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Abstract: Recently, a variety of intelligent structural damage identification algorithms have been
developed and have obtained considerable attention worldwide due to the advantages of reliable
analysis and high efficiency. However, the performances of existing intelligent damage identification
methods are heavily dependent on the extracted signatures from raw signals. This will lead to
the intelligent damage identification method becoming the optimal solution for actual application.
Furthermore, the feature extraction and neural network training are time-consuming tasks, which
affect the real-time performance in identification results directly. To address these problems, this
paper proposes a new intelligent data fusion system for damage detection, combining the proba-
bilistic neural network (PNN), data fusion technology with correlation fractal dimension (CFD). The
intelligent system consists of three modules (models): the eigen-level fusion model, the decision-
level fusion model and a PNN classifier model. The highlight points of this system are these three
intelligent models specialized in certain situations. The eigen-level model is specialized in the case
of measured data with enormous samples and uncertainties, and for the case of confidence level
of each sensor is determined ahead, the decision-level model is the best choice. The single PNN
model is considered only when the data collected is somehow limited, or few sensors have been
installed. Numerical simulations of a two-span concrete-filled steel tubular arch bridge in service and
a seven-storey steel frame in laboratory were used to validate the hybrid system by identifying both
single- and multi-damage patterns. The results show that the hybrid data-fusion system has excellent
performance of damage identification, and also has superior capability of anti-noise and robustness.

Keywords: data fusion; damage identification; probabilistic neural network; fractal dimension

1. Introduction

Structural damage identification is an essential approach to prevent a sudden collapse
of structures and avoid casualties and heavy economic losses [1–3]. A series of damage
detection methods have been proposed [4–8], and health monitoring systems have been
developed and installed in a number of large-scale engineering structures.

It has been found that feature extraction is very crucial in a structural health moni-
toring system (SHM) [9,10]. Usually, we can use the change of features extracted from the
pre- and post-damage of structure to diagnose structural damage. However, conventional
feature extraction methods are powerless for extracting from non-linear signals. In recent
years, several new theories, such as wavelet transform [11] and fractal dimension (FD) [12],
have been used to identify features of damage. In particular, FD analysis has attracted
more and more attention in the field of structural damage detection.

FD is powerful to describe the non-linear behavior of vibration signals quantitatively,
and thus it is suitable for the field of fault diagnosis and damage detection [12–16]. Previous
studies have found that if the structure has damage, the parameters that determine the
state of structure will change, and the FD will also change. Thus, FD can be used as the
feature, which can reflect structural damage and state, and diagnose the structural damage
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according to the change of FD. This is the theoretical basis of applying FD for structural
damage detection. It has also been found that fractal method does not depend on the
mathematical system model, and also can comprehensively extract the state information
of system. In addition, FD is simple and intuitive. Thus, FD is an important and ideal
index for structural damage identification. Recently, FD has become a research hotspot for
SHM, in view of its flexibility and extensive applicability. Although fractal geometry has
been applied to structural damage detection and diagnosis widely, which has wonderful
adaptability and agility, and has a nice application foreground, it also has some problems.
For example, considering that structural damage detection belongs to dynamic indirect
problem, it is difficult for high-nonlinear complex cases to detect damage by use of a
dynamics mathematic model. Furthermore, in real practice, a single damage index is
generally impossible to reflect all types of damage for real structures, and it may also have
some uncertainties of modeling and observation errors in practical measurement [13,14].
Although statistical theory and approaches can reduce the effect of observation error and
uncertain factors, it is essential and urgent to develop a comprehensive damage detection
method to solve the above-mentioned problems.

Since neural network (NN) possess powerful abilities, such as nonlinear process-
ing, self-organizing, self-learning and self-adaption, it had obtained good results in the
structural damage detection by integrating NN with fractal theory [17–20]. Most of these
existing studies focused on the application of FD in extracting features, fault diagnosis and
damage identification. However, it is still a concerning issue how to make full use of the
large volume of nonlinear characteristic data and integrate FD for damage detection and
state assessment [17–19].

