friried applied
b sciences

Article

Real-Time Cloth Simulation Using Compute Shader in Unity3D
for AR/VR Contents

Hongly Va 1@, Min-Hyung Choi 2 and Min Hong 3*

check for

updates
Citation: Va, H.; Choi, M.-H.; Hong,
M. Real-Time Cloth Simulation Using
Compute Shader in Unity3D for
AR/VR Contents. Appl. Sci. 2021, 11,
8255. https://doi.org/
10.3390/app11178255

Academic Editors: Enrico Vezzetti

and Pietro Piazzolla

Received: 20 July 2021
Accepted: 3 September 2021
Published: 6 September 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Software Convergence, Soonchunhyang University, Asan 31538, Korea;
vahonglykhmer@gmail.com

Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO 80217, USA;
min.choi@ucdenver.edu

Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Korea
Correspondence: mhong@sch.ac kr

Featured Application: The proposed method can be applied to represent the cloth object in
Unity3D for AR/VR application, interactive game development, force-based deformable object
simulation, etc.

Abstract: While the cloth component in Unity engine has been used to represent the 3D cloth object
for augmented reality (AR) and virtual reality (VR), it has several limitations in term of resolution
and performance. The purpose of our research is to develop a stable cloth simulation based on a
parallel algorithm. The method of a mass—spring system is applied to real-time cloth simulation
with three types of springs. However, cloth simulation using the mass-spring system requires a
small integration time-step to use a large stiffness coefficient. Furthermore, constraint enforcement
is applied to obtain the stable behavior of the cloth model. To reduce the computational burden of
constraint enforcement, the adaptive constraint activation and deactivation (ACAD) technique that
includes the mass—spring system and constraint enforcement method is applied to prevent excessive
elongation of the cloth. The proposed algorithm utilizes the graphics processing unit (GPU) parallel
processing, and implements it in Compute Shader that executes in different pipelines to the rendering
pipeline. In this paper, we investigate the performance and compare the behavior of the mass—spring
system, constraint enforcement, and ACAD techniques using a GPU-based parallel method.

Keywords: cloth simulation; Unity3D compute shader; mass—spring system; constraint enforcement

1. Introduction

Over the past few decades, the rising demand for visual realism in computer animation
has become a significant problem. AR and VR are techniques for providing the new user
experience with a realistic virtual object in a real-world or virtual-world scene, respectively.
Due to the low computing power of AR/VR devices, the performance of the simulation
using AR/ VR devices is becoming a major problem. The physically based simulation of
the 3D object is legitimately used on both rigid and non-rigid body objects. In non-rigid
body simulation, the 3D object constantly changes its shape. Therefore, the application of
a physically based simulation, such as surgical simulation, requires improvement in the
quality and performance [1,2].

Cloth simulation is an excellent example of a deformable object, since when stretching,
or wrinkling, it assumes different shapes. Therefore, dynamic cloth simulation has been
widely used in movies and games to represent realistic cloth behavior that interacts and
behaves similar to its real-world counterparts. The main goal of general 3D cloth simulation
is to simulate cloth objects using fundamental concepts of physics, and obtain real-time
performance (above 30 frames per second) for animation or simulation. However, higher
frame-rates (above 60 frames per second) are required for AR or VR simulation since the low

Appl. Sci. 2021, 11, 8255. https:/ /doi.org/10.3390/app11178255

https:/ /www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7264-1841
https://orcid.org/0000-0001-9963-5521
https://doi.org/10.3390/app11178255
https://doi.org/10.3390/app11178255
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11178255
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11178255?type=check_update&version=2

Appl. Sci. 2021, 11, 8255

2 of 20

framerates of VR and AR contents may induce dizziness or motion sickness for users. The
performance of physically based cloth simulation is strongly dependent on the resolution
of the model, due to the cloth models being a triangular mesh of particles. In general cloth
simulation, the cloth model employs a grid of nodes or particles, with each node linked with
its neighbor, and is known as a spring. In each frame of the simulation, each node displaces
to another position in a coordinate system that requires the mass—spring system (MSS)
method to resist the forces and maintain the distance of each spring [3,4]. However, when
a large time-step and stiffness coefficient are used, the spring force cause the numerical
instability, resulting in a super-elasticity effect or blow-up situation. In consequence, small
stiffness coefficients should be used to avoid this super-elasticity, then the cloth looks like
rubber. Under this situation, constraint enforcement can be a good role to control the
force of each spring. Similarly, it is difficult for the MSS to find the proper time-step and
coefficients to simulate cloth objects that act similar to their real-world behavior.

Since the computing and rendering of a deformable object in a game or VR/AR
have been increased to represent the realistic object, the resolution of the object has been
simplified to achieve real-time performance [5]. The approach of traditional serial process
of a central processing unit (CPU) to perform the cloth simulation is not suitable to solve
large and complex numerical equations in real-time, and a different approach is needed.
Therefore, cloth simulation can utilize parallel processing on the GPU, since it operates on
multi-cores and thousands of threads in massive parallelism [6]. Modern GPUs outperform
their CPU counterparts in terms of processing power, memory bandwidth, and efficiency.
For many years, GPUs have potentially powered the image rendering and animation on
the computer display, but they are able to do more [7].

Unity3D is a cross-platform game engine that is developed by Unity Technologies. It
is particularly famous for game development, VR/AR content, and physic simulation [8].
To avoid implementing data-based cloth simulation, Unity’s build-in module is used to
simulate the cloth object or deformable 3D object in general animation applications and
interactive games. Furthermore, the Obi Cloth, which is an additional extension that
exists in Unity3D, also provides the possibility of simulating the cloth in real-times using
a CPU-based method [9]. This seems to be a common problem in the performance of
large-resolution cloth models in real-time.

In this paper, we present the implementation of cloth simulation in Unity3D using com-
pute shader as a GPU-based parallel program. The specific contributions of our paper are:

e Cloth simulation is implemented based on the mass—spring system, implicit constraint
enforcement, and adaptive constraint activation and deactivation (ACAD), using
Unity3D compute shader.

e The parallel method of a sparse linear solving algorithm is utilized to accelerate the
performance of the constraint enforcement method.

The rest of the paper is organized as follows. Section 2 provides an overview of
the previous studies of cloth simulation. Section 3 presents the proposed method for
implementation based on the mass—spring system and constraint enforcement on GPU.
Section 4 compares the performance result of the cloth simulation using the mass—spring
system, constraint enforcement, and ACAD method that are implemented on Unity3D
compute shader. To compare and contrast each method in an understandable manner, we
conduct an experiment under the scenario in which a cloth object collides with a spherical
object. Section 5 concludes the paper.

