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Abstract: Operative delivery requires the use of a vacuum extractor; obstetricians can choose the
appropriate vacuum extractor to make the delivery process smoother and safer. However, there is
no biomechanical literature focused on the imposed effects of a vacuum extractor prepared with
different materials and vacuum pressure on the fetal head during the process of delivery. Therefore,
we first established and performed the finite element analytical model to explore the influences of
vacuum extractors manufactured from different materials on the fetal head under various extractive
pressures. The model of the vacuum extractor was designed as a hemispherical shape, and the
material of the vacuum extractor was composed of silicone rubber and stainless steel for comparison.
Four different vacuum pressures (500 cm H2O, 600 cm H2O, 700 cm H2O, and 800 cm H2O) were
applied as the factors for investigation. The reaction force on the fetal head, von Mises stress of
vacuum extractor, and von Mises stress on the skull of fetal head were measured and analyzed
to evaluate the effects. The results revealed that subtle divergent influences of different vacuum
pressures were observed, and the stainless-steel vacuum extractor induced a larger reaction force
(358.04–361.37 N), accompanied with stress (13.547–13.675 MPa), on the fetal head than non-metallic
or relatively softer materials. The results provide a reliable basis for selecting proper vacuum extractor
during operative delivery to avoid obstetrical complications, such as scalp scratch, cephalohematoma
and even intracerebral hemorrhage.

Keywords: vacuum extractor; attractive pressures; operative delivery; biomedical devices design;
biomechanics; finite element analysis

1. Introduction

Operative delivery is an important lifesaving obstetric technique in clinical delivery
units, wherein obstetrical physicians can perform a smoother and safer delivery with
the help of a vacuum extractor and forceps [1]. However, using these tools for assis-
tance in operative vaginal delivery still has related risks. Taking the vacuum extractor
as an example, mothers may have a relatively high chance of experiencing fourth-degree
perineal lacerations [2], and fetuses have higher chance of suffering from caput succeda-
neum, cephalohematoma, subgaleal hematoma, scalp laceration, and even intracranial
hemorrhage [3].

Currently, in accordance with the clinical demands, vacuum extractors with a great
variety of designs fabricated from different materials are available on the market [4].
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Vacuum extractors are made of different materials, such as soft (e.g., silicone rubber) and
hard (e.g., metals) materials [5]. According to the clinical experience of application, vacuum
extractors made of soft materials are easy to use and infants are less likely to be injured,
compared with vacuum extractors made of metal materials for extraction [6]. Moreover, if
the vacuum pressure is too high, the use of the vacuum extractor may still cause injuries
to the puerpera and newborns [7]. Although the above is known clinically, there is still
no associated biomechanical research that can clearly monitor the stressed influences of
vacuum extractors manufactured from diverse materials and at different vacuum pressures.

Childbirth, or labor, is a seemingly calm but crisis-rich process; even with the agree-
ment of the institutional review board and informed consent from the mother, clinical
experiments on the fetus during the birth process may induce accidental damage or in-
complete data. Observing the imposed force exerted by the vacuum extractor under the
attractive pressure on the fetal head during the delivery process is quite difficult in clinical
practice. Therefore, some scholars used a finite element analysis to evaluate the influences
on the fetal head during delivery in the past [8]. For example, observation of the distribu-
tion of pressure on the fetal head at the first stage of labor and analysis of the biomechanical
effects of placing the vacuum extractor in different positions were all performed by way of
finite element analysis, and even the finite element analysis could be used to evaluate the
effects of using forceps with different angles on the fetal head [9–11]. Therefore, although
exploring the influences of external force on the fetal head during operative delivery with
vacuum extractor in clinical practice is not easy to implement, the method of finite element
analysis could be executed to simulate the real clinical obstetrical situation exactly and to
investigate the biomechanical impacts of the attractive force projected to the fetal head in
the delivery process efficiently.

Based on the previous literature, though there have been some studies on the biome-
chanical analysis of forceps or vacuum extractors during delivery, there is still no further
thorough biomechanical research focused on the materials and the pressures of vacuum
extractors. Therefore, we firstly utilized the finite element analytic method to investigate
and verify the divergent influences of vacuum extractors made of different materials on
the fetal head under various extractive vacuum pressures. The results of this study could
provide a dependable biomechanical basis as a crucial reference for clinicians to reduce or
avoid the incidence of fetal head injuries and other obstetric complications while choosing
vacuum extractors during operative delivery.