In recent years, as a complex machine learning algorithm, Deep Learning(DL) [17,21,22]
has been widely applied in the field of artificial intelligence; especially Convolutional
Neural Network (CNN) has been of wide concern and application, such as in image and
sound recognition, machine vision and data mining. However, as a machine learning
algorithm emerging in recent years, the application of CNN in engineering structural
damage diagnosis is still in the initial stage. Network training is time-consuming and also
has a lot of work that needs to be further carried out, such as the processing of the variety
of structural damage, massive data and the application in practical engineering. At the
same time, the traditional neural network technology has the advantages of short training
time and high recognition accuracy as long as the feature extraction is effective.

In order to make full use of the massive nonlinear characteristic data and integrate
FD, this paper focuses on the integration of correlation fractal dimension and PNN with
the data fusion technique to detect structural damage, presenting a novel hybrid damage
detection system which contains three intelligent models and is exactly powerful for large-
scale and complex structures. The three models are a single PNN classifier model (without
data fusion), an eigen-level data fusion model and a decision-level data fusion model. It
has excellent performance of damage detection, especially for a complex structure with
measurement data that is enormous and has uncertainties. Practice has shown that the
proposed system can obtain three kinds of reasonable damage detection results under
the case of noises, and it also further proved the anti-noise capabilities and robustness
of the system. Finally, this paper is organized as follows. The hybrid data-fusion system
for damage detection is described in Section 2. A numerical example and a laboratorial
seven-storey steel frame of both single- and multi-damage patterns are validated with the
proposed system in Sections 3 and 4. Section 5 presents the conclusion.

2. Novel Hybrid Data-Fusion System
2.1. Hybrid System Structures

Figure 1 shows the interior structure of the hybrid damage detection system, which
reveals the technology of combining FD and PNN models with the data fusion. The
system contains three models, namely, a single PNN classifier model, an eigen-level fusion
model and a decision-level fusion model and the system can get three kinds of reasonable
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detection results correspondingly, according to the different cases of structures to choose the
suitable model. Furthermore, the proposed system can realize three damage identification
functions simultaneously. 

 
 
  
 
 

 
 
 
 
 
 
 

Figure 1. Architecture of the hybrid data-fusion system 

 
 

 

 

Figure 2. Single PNN classifier model for damage detection 
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Figure 1. Architecture of the hybrid data-fusion system.

The left side of Figure 1 includes two models: a single PNN classifier model (namely,
without data-fusion tactics, after fractal features extraction to make PNN decision directly,
as shown in Figure 2) and an eigen-level data-fusion model. The essential difference
between them is the process of having data fusion or not. Meanwhile, on the right of
Figure 1, it shows the details of decision-level data-fusion model. This makes decisions
based on data fusion of multiple single-PNN classifiers, as the eventual damage detection
results output.
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Figure 2. Single PNN classifier model for damage detection.

The proposed system has three damage identification functions and can even detect
damage simultaneously. However, if the characteristics of the data to be detected are
clearly understood, it would be a wise choice to select one of them for damage detection,
as a single PNN is more suitable for the situation where the limited data of a few sensors
are collected; when the reliability of each sensor in the multi-sensor system is known, a
decision-level data fusion damage detection model would be the most appropriate choice;
otherwise, an eigen-level data fusion damage detection model can be adopted.

2.2. Single PNN Damage Detection Model

The details of the single PNN classifier are illustrated in Figure 2 for damage detection.
The model is mainly composed of three parts, data preprocessing, obtaining correlation
fractal dimensions (CFD) and PNN damage detection decision.

2.2.1. Data Preprocessing

Before features extraction, data preprocessing is necessary. The reason for this is
that collecting signals from raw measurement inevitably contain noises, measurement
errors and even are influenced by imprecision of measurement facility, etc. First of all,
the measured signals are converted from analog to digital form. Subsequently, with the
help of either basic or advanced data preprocessing techniques, the digitized data are
processed, such as threshold, filtering, averaging, etc. For better results, some advanced
data processing techniques, such as wavelet transform (WT) and wavelet packet analysis,
Hilbert-Huang transform (HHT) and principal component analysis (PCA), can also be used



Appl. Sci. 2021, 11, 8272 4 of 15

for data de-noising and compressing. Here, the filtering and averaging method were used
for data preprocessing.