2. Related Work

Previous approaches that have focused on cloth simulation in real-time have been
studied to represent relatively simple models, which concentrated on faster algorithms.
The finite element method (FEM) has been proven to be an accurate approach to simu-
late deformable models [10]. FEM is a time-consuming method, due to the method of
dividing an object into a large number of elements, and solving a large system of equa-
tions. However, many approaches have improved FEM techniques to be used in real-time

Appl. Sci. 2021, 11, 8255

30f20

simulation [11-13]. Mesh simplification approaches have been studied to simplify the
detail of the 3D object and maintain the quality of the mesh [14].

Miiller et al. [15] applied a position-based dynamic (PBD) method to simulate the
deformable cloth object. The position-based method is fast, stable, and robust, but is not
an accurate method. Hence, the velocity and force properties are ignored in PBD, which
directly change the position of each node using project position to satisfy all constraints.

Many force-based methods have been researched and applied to the real-time simula-
tion of deformable cloth objects. The explicit and implicit methods are used to obtaining a
numerical approximation to the solution of time-dependent equations [16]. The explicit
Euler method is a first-order method of linear approximation, which uses a discrete time-
step to approximate the solution of the motion equation. Since the explicit method is
relatively inaccurate compared to the implicit method, it requires less operation, and is
simple to implement. The position and velocity of a node are affected by the internal
force and external force, and the acceleration can be computed based on Newton’s second
law of motion. The mass—spring system method of deformable cloth simulation was first
introduced by Provot [17]. Georgii et al. [18] proposed a GPU structure to solve a numer-
ical equation of the mass—spring method with an efficient memory access pattern using
OpenGL architecture. Similarly, Mosegaard et al. [19] accelerated a spring-mass system for
a surgical simulator that was implemented on the OpenGL platform.

In the mass—spring system method, a spring’s force is used to maintain the distance
of the spring at each given time-step. However, the distance of each spring that can be
stretched or compressed causes a numerical problem. Provot [17] applied a dynamic
inverse constraint on springs that were over-elongated to prevent the “super-elastic” effect.
As the result, this method could help a model perform realistically, but the displacement of
each node directly ignored the physical consequence of the dynamic behavior of motion.
Consequently, an implicit constraint was used to solve the elongated springs beyond 10%,
and to prevent the excessive elongation of springs [20]. Goldenthal et al. used a smaller
threshold of (1 and 0.1)% to simulate a piece of cloth that was quite stiff [21].

2.1. Mass—Spring System

The mass—spring damper model consists of a list of springs that are defined at the
initializing stage of the simulation. Each spring is made by 2 nodes and denoted by p; and
p2 as the first and second node positions, respectively. Similarly, the velocities are denoted
by v and v, and the initial length or rest length of the spring is Ly [22]. Figure 1 illustrates
the structure of the mass—spring model used in the cloth simulation. A node can be linked
with other nodes in the grid where i and j are the coordinates (row and column indices) of
the 2D grid.

1
1
'
'
]

i

=9
Structural
Shear PR .
Bend & ------ .

Figure 1. Mass—spring model for cloth simulation.

General nodes can have 12 links except corner nodes and side nodes that have a
different number of links since their neighbor nodes do not exist. Therefore, three types of
spring can be classified as follows:

Appl. Sci. 2021, 11, 8255

4 0f 20

e Structural springs: node [i, j] can be linked with node [i, j+1], [i, j-1], [i+1, j], [i-1, j].
e Shear springs: node [i, j] can be linked with node [i+1, j+1], [i+1, j-1], [i-1, j-1], [i-1, j+1].
e Bend springs: node [i, j] can be linked with to node [i, j+2], [i, j-2], [i+2, j], [i-2, j].

In the edge-centric algorithm, the spring force is computed using Hooke’s law. Variable
K is added to the force equation to increase the stiffness of the spring, and parameter
K, is the damping coefficient of the spring. Note that the edge-centric algorithm obtains
two different directions of forces to each node in the spring. The force equation of the
edge-centric algorithm can be written as follows in Equations (1) and (2):

(Uz—vl)'(Pz—Pl))] P2 —p1
= |ke(lp2 — 1| — Lo) + k 1
fi (Ip2 = p1l — Lo) d< 72— | 02— 1| 1

fo=—-fi)

where, f1 and f; are the forces of the first node and second node in a spring. After spring
force computation, the accumulation of the force on each node is computed separately.
Differently, in the node-centric algorithm, each node accumulates the force from all springs
directly at the same time.

2.2. Implicit Constraint Enforcement

In research by Hong et al. [23], the implicit constraint enforcement method predicts
the correct direction of the constraint forces by using future time-step. A list of positions
of 3n size is used, where q = [x1, Y1, 21, X2, Y2, 22 - - - Xn, Yn, z,]T, and where n is the total
number of all nodes. The distance constraint based on Euclidean equation can be defined
as follows:

O = (x1—x2)° + (1 —y2)* + (21 —) — 17 (3)

where, 7 is the initialing distance between 2 nodes. Then the list of m distance constraints
can be written as the following equation:

(q,1) = [@}(g,1), @2(g,1),... @™ (q,0)] @

The partial differentiation on distance constraint concerning subscript g obtains a
Jacobian matrix @, of size of m x 3n. This can be calculated using the following equation:

A B 0 0
@y(gt)=| 0 C D 0

A= ’2(9(0 — Cx),Z(}/O — Cy),2<Zo — Cz) ,
B = |_2(x0 - Cx)/ _2(]/0 - Cy)/ _2(ZO - Cz)

C= ’2(361 — Cx),Z(yz — Cy),Z(Zz — CZ) ,
D = ‘72(3{1 — Cx), *2(]/1 — Cy), *2(21 — CZ)

' ©)

7

where, X0, Yo, Zo are the current position of a node, and Cy, Cy, C; are the fixed position of
the node. The system of constraint force equation can be written as follows:

Mg+ ®; A =F4 (6)

where, M is the mass matrix and the diagonal element stores the node’s mass, F4 is the
accumulation of gravity force and constraint forces acting on the node, CDqT is the transpose
of the Jacobian matrix, and A is the Lagrange multiplier vector of size m. The equation of
time integration can be defined as follows in the equation:

q(t+ At) = §(t) — MM DIA + AtM ™ FA (g, t) @)

Appl. Sci. 2021, 11, 8255

50f 20

q(t+ At) = q(t) + Atg(t + At) 8)

