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Abstract: A key goal of sediment management is the quantification of suspended sediment load
(SSL) in rivers. This research focused on a comparison of different means of suspended sediment
estimation in rivers. This includes sediment rating curves (SRC) and soft computing techniques, i.e.,
local linear regression (LLR), artificial neural networks (ANN) and the wavelet-cum-ANN (WANN)
method. Then, different techniques were applied to predict daily SSL at the Pirna and Magdeburg
Stations of the Elbe River in Germany. By comparing the results of all the best models, it can be
concluded that the soft computing techniques (LLR, ANN and WANN) better predicted the SSL
than the SRC method. This is due to the fact that the former employed non-linear techniques for the
data series reconstruction. The WANN models were the overall best performer. The WANN models
in the testing phase showed a mean R2 of 0.92 and a PBIAS of −0.59%. Additionally, they were
able to capture the suspended sediment peaks with greater accuracy. They were more successful as
they captured the dynamic features of the non-linear and time-variant suspended sediment load,
while other methods used simple raw data. Thus, WANN models could be an efficient technique to
simulate the SSL time series because they extract key features embedded in the SSL signal.

Keywords: sediment rating curves; local linear regression; artificial neural networks; wavelet transform;
Gamma test; M-test

1. Introduction

Sedimentation is a nuisance in hydraulic and environmental engineering projects, such
as dams, hydropower plants, canals and irrigation networks, wastewater treatment plants
and water intakes, requiring sediment management measures for trouble-free operation
of the facility. The problems caused by sedimentation include a reduction in channel
conveyance, decrease in reservoir storage, blockage of the inlet to turbine, etc. [1,2]. Thus,
estimation and forecasting the sediment load during the lifecycle of a project is a key design
parameter in water resource planning and management.

Sediment load in rivers has been categorized into two types: suspended sediment load
(SSL) and sediment bed load (SBL). Further, total annual river sediment in an alluvial river
contains approximately 70 to 90 percent SSL [3]. The SSL comprises the main part of the
river sediment transport and has a complex nature, in contrast with the SBL [4]. The SSL is
considered one of the key factors affecting the landscapes [5] and pelagic environments [6,7].
It impacts river morphology, reservoir operation and useful life, as well as the functioning
of hydraulic structures [8,9].

Sediments are produced by watershed erosion, triggered by the existence of ero-
sive factors such as anthropic actions, climate, and specific features of the catchment.
There are numerous variables and factors that participate in the dynamics of the hydro-
sedimentological processes that cause the detachment of the sediment particles from the
watershed to their final influx in the river [10]. It is very difficult to estimate each of the
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individual erosional processes that contribute to sediment transport with any degree of
certainty, let alone the final sediment load entering a river from the watershed. Therefore,
the precise estimation and prediction of the SSL in a drainage basin has been a difficult task
for hydrogeologists, environmentalists, and hydraulic engineers due to the aforementioned
complex phenomena.

The scientific literature provides us with a large number of relationships, proposed by
different researchers to estimate the sediment rate. These equations require several empiri-
cal parameters, depending on field conditions, for the precise computation of sediment
load [11]. However, notwithstanding the availability of a large number of equations for
the computation of sediment load, it is still a herculean task for an engineer to identify the
appropriate equation for a particular river. Furthermore, none of these equations enjoys
universal acceptability in the engineering community as far as the forecast of sediment
transport rates in rivers is concerned.

Historically, several studies have been carried out to model sediment transport pro-
cesses. Generally, mathematical models that require a large amount of input data and a
prolonged computation time are used [12,13]. To overcome these complexities, numerous
studies have been performed to simplify the complex phenomena by adopting practical
approaches or methods that do not entail a physical mechanism. In this context, standard
time-series approaches such as conventional sediment rating curves (SRC), multi-linear
regression (MLR), and auto-regressive integrated moving average (ARIMA) are usually em-
ployed to predict hydro-metrological variables, as well as SSL [14–18]. However, the main
drawback of the standard time series approaches is that they consider linear approaches for
analyzing stationary data and are limited to capturing the nonlinearity and non-stationary
features of the hydro-sedimentological dataset.

Over the two last decades, thanks to technological advancements, soft computing
techniques have increasingly been employed in hydro-sedimentological studies and have
effectively been employed as an alternative modelling tool [19–21]. In this regard, artificial
neural networking (ANN), and hybrid wavelet and neural networking (WANN) are the
most popular techniques that have been applied.

The local linear regression model (LLR) is based on a non-parametric technique that is
employed for the prediction of nonlinear time series [22]. It has been widely adopted for
hydro-meteorological estimation such as solar radiation assessment [23–25], streamflow
assessment [26,27] reservoir water level estimation [28] and SSL assessment [29].

The ANN technique mimics the biological brain and nervous system functioning
with a self-learning capability. ANN has great potential in the modelling of complex and
non-linear features of the hydro-meteorological time series. It is a black-box approach
with no need for prior knowledge that has been applied to develop an efficient link
between inputs and outputs. An extensive review of ANN applications in the hydrological
field for the estimation and prediction of numerous hydrological parameters has been
acknowledged by the ASCE Task Committee [30,31]. In the last two decades, studies
have shown that artificial neural networks (ANNs) have promising results in terms of
modelling and forecasting streamflow [32,33], reservoir water level [34,35], and suspended
sediment in rivers [2,36–38]. The ANN model is especially employed where basic physical
interactions are not entirely known, but there are sufficient data to train a network.

Mirbagheri et al. [39] have compared various conventional methods and soft com-
puting approaches for the prediction of suspended sediment load. Kisi and Shiri [40]
compared different soft-computing techniques, such as Gene Expression Programming
(GEP), ANFIS and ANNs, for a daily forecast of SSC. Olyaie et al. [41] compared the
performance of various conventional sediment-rating curves (SRCs) and soft-computing
approaches such as ANFIS and ANNs to estimate the daily SSL. Singh et al. [42] modelled
suspended sediment using four different heuristic techniques and two regression-based
techniques. Pektas et al. [43] investigated the extrapolation performance of the ANN
models for suspended sediment data and concluded that the ANN model provides a closer
estimation of the observed peaks than conventional models. Khan et al. [1] predicted the
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missing and future daily suspended sediment load with the ANN model for the Mangla
reservoir, Pakistan, and used it as a boundary condition for the hydraulic model to calculate
the bed level changes and delta advancement rate for greater precision.