2.2.2. G-P Algorithm of Correlation Dimension

There are different kinds of approaches to define FD (Fractal Dimension) in fractal
geometry; the most recognized is Hausdorff’s dimension. Correlation fractal dimension
was used as the feature parameter in this paper for damage detection.

For an N-point time series {x1, x2, . . . , xN}, the method of delays reconstructs the
attractor dynamics by using delay coordinates to form multiple state-space vectors, Yi :

Yi = [x1, xi+τ , · · · , xi+(m−1)τ ]
T ,i = 1, 2, . . . , Nm (1)

where Nm = N − (m − 1)τ, Yi stands for the reconstructed state space vector, m is the
embedding dimension, τ is lag time measured in units of sampling interval.

Following reconstruction, the correlation integral Cm(r) is defined in the m -dimensional
reconstructed space as the probability of finding a pair of vectors whose distance is not
larger than r :

Cm(r) =
2

Nm(Nm − 1)

Nm

∑
i,j=1

H(r− ri,j),i 6= j, (2)

Moreover:
C(r)∞rD2 r → 0 (3)

where H(x) is the Heaviside Step function [H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0]
and r is the distance parameter, ri,j is the distance between two reconstructed vectors,
which is computed using the Euclidean norm:

ri,j =
∥∥Yi − Yj

∥∥ =

[
m−1

∑
l=0

(xi+lτ − xj+lτ ]

] 1
2

(4)

The correlation dimension D2 is defined as:

D2(m) = lim
r→0

ln Cm(r)
ln r

(5)

Particularly worth mentioning is that the computational precision of correlation
dimension is influenced by lag time and embedding, but beyond that, data length and
noise levels can also influence it. A detailed discussion can be found in Reference [23].

2.2.3. PNN Decision

It is well known that neural network is a kind of machine learning method that
imitates the human brain. A neural network usually consists of an input layer, a hidden
layer and an output layer. In this paper, PNN is chosen to detect damage. PNN as a
feed-forward neural network was first proposed by Specht [24]. The PNN implements
the Bayesian decision rule by representing the probability density functions (PDFs) of the
known data sets with a non-parametric estimator, then judges which set of known data is
most likely the source of the unknown datum. PNN uses Bayesian probabilistic approach
to describe measurement data, which fundamentally determines that PNN has prominent
merits among neural network models in noisy condition and pattern recognition.

The essence of the PNN classifier for damage identification is to judge the pattern class
of damage types into which the testing vectors of unknown source could be categorized.
For the above-mentioned PNN, assume the input vector X = {x1, x2 . . . xn}T in the input
layer consists of p eigenvectors. In the pattern layer, there are s pattern classes, each
representing a possible damage type. The number s of pattern classes depends on a specific
structure. After entering training vectors of all pattern classes as weights between the
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input and pattern layers, the PNN for damage type is configured. If ni training vectors
are prepared for the kth pattern class, the total number of neurons in the pattern layer is
∑s

k=1 nk, where s is the total number of pattern classes. When given a new input vector
(testing vector) X consisting of measured data of unknown source, the configured PNN
outputs the PDF estimates for each pattern class at the testing vector point. The pattern
class with the largest PDF implies the class of the current input (testing) vector and indicates
the damage class.

2.3. Eigen-Level Damage Detection Model

A proposed three-stage eigen-level data fusion model for damage detection is shown
in Figure 3, which illustrates the architecture of this fusion model. As mentioned above,
processing the initial data is necessary. Just as explained in Section 2.2, some relevant
preprocessing techniques are used for de-noising. The key stage is the second stage,
namely, to extract correlation dimensions (CD), then fuse them extracted from multiple
sensors. In the last stage, the fused feature groups are to be input into a PNN classifier
then make a damage detection decision. Since feature-level data fusion fully considers
the importance of individual features and multi-sensor mutual information features, it is
convinced beyond doubt that the eigen-level damage detection model can obtain more
accurate identification results than any individual feature can.
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Figure 3. Eigen-level data fusion model for damage detection.