The integration time-step is At, so the constraint function of the next time is treated
implicitly, as follows in Equation (9):

D(q(t+ At),t+ At) =0)

A truncated, first-order Taylor series can be used to estimate Equation (9), and the
new constraint function of next time can be written as follows:

D(q(t), 1) + Pg(q(t), £)(q(t + At) = q(£)) + Pi(q(t), 1) At = 0 (10)

To eliminate q(t + At), Equations (7) and (8) are substituted into Equation (9). Putting
all of this together, we can solve the Lagrange multiplier by solving a system of linear
equations, as follows in Equation (11):

@yl0,OM1OTA = 500, 1) + 3 ula)+ @yl) (50 + M FAD) (D

Equation (11) is in the form of a linear system problem, and can be solved by a precise
and effective method. The conjugate gradient is the most well-suited algorithm for this
kind of system [24]. Equation (11) can be written as AA = B. The conjugate gradient method
is given by the following equation. The prediction vector, A initializes with 0. Equation (12)
can written as rg = pg = B. The routine to correct a prediction vector with i number of
iterations can be written as follows:

TozpozB—A/\ (12)
rii (13)
K, =
©plAp
Aig1 = A+ ap; (14)
rig1 =i — 0 Ap; (15)
T
Tipali+l
- 16
Bi r (16)
Pit1 =Tiy1 + Bipi (17)

2.3. Unity3D Compute Shader

In general, a Unity engine offers primary scripting written in C# programming lan-
guage to manage the general computation of object movement in the physics simula-
tion [25]. Since the general C# script executes all operations as a serial process, there are
limitations on the performance. Under these circumstances, the task of parallelism can
provide a better performance, since all operations are executed in the background on their
own thread. However, data parallelism in the GPU (also known as single instruction
multiple data) achieves a promising performance for the general purpose of physically
based simulation, since the computation and rendering have been done in the GPU.

Therefore, Unity3D provides the solution for GPU utilization by using Microsoft’s
DirectCompute 5.0 technology. Compute Shaders in the Unity engine is key to performing
general-purpose computing on the GPU. The compute shader is a programmable shader
stage that extends Microsoft Direct3D 11’s capabilities beyond graphics programming. Like
other shaders (vertex and fragment shader), a compute shader follows the syntax of high-
level shader language (HLSL). Normally, the compute shader script in Unity3D is written
in HLSL, and compiled to a specific platform (DirectX or OpenGL core). Therefore, the
hierarchy of the compute shader in Unity3D is similar to the compute shader in OpenGL,
but the compute shader in Unity3D consists of multiple kernels, unlike in OpenGL, which

Appl. Sci. 2021, 11, 8255

6 0f 20

Local Work Group Y
I

consists of a single kernel per compute shader. The compute space is required to manage
the number of threads in the local group. Additionally, the compute space of the kernel is
dependent on the algorithm and the problem of data. Figure 2 illustrates the scheme of the
compute space of the kernel.

Local Work Group X
X

Work Group X
1

Shared Memory

‘ Thread

‘ Thread

Thread

Thread

Thread

‘ Thread H Thread H Thread H Thread H Thread ‘

‘ Thread ‘ Thread I Thread ’ Thread ‘ Thread

‘ Thread H Thread H Thread H Thread H Thread ‘

A dnoany yao0pq

Figure 2. The compute space dimension of the kernel in Unity.

Compute space can be defined either as 1D, 2D, or 3D of the workgroup using Unity’s
APl in dispatching the function of compute shader, where each workgroup consists of a
local workgroup with shared memory that can be used for any thread in the same local
workgroup. The dimension of each local workgroup can be defined either as 1D, 2D, or 3D
of the thread, and is specified in the kernel of compute shader [26]. Note that each thread
in the local workgroup is executed in a non-sequential order, which gives an advantage to
the performance of the extremely large data. On the other hand, the data to be used in the
kernel must be ComputeBulffer type, which contains large arrays of structured data. It can
share with different kernels in a compute shader or the other compute shader as well.

3. Implementation of Cloth Simulation in Unity3D

In this section, we provide several techniques for the implementation of a cloth
simulation system in GPU. First, we describe the implementation method of MSS using
compute shader in Unity3D. We then describe the method to simulate the cloth model
using constraint enforcement. Significant information of the simulation includes the node’s
position, velocity, force, and normal vector, which are stored in ComputeBuffer object. We
use a simple sheet model to represent the cloth object.

3.1. Mass—Spring System on the GPU

In Figure 1, there are 12 directions of force acting on a single node. So, we use a
node-centric algorithm to accumulate the force of each node using the 1 thread per node
technique. Since the node in a cloth model can be represented as 2D, we can define the
compute space using the 2D dimension of the workgroup that each local workgroup

determined as (x = 32, y = 32, z = 1) in the kernel. Consequently, the dimension of the

workgroup is calculated as (x = {Rsf’zw —‘ JY= [C"l;;mn—‘ ,z=1), where Row and Column are

the numbers of nodes in the row and column of a cloth model, respectively.

To invoke each element of the buffer by the index of buffer properly, the index of the
2D thread is calculated following the scheme demonstrated in Figure 3. ThreadID is used
to indicate a thread throughout the entire distribution in the thread group in the form of
3D format, and can be calculated by GroupID x ThreadGroupSize + GroupThreadID, where
GroupID refers to the index of a specific workgroup, ThreadGroupSize is the total number
of how many workgroups there are in the compute space, and GroupThreadID is a unique
index of the thread in each local workgroup (local index).

Appl. Sci. 2021, 11, 8255

7 of 20

ith
1<

A QIprorg————

—

—_—

ThreadID X

Figure 3. Scheme of accessing buffer through the index of the thread.

We then calculate the index of the buffer as 1D by jth x Column + ith, where ith and
jth are the indices of the thread in the X and Y-axis of ThreadID, respectively. Algorithm
1 indicates the pseudo-code of the kernel to accumulate the spring force. Note that the
ComputeSpringForce() function follows Equation (1), which requires the position and
velocity of 2 nodes to manipulate the force as a result.

Algorithm 1 The node’s centric algorithm to accumulate spring force.