In recent years, the wavelet transform (WT) analysis has become a powerful tool
because it simultaneously interprets the temporal and frequency information of the signal,
which improves the model performance. The wavelet transform analysis gives a time-
frequency representation of a signal at various periods in the time domain, and it also
analyzes the non-stationarities in time series [44]. Previous studies have also revealed that
the WT analysis tool surpassed the Fourier transform in investigations of the non-stationary
time series [45]. The WT analysis is a comparatively innovative approach in the field of
water resource research, which can create different time series that classify probable trends,
seasonal deviations, and internal correlation among different variables. Recently, numerous
studies have reported on the employment of coupled wavelet transform and ANN (WANN)
models to investigate and forecast the different parameters of hydrological and environ-
mental engineering. Further, many former studies have indicated that the proficiency of
short- or long-term forecasts of the hydrological data is enhanced by employing the hybrid
WANN model approach owing to the advantage of multiresolution sub-time series as the
ANN input data [2,46]. Dumka et al. [47] developed a hybrid WANN model for monthly
rainfall-runoff modelling on the Bhakhara River, Uttarakhand. Saraiva et al. [48] enhanced
ANN prediction accuracy in the context of the daily flow of intermittent rivers by employ-
ing WANN models. Bajirao et al. [2] estimated the SSL by using different soft computing
approaches and concluded that the performance of the ANN model was enhanced by
coupling WT analysis. Sharghi et al. [49] studied two different hydro-ecological rivers with
different land-cover characteristics and concluded that the WANN models were successful
in the prediction of SSL. Their assessment encompassed a river draining a small basin
(142 km2) as well as a river with a large basin (≈10,000 km2). It was also suggested that
the good quality of results obtained using WANN for SSL modelling merited its usage to
model other hydro-environmental (groundwater, precipitation, etc.) processes.

Despite the adequate efficiency of the coupled WANN model approach, some draw-
backs can be associated with WANN modelling. The WT analysis tool decomposes the
primary time series data into different sub-series data with detailed hidden information.
Therefore, a large volume of data is fed to the ANN model as input, which can cause
model complexity, errors, non-convergence, and overtraining. Owing to the large number
of time series input samples and the aforementioned WANN drawbacks, the selection
of an appropriate input sample and data length to train the ANN models is the most
important challenge to avoid errors and a complex dataset. Investigating the number of
the appropriate input variables and the appropriate data length for model development is
one of the particular aims of the current study, which aims to develop a precise model for
predicting SSL.

In view of the aforementioned facts, the present study was undertaken to investigate
and compare the performance of several soft computing techniques (LLR, ANN and
WANN models) with a conventional modelling technique (SRC) for the estimation of daily
SSL at the Pirna and Magdeburg Stations of Elbe River, Germany. The objectives of the
current study are: (a) to evaluate the best technique for the prediction of daily SSL by
employing different models at different sites; (b) to evaluate the selection of appropriate
input variables and data length for a training dataset using the Gamma test and M-test;
(c) to analyze the best-selected input parameters and validate the prediction performance
based on sensitivity analysis.

The novelty of this research lies in the usage of the Hill-climbing model identification
technique, i.e., Gamma test and the M test, for the prediction of daily SSL in rivers. As the
hydrological processes are highly complex, dynamic, and non-linear, finding the best-input
combination is important. In the literature, this is performed through a trial-and-error
approach, which is laborious. In order to overcome this problem, a novel mathematical
tool, the Gamma test (GT), which is a non-parametric test, is adopted for the selection
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of the most suitable input variables, which would lead to a reliable and smooth model.
Furthermore, an important issue in data-driven models is the determination of a suitable
data length for the model development, which is neither under-fitted nor over-fitted. In
general, the literature suggested reserving 70% to 90% of the dataset to train a model.
However, in order to find the optimal training data length, we used the M-test for model
development. The M-test shows the relationship between datapoints and Gamma statistic
(Γ) values, which can be used to determine the data length needed to obtain a uniform
function convergence.

2. Methodology
2.1. Sediment Rating Curve

Suspended sediment load is considered the main part of the transported sediments
in rivers. The measurement of the daily-suspended sediment concentration in rivers is a
cumbersome and expensive process as compared to the daily river discharge. Hydrologists
proposed different approaches for the estimation of missing SSL, with some associated
uncertainty [50,51]. The missing SSL estimation is based on the available measured river
discharges and sediment concentrations and also on the development of the regression
relationship of river discharge (Q) and SSL. Hydrologists often use an empirical relation
such as sediment rating curves (SRCs), which is a reliable method for the estimation and
prediction of SSL. The sediment rating curves normally describe a functional association of
SSL and Q, as shown in Equation (1)

SSL = a·Qb (1)

where SSL is the suspended sediment load in metric tons per day (t/day), C is the sus-
pended sediment concentration in parts per million (PPM) and Q is the flow discharge in
cubic meters per second (m3/s). a and b are the constant.

Further, the efficiency of the SRCs for the assessment of long-term catchment sediments
can be improved by adding a correction coefficient (Cf) to the equation of SRC. Correction
factors (CF) are applied in the SRC equation as follows:

SSL = Cf·a·Qb (2)

In the present study, the Ferguson correction factor and the Smearing correction factor
were applied, among different correction coefficients suggested by different scholars.

2.1.1. Quasi-Maximum Likelihood Estimator of Ferguson Method

This coefficient was employed by Ferguson [52] and Horowitz and McConnell [53] to
rectify the logarithmic transformation ramification, considering a normal distribution for
residual errors. This technique applies a correction coefficient derived from the square of
the regression residual standard error, and is expressed as follows

C f QMLE = e2.65 S2
(3)

S2 =
n

∑
i=1

1− (log C0 − log Ce)
2

n− 2
(4)

where e is the exponential function, s is the standard error of the regression equation, C0 is
the measured sediment concentration (t/day), Ce is the predicted sediment concentration
(t/day), and n is the number of observations.
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2.1.2. Smearing Coefficient

This method is famous as the non-parametric correction factor is employed to eradicate
bias by discarding the normal distribution of residual errors, and its common form is as
follows [54]

C f smearing =
1
n

n

∑
i=1

10εi (5)

εi = log Co − log Ce (6)

where εi is the residual least square of the regression model.

2.2. Local Linear Regression (LLR)

LLR is a non-parametric method that is generally employed to make a fast prediction
with a high degree of accuracy. The LLR model is the most effective and reliable tool
in regions of high data density in the input space, but it is not significantly effective
if the datapoints are scarce and distant from the locality of the query point. The main
prerequisite of the model performance is the selection of the number of nearest neighbours,
k, of the query point from the particular dataset to build a linear model and then solve the
linear matrix.

2.3. Artificial Neural Networks (ANN)

The ANN is inspired by the biological (brain) neuron system that is well-suited to
the modelling of non-linear and complicated tasks such as the estimation and forecasting
of rainfall, runoff and river sediment. Generally, the feed-forward multilayer perceptron
neural network (MLPNN) is chosen from the various ANN structures, and extensively
applied for the classification and regression analysis of nonlinear datasets [55].

In the neural network, each neuron (node) has input and output variables. The output
variables’ value is determined by neurons using the net and activation (transfer) function
on input variables. Generally, the net function is determined by the linear form, given as

u =
n

∑
i=1

xiWi + b (7)

where xi is an input variable, Wi is the connection weights from the ith neuron in the input
layer, and b is the bias or threshold value of the neuron. The net function (u) at a hidden
node is transformed into output (y) using a non-linear activation function.

The performance of the neurons can be improved by changing the transfer functions
and varying parameters: for instance, the size of the hidden layer, size of the neurons
in a hidden layer, gains and thresholds. The neural network is trained by employing an
appropriate learning algorithm that altered the connection weights among the neurons
of the training dataset. The weights are fixed after the successful completion of network
learning. These interconnection weights are fine-tuned by an error convergence technique
until the simulated output best matches the targeted output.