2.4. Decision-Level Data Fusion Model for Damage Detection

On the right side of Figure 1 is the decision-level data-fusion damage detection model.
After data pre-processing, feature extraction and single PNN decision, the decision fusion
was carried out. It is noted that the decision fusion based on single PNN classifier model is
shown in Figure 2. Thus, this section focuses on the process of fusion computation for the
decision level. Based on the contribution of single PNN model, we can obtain an initial
decision for every given feature (sensor), then the weighted-average fusion algorithm is
employed for fusion computation. Based on the conditional PDF fq(X) corresponding to
each class from PNN classifier of the test vector X, weighted average method was used to
fuse computation; assuming the class-conditional PDF fq,j(X) for class θq and jth sensor is
known, a fused class-conditional PDF f q(X) for class θq can be written as:

f q(X) = ∑m
j=1 wq,j ∗ fq,j(X) (6)

where wq,j stands for the normalized coefficient for class θq and jth sensor, which depends
on the recognition accuracy of PNN classifiers in the PNN network training stage, and
∑
j

wq,j = 1.
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Decision results of X assigned to class θq according to maximal fused probability
density functions were defined as Equation (7). This majority voting technique adopts the
winner-take-all principle.

θq(X) =

{
1, max( f q(X)), (q = 1, 2, · · · , s)
0, others

(7)

For different damage, different classifiers may have different recognition results, then
the maximal fused probability density function is employed to make the final decision
results.

3. Simulation Validation
3.1. Structural Model and Damage Simulation

In order to prove the proposed hybrid system, a two-span concrete-filled steel tubular
arch bridge in service as shown in Figure 4 was employed. Here, ANSYS 10.0 (Finite
Element Software) was used to build this arch bridge model (as shown in Figure 5). First
of all, we inputted the health condition command flow of this bridge to ANSYS software,
then used complete method to calculate dynamic response of this bridge under given loads.
Considering that noise is inevitable, we then added noise to dynamic response, and this
mixed-signal model is used to simulate the real dynamic response of the bridge.
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Then, we inputted the damage condition command flow with different damage
location and different damage degree respectively based on the health condition of bridge
model. Finally, transient dynamic analysis of ANSYS was used to calculate the structural
response under arbitrary change of load with time, namely, time-history of structural
response. Transient dynamic analysis was used to determine the change rule of structural
displacement, stress and strain under steady-state load, composite action of transient load
and harmonic load. A weight of 10 t vehicle load was used as dynamic load, and the car
went through the bridge with a speed of 12.5 m/s, and then we calculated the displacement
response of the arch rib nodes of the arch bridge.

Considering the symmetry of the bridge, we used a rib of the arch bridge for research
(as shown in Figure 6), hollow digital stands for rib element, solid digital stands for rib

node, and the rib is divided into 18 elements and 19 nodes (as shown in Figure 6);
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In general, there are two ways to simulate element damage: changing the cross-section
and reducing the element stiffness. In reality, the stability problems of arch bridge are quite
conspicuous; the arch rib mainly bears axial force, the stiffness decline of it can reduce
directly the stability of the local components even overall structure. In fact, the damage of
structure, such as cracks, and reducing of material elastic modulus all can cause the decline
of the structural stiffness. On the contrary, the impact on quality is little. So, during the
analysis process, the quality was assumed constant, and the decline of elastic modulus was
used to simulate the decline of element stiffness. In this paper, there were four damage
cases, i.e., a single damage, multiple damage, different damage locations and degrees. The
damages were located in the arch rib elements. Considering the complexity of this large
bridge, relatively big damage was chosen in the simulating the four damage conditions. It
is shown in the Table 1.

Table 1. Four damage conditions of arch bridge.

Damage Conditions Damage Location Damage Levels

1 Arch rib element 5 50%
2 Arch rib element 5 80%
3 Arch rib element 5 and 13 50%
4 Arch rib element 5 and 13 80%

In the actual signal measurement, there is a lot of noise. In order to simulate measured
data, each set of the analytical computed correlation dimension added by a random
sequence for each damage, i.e.,

yi = ya
i × (1 + εR) (8)
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where yi and yi
a stand for the noise-polluted measured correlation dimension and the

analytically computed values for each damage simulation respectively; R is a normally
distributed random variable with zero mean and deviated with 1; ε is an index representing
the noise degree, here ε is set 1%, 2%, and 3%, respectively [25].

