figure 14 demon-
strates the variation of the VICAR with respect to y0, as a fraction of the size parameter
r (e.g., an offset of 10% =⇒ y0 = 0.1r). Significant but small differences are observed
throughout. We note that for large values of y0, convergence issues in the FE problem
were encountered.

Finally, Figure 15 demonstrates the VICAR in each layer. Significant differences were
observed everywhere except between the spongiosa and ventricularis at low pressures.
The fibrosa demonstrates a larger VICAR, consistent with experimental findings.
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Figure 12. VICAR result as an average of 1156 RVEs measured along the radial direction in the center
of the leaflet. One standard deviation’s error bars are shown. Red curve indicates “apparent” VIC
aspect ratio as measured a la Section 2.2.2 and a blue curve is the actual VIC aspect ratio. The black
curve is the experimental data from Huang [5] with undefined error bars.
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(b)

Figure 13. The effect of the VIC orientation and size on the “apparent” aspect ratio. We note only
a significant difference for 60 and 90 mmHg with the standard deviation of the angle from the VIC:
(a) volume ratio (VR) fixed, varying standard deviation of angle (σθ); and (b) standard deviation of
angle (σθ) fixed, varying volume ratio (VR).
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Figure 14. The effect of the initial cusp curvature on the VICAR. “Offset” y0 viz. (19) is reported as a
fraction of the size parameter r (e.g., an offset of 10% =⇒ y0 = 0.1r). Significant but small differences
are observed throughout.
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Figure 15. VICAR as measured in each of the three layers. Significant differences are observed
everywhere except at low pressures between the spongiosa and ventricularis.
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3.4. Calcified Valve: Early-Stage Nodules

Leaflet deformations under five loading conditions as defined under the loading
protocol outlined in Table 1 with one calcification nodule pattern are shown in Figure 16.
Comparison of these deformation patterns to those presented in Figure 11 show the
effect of one early-stage nodule. We maintain quasi-incompressible behavior as in the
calcification-free model. The strain component plotted is the 11 Almansi strain in the
laboratory Cartesian system and a mapping to the CRT coordinates, via (19), is required to
recover the circumferential strain. Note the kinking of deformation in the belly region at
high pressures.
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Figure 16. Leaflet deformation under load defined in Table 1 with the nodule pattern. The strain
plotted is the 11 component of the Almansi strain (non-dimensional) in the laboratory Cartesian
system and not the circumferential strain.

Valvular interstitial cell aspect ratio (VICAR): in Figure 17, we see the VIC aspect ratio
(VICAR) with the presence of calcified nodules (Figure 8a). Note that the calculation
excludes VICs in the calcified regions. The “apparent” VICAR (Figure 17a) in the belly
region of the leaflet is slightly smaller than the healthy case (significant only at 60 and
90 mmHg). The actual VICAR is, however, higher (more significant) than the healthy case
(Figure 17b).

3.5. Calcified Valve: Partial Arc Pattern

The deformed shape of the calcified AV leaflet was examined at the five steps of the
loading protocol outlined in Table 1 (see Figure 18). Comparing the results with those in
Figure 11, we can see the result of the partial arc calcification pattern on the leaflet tissue
deformation. We maintain quasi-incompressible behavior as in the calcification-free model.
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(b) Actual VICAR.

Figure 17. VICAR for early stage calcified nodules. The error bars represent one standard deviation.
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Figure 18. Leaflet deformation under loading defined in Table 1 with the partial arc pattern. Note
the calcified regions on the surface. The strain plotted is the 11 component of the Almansi strain
(non-dimensional) in the laboratory Cartesian system and not the circumferential strain.

Valvular interstitial cell aspect ratio (VICAR): the effect of partial arc calcification (Figure 8b)
can be quantified by examining the VICAR aspect ratios presented in Figure 19. Note that
the calculation excludes VICs in the calcified regions. The “apparent” VICAR (Figure 19a)
along the belly is slightly smaller than the healthy case (significant only at 60/90 mmHg).
The actual VICAR is, however, higher (more significant) than the healthy case (Figure 19b).
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(b) Actual VICAR.