2.4. Wavelet Transform (WT)

Wavelet transform (WT) analysis seems to be a leading approach, compare to Fourier
transform (FT), particularly when analyzing the non-stationary time series [56,57]. The
WT analysis approach is preferred to the FT analysis because wavelets are localized in
both time and frequency domains, while the standard FT is only localized in the frequency
domain. Owing to this ability of the WT, the changes in the hydrological processes can
be analyzed.

The WT decomposes the data series by transforming it into its subcomponent “wavelets”,
a scaled and shifted version of the ‘mother’ wavelet. Scaling a wavelet indicates the process
of amplifying or compressing the data series in time, and it is inversely proportional to
the frequency. An amplified wavelet helps to observe the gradually varying changes in a



Appl. Sci. 2021, 11, 8290 6 of 26

data series, while a compressed wavelet helps to observe swift changes. On the other hand,
shifting a wavelet simply means advancing or delaying the onset of the wavelet along the
length of the data series. It helps to align a data series to examine a particular feature in
the data.

The present study will not examine a detailed background theory of the wavelet
transform. A mathematical summary of WT and the exhaustive literature on its applications
are covered in Labat et al. [58].

2.5. Gamma Test (GT)

Hydrological processes are highly complex, dynamic, and non-linear. To find the
best-input combination, researchers need to perform a trial-and-error approach, which
is laborious and cumbersome. To overcome this problem, a novel mathematical tool, the
Gamma test (GT), which is a non-parametric test, is adopted for the assessment of the
best-input variables, which are proficient enough to build a reliable and smooth model. The
GT is derived by Stefánsson et al. [59] to carry out a nonlinear analysis for the estimation
of the variance of noise in model output, called best mean square error (MSE) or Gamma
statistic (Γ), which is attained by a smooth and noiseless model, by considering all the input
data. Further explanations regarding GT can be obtained from Tsui et al. [60], Durrant [61]
and Jones et al. [62].

A primary dataset [(xi,yi), 1 ≤ I ≤ M] is applied to construct an algorithm that is
proficient to understand the link amid the input x and output y. The algorithm is developed
based on the logic that y is a function of x. Further, it is disintegrated into smooth and noisy
parts. If f is a smooth function and r is the noise part that cannot be considered near any
smooth data model, then the relationship is given as [59].

y = f (x) + r (8)

By taking the mean of noise “r” is zero, a constant bias can be employed into the
unknown function f, which will be our anticipated gamma statistics.

Further, outcomes within GT can be normalized by taking a scaled variant noise
approximation, generally ranges from 0 to 1, named Vratio, and is described as

Vratio =
r

σ2(y)
(9)

where σ2(y) denotes the variance of output (y). The lesser the value of Vratio, the higher the
foreseeability of the given output.

The Gamma test could be applied to all combinations of inputs to find the best combi-
nation that produces the minimum absolute Gamma Value. If there are m scalar inputs,
then there are 2m − 1 possible combinations, but this can produce numerous unrealis-
tic input combinations. Thus, the best input combination was identified by employing
various model identification approaches in the WinGamma software. In this study, the
Hill-Climbing model identification technique is applied to find the best input combinations
for the daily SSL prediction based on a minimum value of gamma (G) and Vratio.

2.6. Data Normalization

The input and output data were transformed into a dimensionless state before pass-
ing through the GT and ANN models. Equation (10), used for data normalization, is
given below

Xn = a
xi − xmin

xmax − xmin
+ b (10)

where xn, xmin and xmax are the normalized, lowest and extreme values of the dataset.
In this study, a and b were perceived as 0.6 and 0.2, ensuring the recommendation of
Cigizoglu [63].
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2.7. Training and Testing of ANN and WANN Models

Several ANN structures are employed for meteorological and hydrological prediction,
among which the Feed Forward Neural Networks are the most popular [64].

In this study, a feed-forward multilayer perceptron (MLP)-based ANN model with
a three-layer network (input, hidden and output) is employed for the estimation and
prediction of daily SSL. For the network-training method, the back-propagation (BP)-
based Levenberg–Marquardt (LM) learning algorithm with the hyperbolic tangent sigmoid
(tansig) activation function in the hidden layer and a linear function (pureln) in the output
layer was applied to configure the MLP model. Further, the model performance can be
enhanced by an appropriate selection of the number of neurons within a hidden layer. By
selecting too few neurons in a hidden layer, the learning process may be affected, whereas
more neurons in a hidden layer might decrease efficacy in terms of computational time
or may cause a network-overfitting problem. To date, no clear rule has been suggested
in the literature for the selection of the optimum number of neurons in the hidden layer.
However, Olyaie, et al. [41] proposed that the hidden layer neurons should range from√

2n + m to the value 2n + 1, where n and m represent the number of input and output
nodes, respectively. In this study, the number of neurons in the hidden layer is increased
from 3 to 2n + 1 for both the ANN and the WANN models to avoid under- and over-fitting.

Furthermore, the coupled WANN model is very close to the ANN model. Before
applying the ANN model, the input time series data are pre-processed through the WT
analysis tool. The WT analysis serves to decompose the original time series data into
subseries data of different time scales using the DWT approach. The DWT has different
types of mother wavelets, such as the Haar wavelet, Daubechies wavelet, Coiflet wavelet
and biorthogonal wavelet to decompose the original time series data. In this study, the
Daubechies level four (db4) mother wavelet is applied due to its better performance in the
sediment transport processes [46]. After the decomposition of time series by WT, some
resulted subseries need to be excluded if there is a poor correlation between the subseries
and the observed data. Only the subseries data that have a significant correlation with the
observed data are fed into an ANN model.

2.8. Limitation and Uncertainties in SSL Prediction

The uncertainties in the description of any physical process arise either from limita-
tions in measurement techniques, imperfect knowledge of the process being modelled, i.e.,
epistemic uncertainty, or both. In our case of SSL prediction through the soft computing
technique, both of these sources are present. The measurement uncertainty comes into play
through the accuracy of the input time-series data regarding SSL being fed to the model.
The SSL comprises the bed sediment load component in suspension and the so-called wash
load. The latter has no nexus, with the sediment forming the channel bed, and consists
of fine-sized particles originating from the catchment through sheet erosion. In rivers,
sizes finer than 0.0625 mm are approximated as wash load. The SSL measurement is a
delicate affair due to the variation in flow velocity and suspended sediment concentration,
along with the depth. In principle, the SSL can be found by measuring the flow velocity
and sediment concentration at a sufficient number of points over the cross-section and
summing the product. In the field, the SSL is usually measured by an instrument known as
a depth-integrating sampler. It is lowered at a uniform rate into the water from the surface
to the channel bed, and then pulled back at the same rate. The sample concentration, thus
collected, represents the mean concentration of the mixture, and when multiplied by the
unit discharge, yields the sediment discharge per unit width. It can be appreciated that
if there is a significant deviation from the mean sediment concentration over the vertical,
there would be a corresponding error induced in the SSL. Usually, this deviation is maximal
in streams where sand proportion (size > 0.0625 mm) forms the predominant part of the
suspended load, while it is minimal in streams where silt and clay form the bulk of the
suspended load. Thus, the raw input time series of SSL has to be viewed against the
backdrop of the type of sediment load carried by the river.
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As regards uncertainty and limitations in coupled WANN models (epistemic uncer-
tainty), some drawbacks can be associated with this type of modelling. The WT analysis
tool decomposes the primary time series data into different sub-series data with detailed
hidden information. Therefore, a large volume of data is fed to the ANN model as input,
which can cause model complexity, errors, non-convergence, and overtraining. Owing to
the large number of time series input samples and the aforementioned WANN drawbacks,
the selection of an appropriate input sample and data length for the training of the ANN
models are important to avoid errors and complexity in the dataset.