Here, 200 sets of damage case were produced at every noise level, namely, 200 sets of
measured data. The first 100 sets were used as training samples, and the rest of them were
used as test samples. For four damage cases, a total of 100 × 4 = 400 measured data sets
were created for training, along with the same numbers measured data sets for the test.

3.2. Single PNN Damage Detection Model

The effects of input features on damage detection were investigated for the above arch
bridge model. Before constructing the single PNN classifier model, some work such as
extracting feature parameters and producing training and test samples had to be done in
advance [24]. Here, PNN classifier 1 was chosen as an example to elaborate the process of
damage detection.

Before constructing a PNN classifier, calculating the correlation dimension was nec-
essary. Equation (5) was chosen to calculate the correlation dimension. From the raw
measurement, the following 6-dimensional feature vector was formed, whose elements
were related to the CD, then they were divided into three groups, i.e., NC1, NC2 and NC3,
as input vectors for classifier 1, 2 and 3, respectively, which then made PNN decisions
respectively.

For classifier 1, when the noise level ε = 1%, the NC1, which contains two groups of
correlation dimensions, were taken to the input vectors of classifier 1. Each training sample
was set as one neuron in the pattern layer; thus, the number of neurons was 400 in the
pattern layer. Neurons in the summation layer corresponded to four damage patterns, thus
the number of neurons was four. The structure of classifier 1 was represented with 2-400-4.
Here the σ-parameter was set to 0.25. Then the PNN was configured or trained. When
presenting on the PNN new input vectors (testing samples), each neuron in the summation
layer outputted the PDF estimates for each pattern at the testing sample point. The pattern
class with the largest PDF indicated the damage class of the current testing sample.

Allowing for the effect of noise on identification accuracy of classifier, training and
testing samples noise-polluted with ε = 2% and 3% were also produced in the same way
as those with ε = 1%, and the structure of the classifier was also represented with 2-400-4.
It should be noted that in each classifier, testing samples were with the same noise level
as training samples, respectively. Table 2 shown the identification results of total of 400
testing samples by use of classifiers for the noise levels ε = 1%, 2% and 3%, respectively. It
is noted that the IAs (Identification Accuracy) of the training phase are 100% for all four
classifiers.

Table 2. Single PNN classifier identification results.

Noise
Level
ε (%)

PNNClassifier
IA of Testing Samples for Each Pattern (%)

Total IA
(%)

Average
of Total
IA (%)Pattern 1 Pattern 2 Pattern 3 Pattern 4

1
1 (NC1) 82 95 87 68 83

83.52 (NC2) 79 93 86 68 81.5
3 (NC3) 83 91 89 81 86

2
1 (NC1) 85 91 75 83 83.5

77.52 (NC2) 70 82 77 65 73.5
3 (NC3) 74 78 79 71 75.5

3
1 (NC1) 53 71 70 75 67.25

67.12 (NC2) 37 71 67 82 64.25
3 (NC3) 48 79 65 87 69.75

As predicted, the total IA decreases with the increase of the noise level for the same
input feature vector; when ε = 1%, the detection results were more than 80% of all three clas-
sifiers (input features vectors were different). This indicates that the damage identification
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using the correlation dimension as the eigenvector can obtain a better recognition effect,
and it was proven that correlation dimension is sensitive to the damage of the structure.

3.3. Eigen-Level Damage Detection Model

The PNN classifier in the eigen-level fusion model was constructed as same as the
above single PNN classifier model. To test the eigen-level data-fusion model, the three
fusion feature groups involved were NC1 + NC2, NC2 + NC3 and NC1 + NC3. The IAs
of training phase is 100% for all three classifiers. Table 3 shows the identification results
of totally 1200 testing samples from the eigen-level model for noise levels ε = 1%, 2% and
3%, respectively. It can be seen that the identification accuracy all improved effectively
with the different noise level. It is noted that the average IA is up to 73.8% when the noise
level is 3%, which indicates that feature-level data fusion has improved the effectiveness of
damage detection, and also has more robustness than the single PNN classifier, which uses
only individual features.

Table 3. Identification results of eigen-level fusion model.