Spring force accumulation kernel

Begin

End

Input: Buffer Position, Velocity, Force
Output: Buffer Force

i < ThreadID.x

j = ThreadID.y

index < jx column-+i

Force[index] < ComputeSpringForce(nodeli, jl, nodel[i, j+1])
Force[index] <~ ComputeSpringForce(nodeli, j], nodeli, j-1])
Force[index] <- ComputeSpringForce(nodeli, jl, node[i+1, j])
Force[index] <— ComputeSpringForce(nodeli, j], node[i-1, j])
Force[index] - ComputeSpringForce(nodeli, j], node[i+1, j+1])
Force[index] - ComputeSpringForce(nodeli, j], node[i+1, j-1])
Force[index] «— ComputeSpringForce(nodeli, j], node[i-1, j-1])
Force[index] < ComputeSpringForce(nodeli, j], node[i-1, j+1])
Force[index] < ComputeSpringForce(nodeli, j], nodeli, j+2])
Force[index] < ComputeSpringForce(nodeli, j], nodeli, j-2])
Force[index] < ComputeSpringForce(nodeli, j], node[i+2, j])
Force[index] < ComputeSpringForce(nodeli, j], node[i-2, j])

3.2. Constraint Enforcement on the GPU

From Equation (11), we classify the operation into three parts, constructing a sparse
linear system, solving a sparse linear system, and computing constraint force. So, we use
three different compute shaders, and each computes shader consists of multiple kernels, as
shown in Table 1:

Appl. Sci. 2021, 11, 8255

8 0of 20

Table 1. List of compute shaders to use in the constraint enforcement algorithm.

Thread in a Local

Compute Shader Kernel Number of Workgroups Workgroup
computePhi() < [%111) (1024, 1, 1)
Comstructings computeVect() < P\{%giﬂ’l’g (1024,1, 1)
onstructingSys
Constraint:
computeRHS() ([%hl) (1024, 1, 1)
SpMM() ([Constraints—‘ "Constraints—‘ 1) (32’ 32, 1)
32 4 32 4
initialStep() ([%WM) (1024, 1, 1)
max nn.
SpMV() ([max(nnz) W) (1024,1, 1)
LinearSystemSolving computeAlpha() < [Conlsot;imtﬂ .1, 1) (1024,1, 1)
Conjugate Gradient
(Conjugate Gradient) updateLambda() ([Corllségimts“ 1, 1) (1024, 1,1)
computeBeta() < [Consmmtﬂ 1, 1) (1024, 1, 1)
updateP() ([Constramtﬂ,m) (1024,1, 1)
ConstraintForce computeForce() < [COHStramtﬂ 1, 1) (1024,1, 1)

A Jacobian matrix (J) is obtained by partial differentiation of the distance constraint
equation and consists of lots of zero values. In this case, the sparse matrix format is
the most suitable in terms of memory allocation and performance, since it contains only
non-zero (nnz) values. The] matrix has m x 3n size, and each row possibility consists of
6 nnz values. As a result, the nnz elements are arranged uniformly near the diagonal of a
matrix J. General operation, such as sparse matrix-matrix multiplication (SpMM), sparse
matrix—vector multiplication (SpMV), and transpose sparse matrix—vector multiplication
(SpMVT), is the bottleneck in the simulation.

Under these circumstances, ELLPACK and Compressed Sparse Row (CSR) format
are considered for the structure of the] matrix. ELLPACK format obtains a good result
of the performance as compared to CSR format, but CSR format has an advantage over
ELLPACK in being faster at performing the SpMVT operation [27]. In CSR format, there
are three lists to represent the non-zero values, a list of the non-zero elements (A), a list of
the column indices of the non-zero elements (JA), and a list of the compressed row indices
of the non-zero elements (IA). Note that the list of the compressed row indices is of length
m + 1, and each element of the IA points to row starts in the JA and A.

Another advantage of the CSR format is a self-transpose operation, which does not
require an additional operation to transpose each element of the] matrix. From the idea of
CSR format, the new transpose of] matrix can now be stored in Compress Sparse Column
(CSC) that has three lists similar to the CSR format. The transpose of CSR format, denoted
by B, obtains the same order of the three lists, the IB list now represents the row indices
of the non-zero elements, and the]B list is a list of the compressed column indices of the
non-zero elements.

The size of the system matrix in Equation (11) is m x m, but it is a sparse matrix,
so it can be represented by coordinate sparse matrix format (COO), and it stores each
non-zero element in a list of triplets (nnz value, row index of the non-zero value, column
index of the non-zero value). Table 2 shows the list of buffer objects used in constraint
enforcement. Since the size of the buffer to store data is static and cannot be changed
during the simulation process, each bulffer is initialized with a defined number.

Appl. Sci. 2021, 11, 8255

9 of 20

Initializing buffers

Table 2. List of the buffers used in constraint enforcement algorithm.

Buffer Size Data Type Description
Phi m Float Vector ®(g, t)
Vect 3n Float Vector (4q() + M~LFA(g, t)).
Rhs m Float Right-hand side vector of Equation (11)
Lambda m Float a vector Lagrange Multiplier (1)
A 6 X m Float Vector of nnz value
IA m+1 Integer Compressed row index for nnz value of A
JA 6 X m Integer Column Vector of A indices
1B 6 X m Integer Row Vector of B indices
JB m+1 Integer Compressed column index for nnz value
Sys nnz Vector3 System matrix of Equation (11)
nnz 1 Integer Number of the non-zero value of the system matrix
Force 3n Float Vector of constraint force

In order to perform cloth simulation using constraint enforcement method using the
kernel in GPU, a ComputeShader.Dispatch() function is called in a simulation loop with
the given kernel name and specific size of the workgroup. Note that each kernel in a
compute shader performs a specific task and each kernel is performed after the process
of the previous kernel is finished. So, between calling each kernel, a synchronization
is performed in the abstract, to avoid the issue of the process interruption and thread
divergence. Due to the different dimensions of data, the linear solving algorithm is divided
into multiple kernels with a different number of threads. Figure 4 demonstrates a flowchart
of the proposed algorithm to compute constraint force using kernels in compute shader.

Initializing compute

shaders
dispatch dispatch dispatch . |)
] computePhi() computeVect() N conputeRHS() [>|dispatch SpMMO
I
¥
dispatch .] dispatch N dispatch Ll dispatch dispatch
initialStep() | dispatch SpMV() = computeAlpha() updateLambda() computeBeta() N updateP()
t No
No
Render cloth object Time integration disp at‘ch [—Yes Max number of iteration ?
method computeForce()
Yes End

Figure 4. Flowchart of cloth simulation using constraint enforcement method with compute shader in Unity.