A further question to ponder is the efficacy of the present WANN model is its ability
to predict SSL in highly turbid rivers. Generally, rivers in a temperate region carry less
sediment as compared to arid and semi-arid regions. Under such conditions, it is natural
to wonder about the efficacy of the WANN technique, given the difference in sediment
loading. However, it is suggested that this issue is more pertinent in physical models of
flow and sediments than in data-driven models. A great majority of the former models only
account for the water phase and assume that sediment proportion is very small compared
to the solvent. Therefore, in case of a highly turbid flow, their predictions are less accurate,
as turbulent eddy viscosity differs markedly for the sediment and water phases. However,
in our case, the only physical input is the time series of flow and sediment load being fed
to the model for training. Hence, the accuracy and length of the measured time series data
assume a special importance and if the same are available, then there is no reason that
the present model would not perform equally well under varying turbidity conditions
in different basins. Thus, the drawbacks associated with the WANN technique for SSL
prediction are specific to numerical aspects, as identified above, and are not physical
in nature.

2.9. Model Performance Evaluation

The goodness-of-fit approaches applied to evaluate various simulation performances
are percent bias (PBIAS), root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE),
and coefficient of determination (R2) (Bennett 2013, Rahman 2020). PBIAS measures the
mean tendency of the simulated data to be larger or lower than the observed data. The
perfect value of PBIAS is 0, while values that lie within ±15% are considered acceptable.
Positive and negative values identify the model overestimation and underestimation,
respectively. RMSE is a normal method to compute the error of a model in predicting
quantitative data. The NSE determines how well the observed plot fits the computed
plot and R2 describes the degree of collinearity amid observed and computed data. Both
NSE and R2 values lie between 0 and 1, with higher values showing less error, and values
greater than 0.5 are considered acceptable. All these parameters were calculated by the
following equations:

PBIAS = 100×
(

∑n
i=1(Si −Oi)

∑n
i=1 Oi

)
(11)

RMSE =

√
∑n

i=1
(Si −Oi)

2

n
(12)

NSE = 1− ∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi −Oavg

)2 (13)

R2 =

 ∑n
i=1
(
Oi −Oavg

)(
Si − Savg

)√
∑n

i=1
(
Oi −Oavg

)2
√

∑n
i=1
(
Si − Savg

)2

2

(14)

where S is the simulated value and O is the observed value, n is the number of observed
data entries, and avg is the average of the total values.
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3. Site Description
3.1. Gauging Stations

The Elbe River is the third largest waterway in Central Europe, which originates
from the Giant Mountains (Krkonoše) in the Czech Republic, with a catchment area of
148,268 km2 and a running length of 1094 km. Overall one-third of the total length lies in
the Czech Republic, while the rest of the course runs in Germany. The major parts of its
catchment area lie in the low-mountain regions, which are primarily under agricultural
use. About 600 km reach of the river downstream of the Czech Republic is free of barrages
but has guide banks, groynes and flood protection structures. A detailed description of the
catchment characteristics and incoming sediment challenges and their management for the
Elbe River has been presented in several studies [65–68].

The available daily mean flow series and suspended sediment concentration data of
the Elbe River at the Pirna gauging Station (Station No: 501040, catchment area 52,100.9 m2,
location 13◦55′59′′ E, 50◦57′52′′ N) in Saxony state and Magdeburg-Strombrücke gaug-
ing Station (Station No: 502180, catchment area 95155.1 m2, location 11◦38′44.47′′ E,
52◦ 7′49.17′′ N) in the Saxony-Anhalt state were obtained from the Federal Institute for
Hydrology (BfG), Germany. Figure 1 shows the gauging stations and their catchment area.
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The SSL at the two sites of interest on the river Elbe was measured by the Federal
Institute of Hydrology in cooperation with the local boards of the German Waterways and
Shipping Administration. Bulk water samples of 5 L were taken on every working day in
the middle of the river channel from a boat. The samples were then filtered on paper filters,
dried, and the filter residues were gravimetrically determined to the yield concentrations
of total suspended matter in PPM. Further, there are small gaps in the measured data that
mostly occurred on weekends and also a few large gaps in the available data from the years
1992–2019.

In this study, available daily mean flow and SSL data of around 27 years from Novem-
ber 1992–November 2019 of both gauging stations were employed for training and testing
all the developed models. The daily flow and SSL time series data for the Pirna and
Magdeburg-Strombrücke gauging stations are shown in Figures 2 and 3, respectively.
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In the Pirna gauge station, the available observed Q and SSL data from 3 November
1992, to 21 June 2012 (around 73% of total data) were selected for training and the data from
22 June 2012, to 30 November 2019 (around 27% of the total data) were selected for testing
the model. In the Magdeburg-Strombrücke gauging Station, the available observed and
SSL data from 3 November 1992, to 9 June 2013 (around 75% of total data) were selected
for training and the data from 10 June 2013, to 30 November 2019 (around 25% of the
total data) were selected for testing the model. The data length for training and testing
datasets was determined by employing the M-test. The training dataset has two benefits;
first, it includes the maximum observed peaks of Q and SSL in the available data and
secondly, it also covers the significant possible variations in the dataset, which is helpful in
model training. Furthermore, some peaks in Q and SSL are missing in the available data.
Therefore, those peaks are not included in the training and testing period.
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3.2. Statistical Analysis of Data

Several statistical parameters of the training, testing and whole datasets for Pirna gaug-
ing Station and Magdeburg-Strombrücke gauging Station are presented in Tables 1 and 2,
respectively. Tables 1 and 2 includes different statistical parameter such as the minimum,
maximum, mean, standard deviation (Sd), coefficient of variation (CV) and skewness
coefficient (Csx) of the data. Further, it should be noted that, like other empirical models,
ANN models perform well if they do not extrapolate the given range of the data employed
for model development [69]. From Tables 1 and 2, the peak values of Q and SSL are
observed in the training dataset and all the statistical parameters for training and testing
have comparatively similar characteristics, which enhance the model performance.

Table 1. Statistical analysis of the Pirna gauging station datasets.