Noise
Level ε

(%)

Eigen Fusion
Method

IA of Testing Samples for Each Pattern (%) Total IA
(%)

Average
of Total
IA (%)Pattern 1 Pattern 2 Pattern 3 Pattern 4

1
1 (NC1 + NC2) 82 94 96 71 85.75

88.72 (NC2 + NC3) 88 98 96 78 90
3 (NC1 + NC3) 87 97 93 84 90.25

2
1 (NC1 + NC2) 85 88 86 83 85.5

86.92 (NC2 + NC3) 81 86 90 81 84.5
3 (NC1 + NC3) 86 93 96 88 90.75

3
1 (NC1 + NC2) 26 89 82 75 68

73.82 (NC2 + NC3) 57 90 87 82 79
3 (NC1 + NC3) 33 92 91 81 74.25

It can be found that, after the eigen-level data fusion processing, the average IAs
improved remarkably at every noise levels; particularly for patterns 2 and 3, the IA was
improved significantly at different noise levels. The average IA is up to 86.9% when the
noise level is 2%, but the average IA was only 83.5% for single PNN classifier models,
even when ε = 1%. These is further evidence that the eigen-level data fusion model, after
data fusion processing, had a better damage detection capability. Because of the existence
of redundant and complementary information in the eigen-level data fusion, the noise-
tolerance and robustness of the eigen-level fusion model are consequently better than that
of single PNN classifiers.

3.4. Damage Detection with Decision-Level Fusion Model

As described in Section 2.4, the results obtained from the single PNN models can
provide subset information for the decision-level data-fusion model. After the PDFs for
each pattern class at the test sample point were obtained, four fusion models were chosen to
fuse the identification results of classifiers 1, 2 and 3 from the single PNN classifier models
by Equation (5), and then the fused class-conditional PDFs for each pattern were attained,
the final damage decision results of test samples were made by Equation (6) finally. As all
training samples were set as the training patterns (link weights) for single-PNN classifiers,
they were all correctly identified for all three classifiers in the training phase. Thus wq, j was
set to 0.5 for models 1, 2 and 3, and 0.333 for fusion model 4. Table 4 showed the results of
damage detection with three decision-level fusion models.
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Table 4. Identification results of decision-level fusion models.

Noise
Level
ε (%)

Classifiers Fusion
Method

IA of Testing Samples for Each Pattern (%) Total IA
(%)

Average
of Total
IA (%)Pattern 1 Pattern 2 Pattern 3 Pattern 4

1

1 (Classifiers 1 + 2) 83 98 88 86 88.75

89.9
2 (Classifiers 2 + 3) 85 97 91 88 90.25
3 (Classifiers 1 + 3) 83 96 87 91 89.25

4 (Classifiers 1 + 2 + 3) 86 98 88 94 91.5

2

1 (Classifiers 1 + 2) 84 87 82 71 81

82.8
2 (Classifiers 2 + 3) 76 82 89 72 79.5
3 (Classifiers 1 + 3) 85 85 90 79 84.75

4 (Classifiers 1 + 2 + 3) 89 88 91 75 85.75

3

1 (Classifiers 1 + 2) 57 75 66 75 68.25

69.2
2 (Classifiers 2 + 3) 47 73 65 79 66
3 (Classifiers 1 + 3) 64 78 71 81 73.5

4 (Classifiers 1 + 2 + 3) 53 78 71 74 69

It is observed that all four decision-level multi-classifier data fusion models perform
very well in detecting damage, and the average IA for all four fusion models exceeds
82% when ε ≤ 0.2%. The decision-level data-fusion model is superior to the single PNN
classifier model in the damage detection of a structure owing to the data-fusion processing
of redundant and complementary information. Just as expected, the IAs for all four fusion
models decrease with the increase of noise level. In addition, there is no apparent change
in total IAs for four different fusion models, namely, fusion models 1, 2, 3 and 4, as shown
in Table 4. The fact shows that all four decision-level data-fusion models are feasible and
effective in damage detection of a structure under noise conditions.