2. Materials and Methods
2.1. The Simulation Geometry Model

In this study, to investigate the influences of using different materials of vacuum
extractors and different vacuum pressures, finite element models of vacuum extractor
and fetal head were established, and the design of vacuum extractor model was mainly
hemispherical. According to the previous literature [12], a cup of 5 cm diameter is suitable
for nearly all deliveries, so the vacuum extractor model used herein was a hemispherical
vacuum extractor with a diameter of 5 cm (Figure 1). This three-dimensional (3D) model
of the vacuum extractor was plotted, using 3D computer graphics software SolidWorks
(SolidWorks 2016, Dassault Systems SolidWorks Corp, Waltham, MA, USA). In addition,
because the effect of vacuum extractor on the fetal head was to be evaluated, a fetal head
model was established. The fetal head model was a computer model established mainly
based on previous research [11,13]. The fetal head computer model was mainly established
by referring to the fetal head anatomical model based on the following parameters of a
full-term fetus: the fetal head circumference is about 35 cm, the biparietal diameter is about
9.5 cm, the occipitofrontal diameter is about 12 cm, and the occipitomental diameter is
approximately 13.5 cm in size. In addition, the fetal head was divided into the structures
of the scalp and skull, which were a 1 mm-thick scalp and 2 mm-thick skull, respec-
tively. Therefore, the computer models used herein were mainly divided into three parts,
namely, the fetal head scalp, fetal head skull, and vacuum extractor (Figure 1). The proper
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location of the flexion point for vacuum-assisted delivery is found to be located about
3 cm anterior to the posterior fontanelle along the midline of the sagittal suture of the fetal
head [14]. The established model was imported into finite element analysis software ANSYS
Workbench (ANSYS Workbench 18.0, ANSYS, Inc., Canonsburg, PA, U.S.A.) for the finite
element analysis.
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Figure 1. The vacuum extractor plotted herein and the finite element analysis model of using a vacuum extractor on the
fetal head.

2.2. Loading Conditions and Boundary Conditions

In this study, we mainly simulated the force exerted by different vacuum extractors
and different vacuum pressures on the fetal head. Therefore, in this study, we adopted
a boundary condition and two different load conditions. The first load condition was to
simulate the vacuum pressure in the fetal head area that provides the head extraction force
when the vacuum extractor extracts the fetal head. According to the previous literature [12],
the operating vacuum pressure near all ventouses is 500–800 cm H2O (0.6–0.8 kg/cm2;
60–80 kPa). To explore the influences of different vacuum pressures, four different vacuum
pressures were selected as the factors to be investigated—500 cm H2O, 600 cm H2O, 700 cm
H2O, and 800 cm H2O. The area applied with the boundary condition setting of vacuum
pressure was mainly the inner side of vacuum extractor (Figure 2). The second load condition
simulates the situation of pulling outward by the vacuum extractor. The operation mode
herein applies a 1 mm displacement in the Y direction to the end of the vacuum extractor,
using displacement control (Figure 3). In addition, as for the boundary conditions herein, the
neck of fetal head was set as a fixed area (the area marked with green color in Figure 1), and
the displacement of the X axis, Y axis, and Z axis in this area was set as 0.
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Figure 3. Magnitude of load conditions used in this study. Amount of displacement applied to the
vacuum extractor.

2.3. Material Properties of the Model

The research model comprised three parts, namely the scalp of the fetal head, skull
of the fetal head, and the vacuum extractor. The materials used for the vacuum extractor
were mainly silicone rubber and stainless steel, which are commonly used clinically. The
defined properties of materials used herein were mainly obtained from previous studies
by other scholars [15–17]. All materials were assumed to be homogeneous, isotropic, and
linear elastic. Therefore, two independent parameters (Young’s modulus and Poisson’s
ratio) were used to express the properties of the materials. Table 1 shows the values defined
for the properties of the materials used in the simulation herein. In addition, the mesh
element used in the computer model of finite element analysis herein was a tetrahedral
mesh (Figure 4). After the convergence test, the model reached the 5% stop criteria of
convergence test [18], so the finite element mesh model used in this study is reasonable (the
mesh size used herein was 4 mm). The computer finite element analysis model adopted
herein had 131,198 nodes and 65,270 elements.