Parameter
Training Dataset Testing Dataset Whole Dataset

Q (m3/s) SSL (t/day) Q (m3/s) SSL (t/day) Q (m3/s) SSL (t/day)

Min 84.70 11.73 74.20 7.99 74.20 7.99

Max 2860.40 50,779.32 1260.00 15,794.78 2860.40 50,779.32

Mean 329.37 936.99 231.76 336.23 303.46 777.50

Sd 255.03 2317.28 144.62 694.24 234.91 2035.29

CV (%) 77.43 247.31 62.40 206.48 77.41 261.77

Csx 2.94 9.84 2.09 8.87 3.08 10.96

Table 2. Statistical analysis of the Magdeburg-Strombrücke gauging station datasets.

Parameter
Training Dataset Testing Dataset Whole Dataset

Q (m3/s) SSL (t/day) Q (m3/s) SSL (t/day) Q (m3/s) SSL (t/day)

Min 179.00 40.56 133.00 38.88 133.00 38.88

Max 5010.00 27,806.98 4450.00 15,977.09 5010.00 27,806.98

Mean 565.96 1378.78 387.70 638.98 522.78 1199.59

Sd 419.78 1654.76 264.86 786.14 395.41 1524.81

CV (%) 74.17 120.02 68.32 123.03 75.64 127.11

Csx 2.81 4.57 6.03 7.59 3.14 4.91

The statistics provided in Tables 1 and 2 elucidate the variations in the Q and SSL data.
The skewness coefficients of both gauging stations were low for training testing datasets,
as presented in Tables 1 and 2. The low value of the skewed distribution is considered
appropriate for the model development because a greater skewness of the time series
causes a significant and adverse impact on ANN performance [70].

4. Model Application and Results
4.1. Selection of Optimal Input Combinations Based on Gamma Test (GT)

As the hydrological processes are inherently dynamic, the current response relies
on the present and former responses in the hydrological system’s record. Therefore, it is
considered that the present-day SSL (St) response depends on the present day response of
river water discharge (Qt), and the previous one and the response of river water discharge
that occurred the day before (Qt−1, Qt−2) and SSL (St−1, St−2). Thus, the present-day SSL
(St) value would be a function of current and antecedent river water discharges and SSL
values, as follows:

St = f (Qt, Qt−1, Qt−2, St−1, St−2)

In this study, a total of five input variables (Qt, Qt−1, Qt−2, St−1, and St−2) are con-
sidered for the modelling of SSL by analyzing the effects of various input combinations.



Appl. Sci. 2021, 11, 8290 12 of 26

Based on these five input variables, a total of 2m − 1 (i.e., 31) input combinations can be
used to model SSL. Thus, to find the best possible input combinations for both stations, the
Gamma test (GT) was performed to determine the optimal combinations. For both gauging
stations, the best 5 out of 31 possible input combinations were selected based on minimum
Gamma statistic (Γ), and V-Ratio value criterion, as presented in Tables 3 and 4.

Table 3. Best input and output combinations based on GT for the Pirna gauging Station.

Comb. Gamma (Γ) V-Ratio Mask Model Inputs

1 8.35 × 10−05 0.111 11111 Qt,Qt−1,Qt−2,St−1,St−2

2 9.42 × 10−05 0.126 10111 Qt,Qt−2,St−1,St−2

3 9.70 × 10−05 0.129 11011 Qt,Qt−1,St−1,St−2

4 1.05 × 10−04 0.140 11101 Qt,Qt−1,Qt−2,St−2

5 1.06 × 10−04 0.141 10110 Qt,Qt−2,St−1

Table 4. Best input and output combinations based on GT for the Magdeburg-Strombrücke gaug-
ing station.

Comb. Gamma (Γ) V-Ratio Mask Model Inputs

1 1.04 × 10−03 0.226 10111 Qt,Qt−2,St−1,St−2

2 1.05 × 10−03 0.229 11111 Qt,Qt−1,Qt−2,St−1,St−2

3 1.07 × 10−03 0.233 11011 Qt,Qt−1,St−1,St−2

4 1.08 × 10−03 0.235 10011 Qt,St−1,St−2

5 1.10 × 10−03 0.239 01111 Qt−1,Qt−2,St−1,St−2

4.2. M-Test for the Selection of Training Data Length

After the selection of optimal input combinations through GT, we proceeded to
determine the suitable data length for the model development, which was neither under-
fitted nor over-fitted. In general, the literature suggested that a data length ranging from
70% to 90% to train a model is appropriate for the construction of a smooth model. However,
in order to find the optimal training data length, we used the M-test for model development.
The M-test shows the relationship between datapoints and Gamma statistic (Γ) values,
which provide direction for the selection of data length with a nearly uniform function
convergence. The results of the M-test for the Pirna and Magdeburg-Strombrücke gauging
stations are displayed in Figures 4 and 5. The M test identified a uniform convergence of
the gamma statistic to a value of 0.000105 and 0.00104 at around 7000 (approximately 73%
of total data and 7330 (approximately 75% of total data) datapoints to train a smooth model
development at the Pina and Magdeburg-Strombrücke gauging stations, respectively.
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4.3. The Standard Rating Curve (SRC) Approach

Normally, the conventional SRC is the preferred approach to estimate the SSL in rivers.
For the development of the SRC model, the total observed data are divided into two phases,
a training and testing phase, as explained previously. The SRC approach was employed to
develop a relationship between river water discharge, and SSL and Q-SSL equations were
derived from the USBR method (Equation (2)). By employing these equations, missing SSL
was estimated for those days when only water discharge data existed. The effectiveness of
this approach is based on the available paired datapoints, which were employed to form
SRC. Further, two correction factors, i.e., Ferguson correction factor (FCF) and Smearing
correction factor (SCF), were calculated and applied to the derived equations for the
estimation of SSL. The sediment rating curves derived for the Pirna and Magdeburg-
Strombrücke gauging stations are displayed in Figure 6. The SRC, SRC(FCF) and SRC(SCF)
equations derived for the Pirna gauging station (Equations (15)–(17)) and Magdeburg-
Strombrücke gauging station (Equations (18)–(20)) are

SSL (SRC) = 0.0977Q1.5002 (15)

SSL (SRC(FCF)) = 1.245 × (0.0977Q1.5002) (16)

SSL (SRC(SCF)) = 1.079 × (0.0977Q1.5002) (17)

SSL (SRC) = 1.5481Q1.0363 (18)

SSL (SRC(FCF)) = 1.248 × (1.5481Q1.0363) (19)

SSL (SRC(SCF)) = 1.229 × (1.5481Q1.0363) (20)
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The performance of different SRC approaches to estimate the SSL in the testing phase
for the Pirna and Magdeburg-Strombrücke gauging stations are given in Table 5. Among all
the sediment rating curves approaches, the SRC approach (without any correction factor)
performed better than the SRC approaches, with a bias correction factor for both gauging
stations. However, the overall performance efficiency of all these approaches remains
low, because PBIAS results showed that all SRC approaches overestimated the SSL, with a
high RMSE.

Table 5. The performance evaluation of the SRC approaches.