As shown in the flowchart, at the start of simulation all GPU buffers are initialized
and data are filled in the array of the buffer. In the initializing stage of compute shader,
the specific buffer is required to allow permission of the buffer manipulation in the GPU
kernel, and a uniform variable can also be put in at this stage. Henceforth, the simu-
lation loop is performed by dispatching computePhi() kernel to compute the ®;(g,),
a vector in GPU, and stores in the Phi buffer. In the same kernel, the Jacobian matrix

Appl. Sci. 2021, 11, 8255

10 of 20

(®y) is created as well. After that, the simulation dispatches computeVect() kernel to
compute the (ﬁq(t) + M~ 1FA(g, t)) vector, and stores in Vect buffer. The right-hand
side of the system is then computed by dispatching computeRHS(), and the result of
(ﬁd)(q,t) + 4 Di(q, 1) + Py(g,t) (ﬁq(t) + M~1FA(g, t))) is stored in Rhs buffer. In con-
sequence, the system matrix that is stored in the COO can be computed by the SpMM
kernel as expressed in Algorithm 2:

Algorithm 2 The SpMM algorithm kernel.

SpMM

Input: Buffer A, IA, JA, 1B, JB
Output: Buffer Sys

Begin
i < ThreadlID.x
j < ThreadID.y
rowStart < TA[i]
rowEnd < TA[i+1]
colStart < JB[j]
colEnd <]JBJ[j+1]
value < 0
for ia + rowStart to rowEnd do:
collndex «+ JAl[ia]
for jb < colStart to colEnd do:
rowIndex < IB[jb]
if collIndex == rowIndex do:
value « value + (Afia] x A[jb])
end if
end for
end for
if value != 0 do:
InterlockAdd(nnzIndex,1)
COO[nnzIndex] < float3(i,j,value)
end if
End

An atomic operation is required to increase the index of the COO matrix and to avoid
data racing when writing a new value to the nnz buffer. The next step is a linear solving
process that applies a conjugate gradient (CG) algorithm and implements it on multiple
kernels. The most significant operation of the CG algorithm is the SpMV operation, COO
matrix multiply with vector. Algorithm 3 shows the pseudocode of the SpMV kernel:

Algorithm 3 The SpMV algorithm kernel.

SpMV

Input: Buffer Sys, nnz, P
Output: Buffer Result
Begin
i < ThreadID.x
if i <nnz do:
nnz_row < Sysl[i].x
nnz_col < Sys[il.y
nnz_value < Sysli].z
result < nnz_value x P[nnz_col]
InterlockAddFloat(Result[nnz_row],result)
end if
End

Appl. Sci. 2021, 11, 8255

11 of 20

In the SpMV kernel, the function InterlockAdd() is not supported with floating-point
value, so an InterlockedCompareExchange() is used instead to perform concurrent sum on
the element buffer with the uint data type, and the new uint data type is then converted to
float data type. The simulation dispatches all kernels in the CG compute shader to obtain
the approximated value buffer; the lambda buffer is then used to compute constraint force
based on Equation (6), and applies the SpMVT algorithm. The algorithm of SpMVT is
inspired by the research of Steinberger et al. [28], to compute the constraint force, and uses
the node’s force in time integration method to find the next position of the nodes in a cloth
object. The position of all nodes is used to rendering the cloth object as well.

3.3. Adaptive Constraint Activation and Deactivation

The constraint enforcement attempts to solve a large data in each frame of the simula-
tion. Therefore, the ACAD method is properly used. Figure 5 demonstrates a flowchart of
the ACAD method. Both the mass—spring system and constraint enforcement are used in
the ACAD method to reduce the computational burden of constraint enforcement.

Initializing buffers

Initializing compute
shaders

Compute spring
force

Deactivate spring
(spring force = 0)

Generate constraint
(activate constraint)
Constraint force
computation

Deactivate constraint
(activate spring)

Yes

If spring length > 10% of rest length
or spring length < -10% of rest length

No
Accumulate spring force
(section 3.1)

Time integration
method
Render cloth object

No

Figure 5. Flowchart of cloth simulation using the ACAD method with compute shader in Unity.

In the mass-spring system, a spring can be compressed or stretched in each frame of
the simulation, and accurate force is used to prevent the elongation of spring. The process
of the ACAD starts from the computation of spring force; at the same time the current
length or spring is computed, and compared to a defined threshold. If the spring exceeds
10% of the spring rest length, those springs are deactivated, and generate the implicit
constraint or activate constraint in order to find the constraint force. The implicit constraint
can be deactivated after the constraint force is found using the constraint enforcement
method. As a result, the spring force and constraint force are accumulated together for
each node to perform the time-integration method, and displace the node’s position.

Appl. Sci. 2021, 11, 8255

12 of 20

3.4. Cloth—Sphere Collision Detection and Response

In this section, we describe how the cloth object performs collision detection and the
response algorithm with the 3D sphere object. In Unity3D, there is a 3D sphere object with
a sphere collider, so we use node-sphere distance in order to detect the collision at each
frame after the time-integration method is performed. Figure 6 illustrates the scenario
when a node in the cloth model collides and before it collides with a spherical object.

Figure 6. Collision detection between node and spherical object.

In Figure 6, the old position is by py and the new position is p;. Let pl be the approx-
imation of the new position after the pj is updated. Then, the distance between p and
the center O of a sphere can be calculated, and readily compared with the radius r of the
spherical object. When the collision occurs, the distance between p, and the center O is
smaller than the sphere’s radius 7. The new position and velocity should be calculated
according to solving this collision. Algorithm 4 demonstrates the proposed simple collision
detection and response algorithm for the cloth simulation.

Algorithm 4 The algorithm for collision detection and response.

Collision detection and response

Input: pg, p, vo, O, 1, offset
Output: p1, v1
Begin
If distance(p' -O) < r do:
distance < py-O
vp1 < O + normalize(distance) x (r + offset)
v1 < normalize(distance) + normalize(vg)
End if
End

3.5. Normal Vectors Computation Based on Triangle Model on the GPU

Another property of the node, the normal vector is significantly used for rendering
cloth objects with lighting and shadow casting. In a triangle of the cloth model, there
are 3 vertices V1, V; and V3. To find a normal vector, the cross product of Vi x Va3 is
calculated, where V1, = V, — V7 and Vo3 = V3 — V5. However, in the cloth model, all
triangles are connected sequentially, then all normal vectors of the triangle are calculated,
and the normal vectors of vertices are simultaneously accumulated. From the hierarchy
to compute the spring force in the mass—spring system method, the same structure can
be defined to compute each normal vector of a vertex concurrently. In a cloth mesh, a
single vertex is connected with 8 triangles, which means that each thread performs the
computation of the normal vectors, and accumulates the normal value from 8 triangles in
4 quadrants. Algorithm 5 shows the pseudo-code of the normal vector computation.