Figure 19. VICAR for partial arc pattern. The error bars represent one standard deviation.

3.6. Calcified Valve: Mature Arc Pattern

Finally, the effect of the end-stage calcification on the AV leaflet tissue was examined
by comparing the deformed shape at the five steps of the loading protocol outlined in
Table 1 (see Figures 11 and 20). Again, we maintained quasi-incompressible behavior as in
the calcification-free model.

-2.6649E-01
-2.3650E-01
-2.0651E-01
-1.7653E-01
-1.4654E-01
-1.1655E-01
-8.6559E-02
-5.6571E-02
-2.6582E-02
 3.4071E-03
 3.3396E-02
 6.3385E-02

-2.9648E-01

             
_________________ S T R A I N   1 

(a) 1 mmHg.

-7.1405E-01
-6.3989E-01
-5.6573E-01
-4.9157E-01
-4.1741E-01
-3.4325E-01
-2.6909E-01
-1.9493E-01
-1.2077E-01
-4.6609E-02
 2.7551E-02
 1.0171E-01

-7.8821E-01

             
_________________ S T R A I N   1 

(b) 2 mmHg.

-9.4129E-01
-8.4640E-01
-7.5151E-01
-6.5661E-01
-5.6172E-01
-4.6683E-01
-3.7193E-01
-2.7704E-01
-1.8215E-01
-8.7253E-02
 7.6405E-03
 1.0253E-01

-1.0362E+00

             
_________________ S T R A I N   1 

(c) 4 mmHg.

-2.4469E+00
-2.2143E+00
-1.9816E+00
-1.7489E+00
-1.5162E+00
-1.2836E+00
-1.0509E+00
-8.1821E-01
-5.8554E-01
-3.5286E-01
-1.2018E-01
 1.1249E-01

-2.6796E+00

             
_________________ S T R A I N   1 

(d) 60 mmHg.

-2.5553E+00
-2.3126E+00
-2.0699E+00
-1.8272E+00
-1.5844E+00
-1.3417E+00
-1.0990E+00
-8.5629E-01
-6.1357E-01
-3.7085E-01
-1.2813E-01
 1.1459E-01

-2.7980E+00

             
_________________ S T R A I N   1 

12
3

(e) 90 mmHg.

Figure 20. Leaflet deformation under load defined in Table 1 with the arc pattern. Note the calcified
regions on the surface. The strain plotted is the 11 component of the Almansi strain (non-dimensional)
in the laboratory Cartesian system and not the circumferential strain.
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Valvular interstitial cell aspect ratio (VICAR): in Figure 21, we see the VICAR with the
presence of a mature calcified arc pattern (Figure 8c). The “apparent” VICAR (Figure 21a)
along the belly is noticeably smaller than the healthy case (significant). The actual VICAR
is, unlike the nodules, slightly lower (less significant) than the healthy case (Figure 21b).
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(b) Actual VICAR.

Figure 21. VICAR for mature arc pattern. The error bars represent one standard deviation.

4. Discussion
4.1. Healthy Valve

Macroscale model: we designed a set of simulations that mimic the experiments of
Huang [4] to validate a multiscale modeling approach for AV tissue, namely the pressuriza-
tion of a “fixed” valve leaflet loaded from the aortic side. This corresponds to the region in
the cardiac cycle between systole and diastole (Figure 2) where the transvalvular pressure
is the largest.

These boundary conditions represent in vitro experiments rather than the proper in
vivo conditions. They allow us to simulate physiological states in the laboratory. The
nature of the fixed boundary conditions, including the “free” coaptation edge, results in
a “balloon-inflation”-like response, as seen in Figure 11. The response is consistent with
the material response in Figure 9. The low pressure (load) results in the large deformation
of the compliant regime. The tissue quickly stiffens and we see only small changes in the
deformation for larger increasing loads. Note that we have not pre-stressed the tissue as
in [39].