Table 1. Material properties setting in this study [15–17].

Material Young’s Modulus (MPa) Poisson’s Ratio

Scalp 16.7 0.42
Skull 2,500 0.22

Silicone Rubber 10.3 0.49
Stainless Steel 200,000 0.3
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After the finite element analysis, the main observation indices herein were the reaction
force at the fixed end, von Mises stress on vacuum extractor, and von Mises stress on the
fetal head skull (among which the value of the von Mises stress was defined as σvon =√

1
2 [(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2]), where σ1, σ2, and σ3 represent the principal
stress along the three axes). According to these observation indices, the biomechanical
effects of the vacuum extractors fabricated from different materials and at different vacuum
pressures on the fetal head were investigated.

3. Results

In this study, after the finite element analysis, the reaction force as well as the cor-
responding stress distribution on the vacuum extractor and fetal skull with the neck of
fetal head as the fixed end were obtained. Figure 5 shows the numerical magnitude and
stress direction of the reaction force on the fetal head with different materials of vacuum
extractors and under different vacuum pressures. Table 2 shows the magnitude of the
reaction force and its components in each axis. With the increase in vacuum pressure, the
magnitude of the reaction force increased slightly. In addition, when using vacuum ex-
tractors fabricated from different materials, the numerical values of reaction force differed
significantly. On the whole, when silicone rubber was used as the material of vacuum
extractor (12.229–15.064 N), the reaction force was smaller, compared with using stainless
steel (358.04–361.37 N).
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Table 2. Magnitudes and components of reaction force.

500-cm H2O 600-cm H2O 700-cm H2O 800-cm H2O

Silicone Rubber

X Axis 9.4194 × 10−5 N 1.1303 × 10−4 N 1.3187 × 10−4 N 1.5071 × 10−4 N
Y Axis −12.229 N −13.174 N −14.119 N −15.064 N
Z Axis 9.1197 × 10−5 N 1.0944 × 10−4 N 1.2768 × 10−4 N 1.4592 × 10−4 N

Total 12.229 N 13.174 N 14.119 N 15.064 N

Stainless Steel

X Axis 9.4307 × 10−5 N 1.1315 × 10−4 N 1.3199 × 10−4 N 1.5082 × 10−4 N
Y Axis −358.04 N −359.15 N −360.26 N −361.37 N
Z Axis 9.1211 × 10−5 N 1.0945 × 10−4 N 1.2769 × 10−4 N 1.4593 × 10−4 N

Total 358.04 N 359.15 N 360.26 N 361.37 N
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Figure 6 mainly exhibits the distribution of von Mises stress on vacuum extractors
with different materials of vacuum extractors and under different vacuum pressures.
The results showed that the greater the vacuum pressure applied, the greater the von
Mises stress on the vacuum extractor. In addition, when different materials were used
for the vacuum extractor, the magnitude of von Mises stress on the vacuum extractor
differed significantly. When the material used for the vacuum extractor was silicone rubber
(0.5858–0.9510 MPa), the von Mises stress on the vacuum extractor was smaller, compared
with using stainless steel.

Figure 7 reveals the von Mises stress distribution on the fetal head skull measured
under different vacuum extractor materials and pressures at different times (t = 0.25 s,
t = 0.5 s, t = 0.75 s and t = 1 s). As the pictures show, the effects of pressures at the
time from 0 to 0.5 s mainly indicate the vacuum pressure within the suction device,
and the effects of pressures at the time from 0.5 to 1 s principally imply the extraction
process of the vacuum extractor on the fetal head caused by pulling out. When the
time t = 1 s, the results show that the von Mises stress in the area on the fetal head
skull extracted by the vacuum extractor showed relatively greater stress with the
increasing vacuum pressure when silicone rubber was used as the material of the
vacuum extractor. Furthermore, the maximum stress occurred near the center of the
sphere part on the vacuum extractor. In addition, when stainless steel was used as
the material of the vacuum extractor, the von Mises stress on the vacuum head skull
increased slightly with the increase in the vacuum pressure; moreover, there was high
stress distribution on the vacuum head skull in the outer area of the vacuum extractor.
When silicone rubber (2.4755–4.0156 MPa) was used as the material of the vacuum
extractor, the value of von Mises stress on the fetal head skull was smaller, compared
with using stainless steel (13.547–13.675 MPa).
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4. Discussion