Appl. Sci. 2021, 11, 8255 13 of 20

Algorithm 5 Pseudocode of the normal vector computation algorithm.

Normal vector computation

Input: Buffer Position
Output: Buffer Normal
Begin
i < ThreadID.x
j < ThreadID.y
index < jxcolumn-+i
n < vector3(0,0,0)
ny < Compute 1y normal of 1st quadrant
n3 <— Compute normal of 2nd quadrant
ny < Compute normal of 3rd quadrant
n5 <— Compute normal of 4th quadrant
n<— Z?:ln,-
Normal [index] < Normalize (n)
End

4. Result
4.1. Experimental Environment

Table 3 shows the specifications with which our experiment was conducted on
the desktop:

Table 3. Experimental environment.

Component Specification
oS Windows 10 Pro
10.0.1.19042 Build 19042
CPU Intel® Core™ i7-7700
RAM 16 GB
NVIDIA GeForce GTX 1070
GPU 8 GB V-RAM
IDE Unity 2020.3.8f1,
Microsoft Visual Studio Community 2019 version 16.10.3
HLSL Shader model 5.0
MAX thread per local 1024
workgroup

4.2. Rendering Method

We applied two different methods to render the proposed GPU cloth model using
Unity3D. In the first method, the calculation has been done by compute shader that is
dispatched in the C# script, and the vertices’ position are stored in the GPU buffer as well.
The custom shader is required to shade the cloth object based on the vertices” position and
normal vector, then the ambient, diffuse, and specular lighting can be applied as well to
render the cloth model. In the second method, a custom shader for shading the cloth object
is optional, since it can use the default material that Unity provides to the mesh object.
However, the disadvantage of this method is that it directly modifies the mesh’s vertices in
the CPU. In consequence, it can cause further problems in terms of performance since the
data transferring processing from GPU to CPU is time-consuming.

Appl. Sci. 2021, 11, 8255

14 of 20

4.3. Performance Result

In this work, the vertical synchronization (VSync) is deactivated to compare the
performance of the simulation measures by frames per second (fps). Since the measurement
unit of performance (fps) defines how many average frames are rendered in a second, it
shows how fast the algorithm runs. The proposed algorithm can be applied in VR and
AR simulation, where the peak performance term of normal simulation is a performance
in which simulation can be performed above 30 fps for general simulation, and above
60 fps for VR and AR simulation. Figure 7 compares the performance result between the
CPU-based and GPU-based mass—spring system and Unity’s cloth object with different
resolutions of the number of nodes n. However, Unity3D’s cloth object does not provide
the number of springs, since the number of vertices is adapted to the types of the mesh.
To make a fair comparison, the simulation performs 500 frames, while the average fps is
calculated at the end of the simulation for different resolutions of the cloth model.

The peak performance result of the cloth simulation using Unity’s cloth object can
achieve 65,636 nodes with 44.08 fps. Note that we use “Plane” mesh to represent the cloth
object for Unity’s cloth method, and the limitation on vertices number is 65,536, but in the
other method does not require “Plane” mesh, since it uses custom shading technique for
rendering. On the other hand, the peak performance result of the cloth simulation using
the CPU-based mass-spring system only achieves 9216 nodes in an average 44.83 fps, while
the performance of GPU-based algorithm using compute shader obtains more than 200 fps
in all cases.

250 222.46 220.44
. 217.69 215.39 212.22 206.89
200 18947 180.74
_ 144 156.6
. 150 126.36
- 102.23
100 77.1
- 44.8 - 44.08
5 ;
20.2 8.6
0
n=1,024 n=4,096 n=9,216 n=16,384 n=25,600 n=65,536
Resolution of cloth model
Unity's cloth CPU-based mass-spring system W GPU-based mass-spring system

Figure 7. The performance comparison of cloth simulation using Unity’s cloth, CPU-based, and
GPU-based mass—spring system.

Therefore, Figure 8 presents the maximum resolution of the GPU-based mass-spring
cloth model to find the real-time performance. The peak performance of the mass—spring
cloth model is about 34.81 fps for the cloth object that consists of 7,820,856 nodes. Compared
to the CPU-based algorithm that uses serial process, the GPU-based algorithm delivers
significantly better results, due to the massive parallelism of multi-thread that processes
data in the GPU.

Appl. Sci. 2021, 11, 8255

15 of 20

201.99

152.8

111.02

82.68
100 64.22

34.81 2971

50 I I
; H B =

Resolution of cloth model

Figure 8. The performance result of cloth simulation using the GPU-based mass—spring system
measured in fps.

For these reasons, we further investigate the performance of cloth simulation using
constraint enforcement that is implemented in Unity compute shader and measured in
fps. Since the constraint enforcement algorithm is stable and accurate, we use only two
types of spring (structural and shear), compared to the cloth model using all types of
spring. Figure 9 illustrates the performance result of the cloth simulation using constraint
enforcement in Unity with the different resolutions of the cloth model.

250
211.69

200
167.5
i 150 119.98
& 104. 97.35
100 78.9 - 8011
: 497 . Y wx
5 I I I I 38.0 319 27 2168
0 I : : :

n=576 n=676 n=784 n=900 n=1024 n=1156 n=1296 n=1440

Number of vertices

o

m All types of spring M2 types of spring

Figure 9. The performance result of cloth simulation using GPU-based constraint enforcement with
and without bend spring and measured in fps.

A cloth model using the constraint enforcement method with all types of springs
obtains only 1156 nodes and 6598 springs with an average fps of 31.95. By reducing
the level of spring to 3906, the performance achieves 66.06 fps on average for the same
cloth model. On the other hand, the real-time performance of the cloth model using
constraint enforcement algorithm can handle the resolution of the cloth with 1440 nodes
and 5550 springs, and still achieve 44.25 fps. Since the constraint enforcement attempts
to solve the large system in real-time, the maximum number of springs to be used for the
cloth model is about 6000.

Since the cloth model using the GPU-based mass—spring system is extremely fast, but
unstable when using a large time-step, the method of ACAD is applied to enhance the
performance of the complex and large resolution of a cloth model. Figure 10 demonstrates

Appl. Sci. 2021, 11, 8255

16 of 20

the performance result of the cloth model with 1024 nodes and 5826 springs. The result
shows that the constraint enforcement method can barely obtain the performance of cloth
simulation in real-time, while the mass—spring system method outperforms the other
methods with 222.46 fps on average. Alternatively, the ACAD method also confirms that it
is a good choice for representing the cloth model, since it can obtain about 206.44 fps for
the experimental cloth model.