The initial curvature also plays a role in the response of the tissue, and we also
encountered convergence issues for variations of the parameters in (19). However, without
“patient-specifc” geometry, the best we can hope for is an aggregate consistent result, which
we observe in Figure 12.

Representative volume element (RVE): at the heart of our model is the RVE. We first
discuss several of the important assumptions we made. Miehe et al. [43] argue that due to
the averaging process in homogenization, the details of the RVE do not greatly impact the
macroscale problem, something we also observe. To facilitate computational efficiency, we
downsampled the RVE mesh and use an auxiliary high-fidelity mesh to extract details in a
post-processing step (Figure 6).

Again, for efficiency purposes, we assume Taylor boundary conditions, which results
in an overestimation of stiffness response [44]. We also use Taylor boundary conditions in
the VICAR post-processing for consistency. Figure 22 illustrates the difference in VICAR
with Taylor and Dirichlet boundary conditions. As expected, the Dirichlet VICAR is on
average lower. This is a result of only imposing motions on the boundaries and also
allowing for a relaxation of the VIC. Note that although the difference is large for the
“apparent” VICAR, we did not see a large difference in the actual VICAR.
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(b) Actual VICAR.

Figure 22. Effect of RVE boundary conditions on VICAR response. Taylor boundary conditions
impose motion everywhere in the domain and Dirichlet boundary conditions only impose motion on
the boundary.

Finally, we assume the VIC bonds perfectly with the ECM, which is not physiologically
accurate (see [45]). Modeling the discrete attachments via focal adhesions of the VIC
requires special attention and is left as a limitation of the current study. Note, however,
that by explicitly modeling the VICs in the RVE, such an extension is possible within
our framework.

VICAR: the aspect ratio being measured in the experiments is that of the nucleus, not
the cell. We do not make a distinction between the nucleus and the cell in this analysis,
i.e., we neglect the cytoskeleton. This is in line with previous analyses [5,6]. We recommend
a more detailed model incorporating this distinction for a future study.

The most notable result above is the large discrepancy between the actual and “ap-
parent” VICAR, as seen in Figure 12. We observe that the (arithmetic) mean “apparent”
response is more consistent with the experimental results. We note that there is also large
variation in the “apparent” ratio.

The procedure used to determine the “apparent” value, as depicted in Figure 7,
is representative of the experiments but not exactly identical. Notwithstanding, the results
show that the observed cellular deformation may be significantly different than the true
deformation. This is of great importance when developing mechanotransduction models
calibrated from experiments.

Figures 12–14 show that the “apparent” response is not highly sensitive to the RVE (or
macroscale) configuration, and that the largest source of discrepancy between the apparent
and actual response comes from the “perspective” used to measure (i.e., the projection
of the ellipsoid on the cutting plane). Thus, the orientation of the cutting plane has the
greatest impact.

In Figure 13, we observe the “apparent” VICAR closer to the actual VICAR for σθ = 20◦.
However, the true distribution of the cell orientation is closer to σθ ≤ 10◦, due to the
consistency of the “apparent” VICAR with the experiments. The larger σθ represents more
variance in the cutting planes’ orientations (i.e., the “perspective”), resulting in the smallest
discrepancy between the “apparent” and actual VICAR. In other words, not adequately
controlling for the cutting plane orientation (or alternatively, not spanning enough possible
cutting plane orientations) can lead to a large discrepancy between the VICAR measured in
the lab and the true VICAR.

Finally, Figure 15 shows that the greatest deformation in the tissue occurs in the fibrosa,
consistent with previous findings [5,6]. Indeed, the prevalence of calcification in the top layer
of the fibrosa, a process driven by circumferential strain in the VIC, is consistent with this [3,18].
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4.2. Calcified Valve

Early-stage nodules: although not clear from Figure 16, the average Almansi circum-
ferential strain in the belly region of the leaflet with calcified nodules is on average ∼20%
larger than the healthy leaflet (Table 3). Conversely, the radial Almansi strain is on average
∼17% of the healthy model.

Table 3. Average ratio of the circumferential and radial Almansi strains in the belly region seen in a
leaflet with a calcific nodule relative to values seen in a healthy leaflet.