Site Method R R2 RMSE (t/day) PBIAS (%)

Pirna station

SRC 0.77 0.59 464.27 15.96

SRC (FCF) - 468.92 44.41

SRC (SCF) - 461.25 25.11

Magdeburg-
Strombrücke

station

SRC 0.82 0.67 475.85 17.30

SRC (FCF) - - 541.72 46.44

SRC (SCF) - - 533.67 44.26

The observed and predicted SSL, using different approaches, during the test phase
for the Pirna and Magdeburg-Strombrücke stations are presented in Figures 7 and 8,
respectively. It can be seen from Figures 7 and 8 that SRC was not able to capture the high
SSL peaks.
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4.4. The Suspended Sediment Load (SSL) Estimation through Local Linear Regression Models

The LLR models were trained to predict the SSL for both Pirna and Magdeburg-
Strombrücke gauging stations by optimizing the number of nearest neighbours (NN) and
a threshold value. The number of nearest neighbours is an important parameter to train
the LLR model and it depends on the data length. Jones [62] recommended that if the data
length is relatively shorter, then the appropriate number of NN is in the range of 10–20, but,
for the larger input data length, the number of NN should be increased to obtain a more
precise solution. The threshold value in LLR is applied to filter the local eigenvectors and
its default value is around 10−6. By setting it to a low value or zero, all the eigenvectors in
the local model are included while, by increasing the value, more eigenvectors are filtered
out. In this study, the optimal value of NN for all five best-input combinations of each
gauging station was selected by applying the increasing near neighbors test, which gave
the least value and a nearly smooth line of Gamma statistic and standard error. For instance,
the value of the NN for combination 1 of the Pirna station LLR model was taken as equal to
22, where Gamma statistics and the standard error value is minimal and the line is smooth,
as presented in Figure 9. Furthermore, the optimal threshold value was found to be 0.01
using the hit and trial method. Subsequently, different LLR models were developed to
compute the SSL for all the best combinations of each station in the river, and the results
for both stations are presented in Table 6.
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Table 6. The performance evaluation of the different LLR models.

Location Comb.
R R2 RMSE (t/day) PBIAS (%)

Training Testing Training Testing Training Testing Training Testing

Pirna gauging station

1 0.95 0.94 0.90 0.89 742.54 235.60 −1.73 8.78

2 0.94 0.94 0.89 0.87 768.31 250.59 −1.37 9.12

3 0.94 0.94 0.89 0.89 760.26 232.65 −1.71 5.56

4 0.92 0.87 0.84 0.76 916.14 347.15 −2.28 13.49

5 0.94 0.94 0.89 0.88 784.60 249.09 −1.45 11.61

Magdeburg-Strombrücke
gauging station

1 0.92 0.89 0.85 0.79 644.52 363.81 −1.26 2.12

2 0.92 0.88 0.85 0.78 637.28 372.30 −1.20 2.06

3 0.92 0.90 0.85 0.81 650.44 345.32 −1.31 2.41

4 0.92 0.90 0.85 0.82 651.34 339.23 −0.72 3.17

5 0.92 0.89 0.85 0.80 648.03 353.32 −1.53 2.36
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To estimate the LLR model efficiency, several statistical parameters were calculated as
presented in Table 6 and overall results at the Pirna station revealed that an input of combi-
nation 1 gave a relatively high accuracy and, similarly, for the Magdeburg-Strombrücke
station LLR model with input, combination 4 provided the best performance criteria.

It could be seen in Table 6 that the values of R, R2, RMSE and PBIAS for the testing
of the LLR model (Combination 1 and NN 20) of the Pirna and Magdeburg-Strombrücke
stations (Combination 4 and NN 22) were 0.94, 0.89, 235.6 (t/day), 8.78%, and 0.90, 0.82,
339.23 (t/day), 3.17%, respectively. Similarly, it can be observed in Table 5 that the above-
mentioned parameters were, respectively, 0.77, 0.59, 464.27 (t/day) and 15.9%, and 0.82,
0.67, 475.85 (t/day) and 17.30% for the SRC approach for the Pirna and Magdeburg-
Strombrücke stations. The outcomes (Tables 5 and 6) revealed that the best LLR models are
much better than the SRC model. The SRC approaches were not suitable for handling the
complex sediment phenomena involved, although some adjustments could be useful to
enhance the precision of the SRC approach (e.g., applying various fitted curves).

The observed and predicted SSL, computed using LLR models during the test phase
for the Pirna and Magdeburg-Strombrücke stations, are presented in Figures 10 and 11,
respectively.
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4.5. The Suspended Sediment Load (SSL) Estimation through ANN Models

The best structure of the ANN models and the adjustment of its distinct parameters
were measured by the least value of the root mean square error (RMSE) of the training
and testing sets. The optimization of the ANN network depends on two factors, namely,
ANN structure, and the number of training iterations (epoch). Model efficiency can be
enhanced by an appropriate selection of these two parameters for the training and testing
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of the ANN model. In this research, the best ANN model was developed using the tansig
activation function in the hidden layer, purelin activation function in the output layer,
Levenberg-Marquardt learning algorithm, 10−5 as goal performance and 1000 epochs in the
single-hidden-layer network. Additionally, another critical parameter is the appropriate
selection of the number of nodes in the hidden layer. Olyaie, et al. [41] proposed that
the hidden layer neurons should range from

√
2n + m to the value 2n + 1. According

to that study, the number of neurons in the hidden layer is increased from 3 to 11 for
input combination 1 and 2 to construct several ANN models to estimate the SSL. It was
observed that the performance of the ANN model was not considerably improved with the
increase in the number of hidden nodes above the recommended threshold, as presented
in Figure 12, which tallies with the research findings of Abrahart and See [71], Rajaee [17],
and Olyaie et al. [41].
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To estimate model efficiency, the ANN model was applied to all the best combinations,
1 to 5, as given in Tables 3 and 4, for each gauging station. This was followed by the
computation of different statistical indices, as presented in Table 7, for the evaluation of the
best ANN model at each gauging station. The results revealed that combinations 1 and 2
provided the best performance accuracy to predict the SSL for the Pirna and Magdeburg-
Strombrücke stations, respectively. In combination 1 and 2, given in Table 7, the ANN
structure was (5, 11, 1), describing 5, 11, and 1 input, hidden, and output neurons, for both
stations, respectively.

Table 7. The performance evaluation of the different ANN models.