GPU ACAD I 206.44
CPU ACAD I 108.04
GPU Constraint (2 types of spring) N NN 30.11
GPU Constraint (all types of spring) I 38.04
CPU mass-spring I 14443
GPU mass-spring I 202 .46

Unity'cloth I 139.47

Method for represent cloth model

0 50 100 150 200 250
fps

Figure 10. Performance comparison of the cloth simulation using the different methods.

The coefficient stiffness ks in Equation (1) defines the stiffness of the spring in a
cloth model. Figure 11 shows the different behavior of the model using a GPU-based
mass—spring system with 0.005 time-step.

ks =100

ks =1,000

Figure 11. The behavior of the cloth using the mass—spring system method with different ks.

In the constraint enforcement method, the cloth model using all spring types can
reduce the performance of the simulation. Therefore, the cloth model using only two types
of spring (structural and shear) is much faster for the same resolution of a model, but the
cloth is stretched more than the model using all springs since the bend spring-type uses
force to pull the other nodes, as shown in Figure 12.

Appl. Sci. 2021, 11, 8255

17 of 20

Figure 13 illustrates the different behavior of the cloth model using our proposed
method, and shows that the ACAD method is much faster than the constraint enforcement
method. Since the spring force and constraint force are used, the spring coefficient ks affects
the behavior of the cloth. The cloth model with large ks presents as hard cloth, while the
cloth model with small ks presents as soft cloth.

Constraint enforcement method with all types of spring

Constraint enforcement method with 2 types of spring

Figure 12. Comparison of the behavior of the cloth model using the constraint enforcement method
with and without bend spring, and using a 0.005 time-step.

ACAD method with ks =100

ACAD method with ks = 1,000

Figure 13. Comparison of the behavior of the cloth model using the ACAD method with different
coefficient ks, and using a 0.005 time-step.

The large time-step can also be applied to the cloth simulation based on the constraint
enforcement method. However, the usage of all types of spring is more stable and accurate
compared to the cloth without bend spring type. Figure 14 demonstrates the different
behavior of the cloth model using the constraint enforcement method with a large time-step.

Appl. Sci. 2021, 11, 8255

18 of 20

Constraint enforcement method with all types of spring

LLIY
ERERL
yott

Constraint enforcement method with 2 types of spring

Figure 14. Comparison of the behavior of the cloth model using the constraint enforcement method
with and without bend spring, and using a 0.016 time-step.

Figure 15 shows different behaviors of the cloth model using our proposed method
and the mass—spring system method with large time-step. The cloth model using the
mass—spring system method can blow up when a large time-step is used to perform the
collision scenario. Therefore, the cloth model using the ACAD method will not blow up
under the same conditions and will respond well to the collided object, but the cloth is
stretched since the spring force is inaccurate at condition ks = 200.

Mass-spring system method

ACAD method

Figure 15. Comparison on the behavior of the cloth model using the mass—spring system method
and the ACAD method with a 0.016 time-step, 200 ks.

Moreover, although the explicit Euler integration method is fast for estimating the
next status of the velocity and position, it may cause much error in the result for large
time-step compared to the Runge-Kutta method which provides more accurate estimation
using extra computational costs. However, an implicit Euler method would help reducing

Appl. Sci. 2021, 11, 8255

19 of 20

References

the error much more than an explicit method in the presence of collision, but it requires
more computational costs as well.

5. Conclusions

This research proposed a method to design and implement cloth simulation in Unity
based on the mass—spring system, constraint enforcement method, and ADAC method
with the parallel structure of compute shader kernel in GPU. Due to the usage of the
parallel method in GPU, the performance of cloth simulation is much faster than CPU-
based implementation. Additionally, the behavior results have shown that the mass—spring
system method achieves stable and effective cloth behavior in the case where a small
integration time-step and spring coefficient are used. Therefore, the constraint-based
method provides stable and effective control of cloth behavior even with collision objects,
and can be used with a large integration time-step. Using all types of springs to simulate a
constraint enforcement cloth model is more stable and accurate than using only two types
of springs. Our proposed method, ACAD, is used to reduce the computational burden
of the cloth simulation to achieve stable and effective cloth behavior with large time-step
during collision scenarios.

However, the limitation of the GPU-based mass—spring system approach is that it is
necessary to manually pre-define the grid of the nodes. In the case where different models
are used, the compute spaces should be modified to define the group of the thread in the
GPU. Similarly, the constraint enforcement method requires the optimization of the size
of the system matrix (COO matrix) to reduce the compute space in GPU. On the other
hand, we utilize the atomic operation in the GPU to perform concurrent sum on the buffer
data, but the usage of atomic operation is the main bottleneck of the whole operation in a
simulation. Another limitation is that we experimented with the proposed simulation only
with GPU NVIDIA GeForce GTX 1070; different GPUs may not perform our simulation
well, due to the maximum number of threads per workgroup.

In future work, we will look for a method to optimize the performance result of
the cloth simulation. In addition, we will apply parallel sum reduction to avoid the
use of atomic operations in the simulation. The adaptive coefficient algorithm including
machine learning and deep learning is required to study and predict the coefficient of the
algorithm with regard to the cloth material. Furthermore, our simulation was implemented
on Unity3D engine, which can be applied in the VR or AR application with real-time
performance, due to the usage of parallel GPU.

Author Contributions: M.H. provided conceptualization, project administration, and edited and
reviewed the manuscript. M.-H.C. provided conceptualization and edited the manuscript. H.V.
designed and implemented the simulation and wrote the original draft. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF-2019R1F1A1062752), funded by the Ministry of Education, was
also funded by BK21 FOUR (Fostering Outstanding Universities for Research) (No.: 5199990914048)
and was also supported by the Soonchunhyang University Research Fund.

Conflicts of Interest: The authors declare no conflict of interest.

1. Navarro-Hinojosa, O.; Ruiz-Loza, S.; Alencastre-Miranda, M. Physically-based visual simulation of the Lattice Boltzmann method
on the GPU: A survey. |. Supercomput. 2018, 74, 3441-3467. [CrossRef]

2. Zhang, X,; Yu, X,; Sun, W.; Song, A. An Optimized Model for the Local Compression Deformation of Soft Tissue. KSII Trans.
Internet Inf. Syst. 2020, 14, 671-686.