Load (mmHg) 1 2 4 60 90

Circumferential Strain Ratio 0.96 1.19 1.32 1.26 1.21

Radial Strain Ratio −0.39 0.14 0.31 0.42 0.41

Taking a closer look at the microscale response of the actual VICARs in Figure 17b,
we note that the average VIC indeed experiences a larger (significant) aspect ratio than
the healthy case. Interestingly, we observe little difference in the “apparent” VICAR in
Figure 17a. In fact, we only see a slight (significant) decrease in the VICAR at 60 mmHg.

Note the increased circumferential strain (VICAR) due to the presence of calcified
nodules. Previous studies have indicated that the increased circumferential strain results
in calcification growth [3,18]. Thus, one would expect that the nodules would grow into
more mature patterns with the increased circumferential strain.

Partial arc pattern: the partial arc serves as both a different “mature” pattern example,
and as a midway stage between the nodule and the full arc cases. We see a disturbed
deformed state via the kink in the belly region, where there is a large discontinuity in
stiffness from the calcified region (Figure 18). Indeed, calcified valves exhibit abnormal
(and inefficient) dynamics, such as in stenosis or regurgitation. Furthermore, A larger
VICAR indicates further progression of the calcification.

Mature arc pattern: it is clear from Figure 20 that the calcified leaflet experiences
significantly lower strain. In fact, we see an average ∼43% reduction in the circumferential
Almansi strain, and an inversion of the radial Almansi strain for low (<60 mmHg) pressures.
One can argue that the decreased circumferential pattern limits the development of further
calcification, resulting in a natural “saturation” of the calcification.

Taking a closer look at the microscale response of the VICs in Figure 21, we note
that the average VIC indeed experiences a decreased aspect ratio (i.e., relative to the VIC
ellipsoid principal axes), for both the “apparent” (significant) and actual (significant for 1, 2,
or 4 mmHg).

4.3. Computational Considerations

As mentioned previously, one full day of computation on 60 nodes of a computational
cluster is required for a quasi-static analysis with simplified RVE boundary conditions.
This is representative of only one small part of the cardiac cycle. Indeed, more relevant
cyclic dynamic problems with more suitable RVE boundary conditions can prove to be
challenging. Nevertheless, the method is computationally tractable, and the abundant
availability of large computing resources, as of the time of this study, render this issue at
most an inconvenience.

4.4. Summary and Outlook for Future Extensions

In this work, we demonstrated the feasibility of using computational homogenization,
or FE2, for modeling the coupled, multiscale behavior of aortic valve (AV) tissue. The
natural extension is to model the full aortic valve geometry with the time-resolved dynam-
ics of the AV solid and fluid mechanics. We argue that multiscale modeling is necessary
for understanding AV behavior and the method we presented provides a feasible way of
achieving a fully coupled multiscale analysis for aortic valves. Furthermore, the RVEs can
be used to develop cellular-driven models.
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We further utilized the multiscale AV leaflet model to study three calcification topolo-
gies as idealized representations of different stages of calcific aortic stenosis progression:
early-stage nodules, a partial arc, and a mature arc pattern. In the former, we saw that the
presence of the calcification nodules led to a larger circumferential Almansi strain and VIC
aspect ratio that presumably drives further calcification growth in a positive-feedback loop
manner. Furthermore, we noticed that the “apparent” aspect ratio, as measured by slicing
a section of the tissue and observing the 2D aspect ratio of the cell cross-section, did not
necessarily exhibit the true aspect ratio.

In the more advanced calcification cases, we observed the disturbed biomechanics
of the leaflet which presumably results in stenotic behavior. We observed a lower aspect
ratio consistent with a natural “saturation” of the calcification in our full arc calcification
computations. Our study, however, was limited to static in vitro loading, to validate
it against experiments in the literature. A follow-up study should be performed with
dynamic and cyclic loading using an in vivo configuration of the AV leaflet. Furthermore,
the extension study should feature stochastic representations of the calcification topology,
perhaps via strain-driven growth models [3,18].
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