3.5. Comparison and Discussion

To clarify the efficiency and robustness of the proposed system, a comparison among
the three models was necessary (as shown in Tables 2–4 and Figure 7), and some phenomena
and deduction are found.
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First, when noise level ε = 1%, it can be found that the average IA exceeds 80% for
all three models of the system. Furthermore, benefiting from data-fusion processing of
redundant and complementary information, the average IAs of both the eigen-level and
decision-level models exceed 80% when ε = 2%, and higher than those of the single PNN
model, and the maximum of average IA is as high as 89.9% in the decision-level fusion
model. The comparison of identification accuracy also showed that the eigen-level fusion
model is the best; on the other hand, the single PNN classifier is the worst. This conclusion
confirmed again that, especially when a large structural health monitoring system contains
measured data with enormous samples and uncertainties, it is very sensible to choose a
fusion model of the proposed system for damage detection, because of its good damage
detection capability, noise tolerance and robustness.
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Second, as shown in Figure 7, it is quite clear that the IA decreases with the increase
of noise levels. Nevertheless, by using of data fusion, both eigen-level and decision-level
models had better performance than single PNN models. Compared with single PNN
models, the increase average IA of the eigen-level fusion model are 5.2%, 9.4% and 6.7%
when ε = 1%, 2% and 3%, respectively. Then, the increase values are 6.4%, 5.3% and 2.1%
correspondingly for the decision-level fusion model. This confirmed that both data-fusion
models have good performance at different noise levels, even with the influence of noises
and a great volume. In summary, the comparison results showed that the proposed hybrid
system was effective and suitable for structural damage detection.

Third, the performance of single PNN classifiers was improved remarkably in the
proposed system by data-fusion. For example, among these three single classifiers, the
total IA of PNN Classifier 2 was the lowest, namely, 81.5%, 73.5% and 64.25% when
ε = 1%, 2% and 3%, respectively. Moreover, through the processing of data-fusion, the IA
were enhanced for eigen-level fusion models at different noise levels. The same conclusions
were also found in the decision-level models.

In addition, based on eigen-level and decision-level fusion, the IA values of all four
patterns improve remarkably at every noise level, especially for pattern 1. Tables 2–4
showed that the minimum IAs of pattern 1 belong to different models of the proposed
system. It can be found that, for pattern 1, the increment of average IA amounts to
4.4%, 7.7% and −7.3% when ε = 1%, 2% and 3%, respectively, for the eigen-level model;
correspondingly, the average IA increment is 2.95%, 7.2% and 9.25%, respectively, for the
decision-level model. These facts proved again that the data fusion models were suitable
for damage detection, because of its good noise tolerance and robustness.

In summary, this novel proposed hybrid system is very effective for damage detection,
and the highlight points are its good noise tolerance and robustness. These three intelligent
models are specialized in some certain situations. The eigen-level model is specialized
in the case of measured data with enormous samples and uncertainties, and for the case
of confidence level of each sensor is determined ahead, the decision-level model is the
best choice; the single PNN model is considered only when the data collected is somehow
limited, or few sensors have been installed.

4. Experimental Validation

In order to further verify the damage identification performance and robustness of the
proposed system, considering the noise and measurement errors are inevitable in actual
measurement process, a seven-story steel frame structure in laboratory was selected for
damage identification. Here, two damage magnitudes and three damage locations were set
up for examining the capability of proposed system.

4.1. Structural Model and Damage Cases

An experimental seven-storey shear-beam type building model was employed to
validate the hybrid system proposed as shown in Figure 8. The stiffness of each storey
unit is k1 = . . . K7 = 375 KN/m; meanwhile, the mass of each storey unit is m1 = . . . m6 =
3.78 kg, m7 = 3.31 kg, respectively.
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The stiffness reduction in each storey unit was used for simulating the structural
damage. Here, two damage magnitudes and three damage locations were set up for
examining the capability of proposed system. The damage magnitude contains two types,
small damage and large damage, while the damage location was designated corresponding
to storey number. The stiffness reduction of 4.1% was defined for small damage, and 16.7%
for large damage (shown in Figure 9). Thus, four damage patterns are described in Table 5.
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Table 5. Magnitudes and locations of damage.