3. Zhao, P; Liu, J.; Li, Y.; Wu, C. A spring-damping contact force model considering normal friction for impact analysis. Nonlinear
Dyn 2021, 105, 1437-1457. [CrossRef]

4. Zhang, X,; Wu, H.; Sun, W.; Yuan, C. An Optimized Mass-spring Model with Shape Restoration Ability Based on Volume
Conservation. KSII Trans. Internet Inf. Syst. 2020, 14, 1738-1756.

http://doi.org/10.1007/s11227-018-2392-8
http://doi.org/10.1007/s11071-021-06660-4

Appl. Sci. 2021, 11, 8255 20 0f 20

10.
11.

12.

13.

14.
15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

Tian, H.; Wana, C.; Zhana, X. A Realtime Virtual Grasping System for Manipulating Complex Objects. In Proceedings of the IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), Tuebingen/Reutlingen, Germany, 18-22 March 2018; pp. 1-2.

Chen, Z.; Huang, D.; Luo, L.; Wen, M.; Zhang, C. Efficient Parallel TLD on CPU-GPU Platform for Real-Time Tracking. KSII Trans.
Internet Inf. Syst. 2020, 14, 201-220.

Li, J.; Guo, B.; Shen, Y.; Li, D. Low-power Scheduling Framework for Heterogeneous Architecture under Performance Constraint.
KSII Trans. Internet Inf. Syst. 2020, 14, 2003-2021.

Unity. Available online: https://www.unity.com (accessed on 19 July 2021).

Obi Unified Particle Physics for Unity. Available online: http://obi.virtualmethodstudio.com (accessed on 19 July 2021).
Marinkovic, D.; Zehn, M. Survey of Finite Element Method-Based Real-Time Simulations. Appl. Sci. 2019, 9, 2775. [CrossRef]
Lamecki, A.; Dziekonski, A.; Balewski, L.; Fotyga, G.; Mrozowski, M. GPU-Accelerated 3D Mesh Deformation for Optimization
Based on the Finite Element Method. Radioengineering 2017, 26, 924-929. [CrossRef]

Volino, P.; Magnenat-Thalmann, N.; Faure, F. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM
Trans. Graph 2009, 28, 105. [CrossRef]

Weber, D.; Bender, J.; Schnoes, M.; Stork, A.; Fellner, D. Efficient GPU data structures and methods to solve sparse linear systems
in dynamics applications. Comput. Graph. Forum 2013, 32, 16-26. [CrossRef]

Chen, Z.; Zheng, X.; Guan, T. Structure-Preserving Mesh Simplification. KSII Trans. Internet Inf. Syst. 2020, 14, 4463-4482.
Miiller, M.; Heidelberger, B.; Hennix, M.; Ratcliff, J. Position based dynamics. . Vis. Commun. Image Represent. 2007, 18, 109-118.
[CrossRef]

Eberhardt, B.; Etzmuf, O.; Hauth, M. Implicit-explicit schemes for fast animation with particle systems. In Computer Animation
and Simulation; Springer: Vienna, Austria, 2000; pp. 137-151.

Provot, X. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Graphics Interface; Canadian
Information Processing Society: Quebec City, QC, Canada, 1995; pp. 147-154.

Georgii,].; Westermann, R. Mass-spring systems on the GPU. Simul. Model. Pract. Theory 2005, 13, 693-702. [CrossRef]
Mosegaard, J.; Sorensen, T.S. GPU accelerated surgical simulators for complex morphology. In Proceedings of the IEEE VR 2005,
Bonn, Germany, 12-16 March 2005; pp. 147-153.

Hong, M.; Welch, S.; Choi, M.H. Intuitive control of dynamic simulation using improved implicit constraint enforcement. In Asian
Simulation Conference; Springer: Berlin/Heidelberg, Germany, 2004; pp. 315-323.

Goldenthal, R.; Harmon, D.; Fattal, R.; Bercovier, M.; Grinspun, E. Efficient Simulation of Inextensible Cloth. In ACM SIGGRAPH
2007 Papers; Association for Computing Machinery: New York, NY, USA, 2007; p. 49-es.

Baraff, D.; Witkin, A. Large steps in cloth simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques 1998, Orlando, FL, USA, 19-24 July 1998; pp. 43-54.

Hong, M.; Choi, M.H.; Jung, S.; Welch, S.; Trapp, J. Effective constrained dynamic simulation using implicit constraint enforcement.
In Proceedings of the 2005 IEEE International Conference on Robotics and Automation; IEEE: New York, NY, USA, 2005;
pp. 4531-4536.

Va, H.; Lee, D.; Hong, M. Parallel algorithm of conjugate gradient solver using OpenGL compute shader. |. Korea Soc. Comput. Inf.
2021, 26, 1-9.

Park, H.; Baek, N. Developing an Open-Source Lightweight Game Engine with DNN Support. Electronics 2020, 9, 1421. [CrossRef]
Compute Shader Overview. Available online: https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11
-advanced-stages-compute-shader (accessed on 19 July 2021).

Steinberger, M.; Zayer, R.; Seidel, H.P. Globally homogeneous, locally adaptive sparse matrix-vector multiplication on the GPU.
In Proceedings of the International Conference on Supercomputing 2017, Chicago, IL, USA, 14-16 June 2017; pp. 1-11.
Steinberger, M.; Derlery, A.; Zayer, R.; Seidel, H.P. How naive is naive SpMV on the GPU? In Proceedings of the IEEE High-
Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 13-15 September 2016; pp. 1-8.

https://www.unity.com
http://obi.virtualmethodstudio.com
http://doi.org/10.3390/app9142775
http://doi.org/10.13164/re.2017.0924
http://doi.org/10.1145/1559755.1559762
http://doi.org/10.1111/j.1467-8659.2012.03227.x
http://doi.org/10.1016/j.jvcir.2007.01.005
http://doi.org/10.1016/j.simpat.2005.08.004
http://doi.org/10.3390/electronics9091421
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader

	Introduction
	Related Work
	Mass–Spring System
	Implicit Constraint Enforcement
	Unity3D Compute Shader

	Implementation of Cloth Simulation in Unity3D
	Mass–Spring System on the GPU
	Constraint Enforcement on the GPU
	Adaptive Constraint Activation and Deactivation
	Cloth–Sphere Collision Detection and Response
	Normal Vectors Computation Based on Triangle Model on the GPU

	Result
	Experimental Environment
	Rendering Method
	Performance Result

	Conclusions
	References