In this study, we successfully the performed finite element analysis to explore the
influences of vacuum extractors fabricated from different materials and under different
vacuum pressures on the fetal head during the delivery process. To date, there is no
detailed mechanical basis for investigating the influences of using vacuum extractors made
from different materials in clinical practice. The results of this study could provide a
reliable reference basis for clinical obstetricians for choosing the material and magnitude of
pressure of the vacuum extractor when they are needed for operative delivery. In addition,
based on these results, the complications, including head deformation, scalp abrasion, even
cephalohematoma, and intracerebral hemorrhage caused by the vacuum extractor during
operative vaginal deliveries, could also be reduced and alleviated.

According to the observation of reaction force herein, when the vacuum extractor was
made of stainless steel, the fixed end of the fetal head neck was subjected to a relatively
large reaction force. The main reason can be explained by the content put forward in the
textbook, Mechanics of Materials [19]. F = σA and σ = Eε, where σ is the stress, F is the
external force, A is the cross-sectional area, E is the Young’s modulus, and ε is the strain.
Therefore, it can also be expressed as F = EεA. When the displacement changes given
are consistent and the stressed section is the same, the external force is proportional to
Young’s modulus. Therefore, as Young’s modulus of the stainless steel used in this study
was 200,000 MPa and that of the silicone rubber was 10.3 MPa, stainless-steel vacuum
extractors made the fixed end of fetal head neck subject to a relatively large reaction force.
In addition, by observing the influences of different vacuum pressures on the reaction
force on the fixed end of fetal head neck, when a greater vacuum pressure was applied,
the reaction force on the fixed end of the fetal head neck increased slightly. According to
the textbook, Mechanics of Materials [19], the mechanical analysis description for spherical
shells indicates that F = σ(2πrt) = p(πr2), where σ is the stress on the spherical shell, r is
the inner radius of spherical shell, p is the vacuum pressure, and t is the wall thickness
on the vacuum extractor. Hence, the reaction force on the fixed end of fetal head neck is
proportional to the vacuum pressure. The greater the vacuum pressure, the greater the
reaction force on the fixed end of the fetal head neck.

By observing the stress on the vacuum extractor, the greater the vacuum pressure, the
greater the von Mises stress on the vacuum extractor. Because σ(2πrt) = p(πr2), the stress
on the spherical shell of vacuum extractor was σ = pr/2t. Therefore, when the vacuum
extractor had a fixed shape, r and t in the formula were fixed values, so the stress on the
vacuum extractor was proportional to the vacuum pressure. Hence, the greater the vacuum
pressure applied, the greater the von Mises stress on the vacuum extractor. In addition,
when different materials were used for the vacuum extractor, the von Mises stress on the
vacuum extractor was based on σ = Eε; when the given displacement was the same, stress
(σ) was proportional to Young’s modulus (E). Therefore, using stainless steel as the material
of vacuum extractor caused relatively high stress (47.517–48.385 MPa) on the vacuum
extractor. Although using stainless steel had higher stress, compared with using silicone
rubber, the yield stress value of stainless steel was approximately 700 MPa [20]. In this
study, when stainless steel was used as the material of vacuum extractor, the result of stress
value on the vacuum extractor was much lower than 700 MPa. Therefore, using stainless
steel as the material of vacuum extractor does not cause permanent deformation of the
vacuum extractor, while using silicone rubber as the material is prone to deformation.