Pattern Class Small Damage Large Damage

Pattern 1 4th storey
Pattern 2 6th storey 4th storey
Pattern 3 3rd and 6th storeys 4th storey
Pattern 4 3rd, 4th and 6th storeys

4.2. Results Analysis

Similar to the numerical simulation, calculating the correlation dimension is the first
step. Equation (5) was employed to calculate the correlation dimension. Here, each storey
raw measurement was used to extract the correlation dimension, so that it can obtain 200
correlation dimensions for each storey and each damage pattern, and in total obtain 1200
data sets for each damage pattern. Then 200 samples were produced (200 × 6); the first 100
sets were used to create training samples, and the others were used to create test samples,
with each sample containing a six-column correlation fractal dimension. So, three PNN
input vectors were obtained through dividing the six-column correlation fractal dimension
into three groups, named NC1, NC2 and NC3, where each of them contains two columns,
as inputs for classifier 1, 2 and 3, respectively. The process of damage identification was
the same as in Section 3, so it will not be reiterated here. The identification results of the
hybrid system which contains three damage identification models are shown in Tables 6–8.

Table 6. Identification results of using single PNN classifier model.

PNN
Classifier

IA of Testing Samples for Each Pattern (%)
Total IA (%) Average of

Total IA (%)Pattern 1 Pattern 2 Pattern 3 Pattern 4

1 (NC1) 69 74 83 94 80
79.22 (NC2) 71 71 81 93 79

3 (NC3) 68 73 82 91 78.5

Table 7. Identification results of eigen-level fusion model.

Eigen Fusion
Method

IA of Testing Samples for Each Pattern (%)
Total IA (%) Average of

Total IA (%)Pattern 1 Pattern 2 Pattern 3 Pattern 4

1 (NC1 + NC2) 77 79 89 97 85.5
84.02 (NC2 + NC3) 75 77 89 93 83.5

3 (NC1 + NC3) 76 77 84 95 83

Table 8. Identification results of decision-level with fractal correlation dimension.

Classifiers Fusion
Method

IA of Testing Samples for Each Pattern (%) Total IA
(%)

Average of
Total IA (%)Pattern 1 Pattern 2 Pattern 3 Pattern 4

1 (Classifiers 1 + 2) 87 85 96 99 91.75

89.9
2 (Classifiers 2 + 3) 83 81 94 97 88.75
3 (Classifiers 1 + 3) 83 86 91 97 89.25

4 (Classifiers 1 + 2 + 3) 85 83 93 98 89.75

Comparing Tables 6–8, it can be found that average IA was remarkably improved
with the different damage identification models, which proved that the proposed hybrid
system can identify the damage successfully. The total IAs have no apparent change when
using four different classifiers fusion in the decision-level model. This is also proves again
that, for the different feature vectors, the proposed model was insensitive. Namely, the
proposed model has better robustness.

It also can be found that the IA of the three models in the hybrid system are all not very
high, which may be because of the influence of noise in the measurement and measurement
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error, the error in the process of obtaining the correlation fractal dimension and so on.
Therefore, in future study, it also needs to be improved the method of damage identification,
and decrease the influence the error may have on the measurement and calculation and so
on. Another study direction should be on how to eliminate the measurement noise, how
to improve the IA and so on. Through these studies, good identification results will be
obtained.

5. Conclusions

This paper proposed a novel hybrid data-fusion damage detection system which
contained three intelligent models. The study shows that the integration of FD and PNN
based on data fusion has great potential in the structural damage detection. An arch bridge
model and experimental test were used to validate the efficiency and robustness of the
proposed system.

The two main conclusions of the study are:

(1) The proposed system has excellent damage detection capability, noise-tolerance and
robustness. Its highlight is that it can offer three intelligent models, which can be
selected according to a variety of actual situations.

(2) The numerical simulation and experimental results show that, after the data-fusion
process, both the eigen-level model and decision-level model in the proposed system
can offer more precise and reliable detection results than that of a single PNN classifier.

However, the comparison between the work and SVM (support vector machine),
decision tree, random forest, as well as deep learning-based method, should be done in the
future. Moreover, multi-type-sensor system, multi-source information fusion algorithm and
multi-signature extraction technology should also be investigated in real civil engineering
in the future.
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