Location Comb.
R R2 RMSE (t/day) PBIAS (%)

Training Testing Training Testing Training Testing Training Testing

Pirna gauging
station

1 0.96 0.95 0.92 0.90 666.75 233.48 −0.03 3.43

2 0.94 0.94 0.89 0.89 775.99 237.07 −0.30 4.05

3 0.95 0.94 0.90 0.88 728.73 238.50 −0.43 3.55

4 0.93 0.89 0.86 0.80 864.15 321.34 0.06 7.85

5 0.94 0.94 0.88 0.88 795.29 244.78 0.07 6.09

Magdeburg-Strombrücke
gauging station

1 0.93 0.89 0.86 0.80 623.64 356.06 0.02 2.38

2 0.93 0.91 0.86 0.82 618.70 335.71 −0.02 2.53

3 0.92 0.89 0.84 0.79 660.85 363.31 −0.90 1.41

4 0.92 0.89 0.84 0.80 665.04 360.21 −0.43 2.89

5 0.92 0.90 0.84 0.81 661.07 360.51 −2.12 2.48

It can be observed from Table 7 that the values of R, R2, RMSE and PBIAS for testing of
the ANN model (Combination 1 and Nodes 11) for the Pirna and Magdeburg-Strombrücke



Appl. Sci. 2021, 11, 8290 18 of 26

stations (Combination 2 and Nodes 11) were 0.95, 0.90, 233.48 (t/day) and 3.43%, and 0.91,
0.82, 335.71 (t/day) and 2.53%, respectively. Similarly, in Table 6, the above-mentioned
parameters are 0.94, 0.89, 235.6 (t/day) and 8.78%, and 0.90, 0.82, 339.23 (t/day) and 3.17%
for the LLR approach for the Pirna and Magdeburg-Strombrücke stations, respectively.
The outcomes from Tables 6 and 7 reveal that the best ANN models are slightly superior
to the best LLR models, but differences between the outputs of both techniques were not
significant, and they could be taken as an alternate approach for modelling SSL.

The observed and predicted SSL of the best ANN models during the test phase for the
Pirna and Magdeburg-Strombrücke stations are presented in Figures 13 and 14, respectively.
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4.6. The Suspended Sediment Load (SSL) Estimation through WANN Models

In the hybrid WANN models, the original time series data of different input combina-
tions for each station, selected through GT, were decomposed using the DWT approach
and fed into the ANN models as input. The db4 mother wavelet was employed to de-
compose the particular input variables into various multi-frequency, sub-signals at the
appropriate decomposition level. The latter was determined by employing the empirical
relation proposed by Kisi [72] and Alizadeh et al. [73]

i = int[log N] (21)

where i is the appropriate decomposition level and N is the number of datapoints. Here, N
was taken as 7000 and 7330 datapoints for the Pirna and Magdeburg-Strombrücke gauging
Stations, respectively, and int [.] is the integer part function.
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Therefore, the five selected input variables in combination 1 for the Pirna station and
combination 2 for the Magdeburg-Strombrücke station were decomposed at level (i) 3 by
applying the db4 mother wavelet. Furthermore, each of the selected input variables was
decomposed at level 3, which generated 1 approximation (A3) and 3 details (D1, D2, D3),
with a total of four sub-signals. Thus, the selected five input variables (i.e., Qt, Qt−1, Qt−2,
St−1 and St−2) generated 20 (5× 4) sub-signals. Then, from all these decomposed subseries,
only the subseries with a significant correlation with the observed data were fed into an
ANN model to develop a hybrid WANN model for the prediction of SSL. Consequently,
different WANN models were developed to compute the SSL for all the best combinations
of each station.

The predictive capacity of different developed WANN models for both stations was
assessed through different statistical parameters such as R, R2, RMSE and PBIAS. The
performance evaluation of different WANN models for the Pirna gauging station and
Magdeburg-Strombrücke gauging station in the training and testing phase are presented
in Table 8. It was revealed from Table 8 that R, R2, RMSE and PBIAS for all the WANN
models for the Pirna gauging station and Magdeburg-Strombrücke gauging station vary
from 0.95 to 0.99 and 0.96 to 0.96, 0.91 to 0.97 and 0.92 to 0.92, 391.5 t/day to 695.51 t/day
and 454.82 t/day to 481.09 t/day, and −1.29% to 0.39% and −0.54% to 0.21% during the
training period, respectively. Similarly, it was observed that R, R2, RMSE and PBIAS for all
the WANN models for the Pirna gauging station and Magdeburg-Strombrücke gauging
station vary from 0.91 to 0.97 and 0.94 to 0.95, 0.82 to 0.95 and 0.89 to 0.90, 160.26 t/day to
290.96 t/day and 248.26 t/day to 263.71 t/day, and −1.57% to 0.93% and −0.81% to 0.74%
during the testing period, respectively.

Table 8. The performance evaluation of the different WANN models.

Location Comb.
R R2 RMSE (t/day) PBIAS (%)

Training Testing Training Testing Training Testing Training Testing

Pirna gauging station

1 0.98 0.94 0.96 0.89 455.78 229.57 0.24 −1.42

2 0.99 0.97 0.97 0.95 391.50 160.26 −0.13 −0.73

3 0.97 0.95 0.94 0.90 569.36 216.51 −1.29 −1.57

4 0.95 0.91 0.91 0.82 695.51 290.96 0.39 −0.31

5 0.96 0.93 0.92 0.86 660.47 259.17 0.28 0.93

Magdeburg-Strombrücke
gauging station

1 0.96 0.95 0.92 0.90 472.87 248.26 0.05 −0.46

2 0.96 0.95 0.92 0.90 469.61 253.17 −0.54 −0.81

3 0.96 0.94 0.92 0.89 454.82 263.57 0.21 −0.69

4 0.96 0.94 0.92 0.89 481.09 263.71 −0.06 −0.12

5 0.96 0.95 0.92 0.90 463.92 252.03 −0.21 0.74

Table 8 shows that, among all the WANN models for both stations, the model that
has input combination Qt, Qt−2, St−1 and St−2 had the least error and relatively higher
accuracy. Further, the outcomes from Tables 7 and 8 revealed that the WANN models
delivered a superior performance to the LLR and ANN models in suspended sediment
load prediction.

The best WANN models for the Pirna gauging station and Magdeburg-Strombrücke
gauging station had a testing R, R2, RMSE and PBIAS of 0.97 and 0.95, 0.95 and 0.90, 160.26
and 248.26 t/day, and −0.73% and −0.46%, respectively (Table 8) and were more accurate
than the best ANN model, which had a testing R, R2, RMSE and PBIAS of 0.95, 0.90,
233.48 t/day and 3.43% (Table 7) for the Pirna gauge station and 0.91, 0.82, 335.71 t/day
and 2.53% (Table 7) for the Magdeburg-Strombrücke gauge station, respectively.

We know that the combination of R2 values closer to 1 (1 is the perfect fit value)
coupled with the lower RMSE and PBIAS values (0 is the perfect fit value) pointed to the
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WANN model as the most precise model when reproducing the observed SSL pattern at
both the stations, notwithstanding minor discrepancies. The best WANN model predic-
tions in the testing phase was compared using scatter plots and time series (sediment)
graphs of observed versus predicted SSL, as shown in Figures 15 and 16, for the two
stations, respectively.
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4.7. Comparison of Different Models Performance

The best models were selected after applying various techniques and then compared
among themselves in order to determine the single most accurate model based on different
performance evaluation indices i.e., R, R2, RMSE and PBIAS, for the prediction of daily SSL
in rivers. It was observed that the WANN models outperformed the other best LLR and
ANN models and the SRC approaches in SSL prediction SSL for both gauging stations, as
presented in Figure 17.