In addition, by observing the stress on the simulated fetal head skull structure, when
silicone rubber was used as the vacuum extractor material, the stress on the fetal head skull
was subjected to the attraction by the vacuum extractor. This would cause the fetal head
skull structure to be greatly deformed at the center of the sphere on the vacuum extractor,
so there would be relatively high stress, and the stress value would be greater with an
increase in vacuum pressure. In addition, when stainless steel was used as the vacuum
extractor material, because metals have relatively high strength, there was relatively high
stress in the outer area of the vacuum extractor when pulling out the infant during delivery.
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In addition, when stainless steel was used as the material, the value of von Mises stress on
the fetal head skull was larger, compared with using silicone rubber. The main reason is
that for the load conditions, when the same displacement was applied and stainless steel
was used as the vacuum extractor material, the structural deformation of the fetal head
skull was relatively large, owing to the high strength and small deformation of stainless
steel, so the stress value on the fetal head skull was relatively high when using stainless
steel. Therefore, the previous literature indicates that using non-metallic vacuum extractors
can reduce fetal skull injury [21]. The reason may be that using non-metallic vacuum
extractors have relatively low stress on the head skull.

There are some limitations in the finite element analysis. In this study, to evaluate the
data on reaction force, among the boundary conditions, the fetal head neck was set as a
fixed area, so such a setting would possibly cause the numerical results of reaction force
in this study to be even larger than the actual situation. The model structures of vacuum
extractors fabricated from two different materials evaluated herein were simulated with
the same model structure shape, mainly owing to the need to evaluate the influences of
different materials. To avoid the influences of different shapes, we herein used the same
model for vacuum extractors fabricated from silicone rubber and stainless steel. In addition,
the structure of fetal head model was simplified, and only two structures—the scalp and the
skull—were established. This simplification could simply evaluate the model we want to
analyze so that the research results could focus on identifying the differences in influences
of the factors we want to observe and investigate. In addition, this study simplified many
structures and organs within the pelvic cavity during the pregnant status, compared with
other, previous computer models [22]. This simplification can not only reduce uncertain
and overly complicated results caused by too many mutation parameters, but also reduce
the resistance of pregnant women to the fetal head during delivery. However, the data of
this study are slightly different from the actual data; such a simplification does not affect
the theme trend of this study.

With the help of the method of the finite element analysis, the results adopted in this
study revealed that the stainless-steel vacuum extractor with a higher Young’s modulus
has a greater reaction force and stress on the fetal skull than the materials with a lower
Young’s modulus; the attractive pressure of vacuum extractor on the fetal head still has
a slight upward trend as the attractiveness is raised. Although the values obtained from
this analysis are still different from the actual clinical situation of delivery, these results
more clearly reflect the obvious trend of the actual situation and could be further evaluated
and studied in the design of vacuum extractor accompanied with many types of research
on vacuum extractors as a reference or to be discussed in the future, such as different
types of vacuum extractors and external forces given to vacuum extractors in different
directions. All these research topics mentioned above could be explored and investigated.
The results of this study also provide an assured biomechanical basis for obstetricians
and gynecologists to select appropriate vacuum extractors and apply conscious suction
force during operative delivery, leading to the reduction and avoidance of major associated
complications caused by these instruments to improve the overall quality of delivery.

5. Conclusions

In this study, finite element analysis was firstly conducted to explore the divergent
effects of distinct vacuum extractor materials and different vacuum pressures on the fetal
head during vacuum-assisted operative delivery from the biomechanical perspective. The
results showed that the fetal head is exposed to relatively larger stress under the larger
vacuum pressure with only a slight upward enforcement. More importantly, the higher
Young’s modulus of the material of the vacuum extractor, such as stainless-steel, lead to
greater attractive reaction force and stress subjected to the fetal head, which may cause
subsequent damages. Therefore, according to the deductive results of the finite element
analytic methods, it provides the reliable suggestion that the obstetricians should choose
the vacuum extractor made of non-metallic, relatively softer or more elastic materials, such
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as silicone rubber with reasonable attractive force, during the whole clinical process of
vacuum-assisted delivery to avoid complications, such as scalp scratch, cephalohematoma,
deformation of the fetal head and even intracerebral hemorrhage caused by powerful
external reinforced force while simultaneously improving the safety and quality of medical
care of the mother, fetus or newborn during the entire process of operative vaginal delivery.
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