Furthermore, the results of different performance evaluation parameters of various
models for both gauging stations are shown in Table 9. It is revealed that the best WANN
models for the Pirna and Magdeburg-Strombrücke gauging stations had a testing value of
R, R2, RMSE and PBIAS as 0.97 and 0.95, 0.95 and 0.90, 160.26 and 248.26 t/day and −0.73
and −0.46%, respectively, and were better than the the best ANN and LLR models, as well
as those from the SRC, FCF and SCF approach (Table 9). Overall, the results indicated that
the WANN models for both stations had higher values of the R, R2 and lower values of
RMSE and PBIAS. This established that they were more accurate among the other models
in the prediction of the daily SSL in rivers. Further, the list of models, in decreasing order
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of accuracy in the prediction of daily SSL, is as follows: WANN, ANN, LLR model and
SRC approaches.
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Table 9. Comparison of best models for the prediction of daily SSL.

Site Pirna Gauge Station Magdeburg-Strombrücke Gauge Station

Model R R2 RMSE (t/day) PBIAS (%) R R2 RMSE (t/day) PBIAS (%)

SRC 0.77 0.59 464.27 15.96 0.82 0.67 475.85 17.30

FCF 0.77 0.59 468.92 44.41 0.82 0.67 541.72 46.44

SCF 0.77 0.59 461.25 25.11 0.82 0.67 533.67 44.26

LLR 0.94 0.89 235.60 8.78 0.90 0.82 339.23 3.17

ANN 0.95 0.90 233.48 3.43 0.91 0.82 335.71 2.53

WANN 0.97 0.95 160.26 −0.73 0.95 0.90 248.26 −0.46

The model efficiency was also assessed with regard to its ability to estimate the peak
SSL values. Usually, the peak SSL values are considered the key aspect in any river structure
management as the design is based on those values. In this regard, the peak values were
taken by considering the threshold of the top 5% of the data from the original SSL time
series. The performance of different models was assessed through different statistical
indices, i.e., R2, RMSE and PBIAS, and the results figure in Table 10. As per the latter,
the WANN models, for both stations, were more competent than the LLR, ANN and SRC
models in capturing the peak SSL values.

This research has served to establish the excellent performance of the ANN and the
coupled ANN-WT (WANN) technique over the traditional approach of SRC. It is pertinent
to investigate the reasons behind this improved performance. We begin by recalling that the
SRC is based on linear interpolation (no memory effect) while the hydrological processes
are inherently non-linear. The latter quality implies the dependence of a given state on a
set of states coming before and after that particular time, for which a predicted value of
SSL is being sought. The ANN’s superior performance is explained by its employment
of non-linear interpolation capability. The latter comes from the training of the model
when it is fed the entire time series, thus endowing it with a ‘memory’ that helps explain
its success in better predicting SSL peaks. The WANN model is basically ANN, to which
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the decomposed time series data are fed using the wavelet transform method. It goes a
step further than the simple ANN, as the WT method is used to break down the input
time series into component sub-series, which better explain the information contained in
short-term, transient events such as SSL peaks, which appear suddenly. Thus, the dynamic
features of the studied phenomenon are better translated to the ANN model, which, in
turn, enhances and amplifies its predictive capacity.

Table 10. A performance comparison among models in capturing peak SSL values.

Gauging
Station

Statistical
Parameters SRC FCF SCF LLR ANN WANN

Pirna

R2 0.54 0.54 0.54 0.82 0.85 0.95

RMSE (t/day) 6254.85 5625.65 6044.63 2685.30 2449.23 1382.48

PBIAS (%) −54.99 −43.94 −51.43 −5.93 −4.49 −2.66

Magdeburg-
Strombrücke

R2 0.21 0.21 0.21 0.56 0.63 0.77

RMSE (t/day) 4334.35 3820.03 3855.03 2193.03 2028.45 1528.19

PBIAS (%) −53.93 −42.49 −43.35 −13.30 −11.73 −6.09

5. Conclusions

Sediments carried by water are a nuisance, as they shortens the life of a reservoir,
reduce the channel discharge-carrying capacity, especially to tail-end users, etc. Therefore,
sediment management is the golden rule in river engineering, to which much effort and
energy are directed. An important aspect of sediment management is sediment estimation,
which is mostly found in a suspended form in rivers and other water bodies.

This research focused on a comparison of the different means of suspended sediment
estimation in rivers. This includes the traditional method, i.e., sediment rating curve (SRC)
and soft computing techniques, i.e., local linear regression (LLR), artificial neural networks
(ANN) and the wavelet-cum-ANN (WANN) method. All the methods require extensive
data from the field, which were obtained from the two river gauging stations situated
on the Elbe River in Germany. The data pertain to the daily mean flow and suspended
sediment concentration.

The SRC represents a functional relationship between daily SSL load in tons and the
river volume flow rate in power-law form. The LLR model is the most effective and reliable
tool in regions of high data density in the input space, but it is not significantly effective
if the datapoints are scarce and distant from the locality of the query point. The ANN is
inspired by the biological (brain) neuron system, which is well-suited to the modelling of
non-linear and complicated tasks such as the estimation and forecasting of rainfall, runoff
and river sediment. In the WANN models, the original time series data of different input
combinations for each station, selected through the Gamma test (GT), were decomposed
using the discrete wavelet transform (DWT) approach and fed into the ANN models
as input.

The model was built based on the postulation that the present-day SSL response
depends upon today’s and the antecedent two days volume flow rates and the sediment
concentrations of the previous day and the day before. Further, the Gamma test and
M-test were performed for the identification of optimal input combinations and selection
of a suitable data length for model development, respectively. Thus, by applying the
Hill-climbing model-identification technique, a total of five best-input combinations were
selected based on the minimum Gamma statistic and V-ratio for each station. Similarly,
M-test identified an optimal training data length of around 75% of the total data for accurate
model development for both stations.

The goodness of fit for any model was assessed via R2, RMSE and PBIAS. The SRC
performed well, with an R2 of 0.64, but it still overestimated the sediment load and was
unable to capture the peak sediment rates, which are of great importance for design
purposes. The best LLR model scored a mean R2 of about 0.85, overtaking the best SRC
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results. Although, it captured the peaks better than SRC, it still was unable to match the
observed SSL peak concentration rates. The ANN model depicted a mean R2 of about
0.86 and a PBIAS of about 3%. A comparison between LLR and ANN models showed
that ANN was slightly ahead of LLR, but the difference was not significant and both
may be considered as equally good alternatives for the prediction of SSL. Performance-
wise, the WANN models in the testing phase showed a mean R2 of 0.92 and a PBIAS of
−0.59%. Overall, the results indicated that the WANN models for both stations had higher
R2 and lower RMSE and PBIAS values, thus, establishing that they were more accurate
than the other models in the prediction of daily SSL in rivers. Further, the list of models,
in decreasing order of accuracy in the prediction of daily SSL, was as follows: WANN,
ANN, LLR model and SRC approaches. Similarly, the WANN model was most accurate in
reproducing the SSL peak flow rates compared to the rest of the models.

The soft computing methods (ANN, LLR, and WANN) performed better than the
traditional technique (SRC), as they made use of non-linear techniques for data reconstruc-
tion. It can be concluded that, among all the models, the WANN models, which used
decomposed data that captured the dynamic features of the non-linear and non-stationary
SSL time series data, performed better than other models, which used simple raw data.
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