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Abstract: In this paper, an evolutionary technique is proposed as a method for generating new design
solutions for the floor layout problem. The genotypes are represented by the vectors of numerical
values of points representing endpoints of room walls. Equivalents of genetic operators for such a
representation are proposed. A case study of the design problem of one-story houses is presented
from the initial requirements to the best solutions. An evaluation method using requirement-weighted
fitness function for evolved plans is also proposed. The obtained results as well as the advantages
and issues related to such an approach are also discussed.

Keywords: evolutionary design; floor plan layout; vector-based genotype representation; requirement-
weighted fitness function

1. Introduction

Architectural designs of buildings are contemporarily created with the use of spe-
cialized CAD tools (like ArchiCAD by Graphisoft, Allplan by ALLPLAN, or Revit by
Autodesk). However, most of these tools are not very efficient in the conceptual stage of
design, in which the understanding of design requirements is often associated with visu-
alization of early conceptual solutions. As design problems are usually open-ended and
ill-defined, this design phase should be supported by a computer system which facilitates
decision making based on the initial visualization of users’ requirements and provides the
design knowledge required for reasoning concerning design solutions.

Over the past 50 years, a great deal of research has been conducted in the field
of computer-aided architectural design with the main goal of automatically generating
floor plans, which would be treated by designers as preliminary layouts to be further
modified and adapted by them [1–3]. In most existing approaches, the graph-based
representation of floor layouts is used [2,4,5]. In [6], an evolutionary technique based on a
graph representation of genotypes was proposed as a method for generating new design
solutions. In all these cases, floor plans are generated for given adjacency graphs, which is
computationally demanding. Obtaining visualizations of such graphs requires specifying
a geometric interpretation, which assigns geometric primitives to graph nodes, and then
arranging them in a way that preserves the graph adjacency relations. Moreover, the proper
arrangement of rooms may not exist, or the generation can result in layouts which may
not be architecturally and aesthetically meaningful. Modifying the obtained floor plans
according to the needs of the users and maintaining specific architectural requirements
requires modification of the adjacency relations in the corresponding graphs.

Another well-known approach to automate the generation of floor plans is based on
shape grammars [7–12]. In [13], an agent system combined with shape grammars was
used to support floor layout designs. However, shape grammar interpreters are difficult to
implement, as matching parametric shapes is still a challenging problem [14,15]. Moreover,
this approach does not give much possibility for designer interaction, thus losing the
human-centered perspective of the design. Thus, there is still a gap between the proposed
research and its practical aspects.
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In recent years, many approaches to the automation of floor plan design based on
artificial intelligence and machine learning methods have been developed. In [16], stochas-
tic optimization and a supervised learning algorithm based on Bayesian networks for
generating residential building layouts is presented. In [17], another data-driven technique
for constructing residential layouts is described, while in [18], a graph neural network
generating floor plans is presented. In [19], an evolutionary strategy which generates a
feasible layout solution, which incorporates complex requirements, is described, but the
implementation of the proposed approach is not presented. The construction of floor plans
using simulated annealing is discussed in [20], while in [21], reinforcement learning based
on a heuristic search technique called Monte Carlo tree search was used to generate a
feasible dimensionless rectangular floor plan corresponding to an adjacency graph given
by the user. A generative expert system for the design of building layouts is proposed
in [22].

Most of the above-mentioned methods are restricted to a single layout generated
for the specified constraints, are limited to rooms with rectangular boundaries or are not
suitable for complex layouts design, as their time complexity is very high due to the
stochastic nature of the algorithms used. In methods where graphs describing layouts are
represented within deep networks, the networks first map the graphs into feature vectors,
which are then transformed into floor plans. Moreover, a large amount of data is needed to
attain better accuracy.

Therefore, in this paper, an evolutionary technique is proposed as an efficient method
for generating a variety of topologically distinct design solutions for the given floor lay-
out problem. As the genotypes corresponding to the solutions are represented by the
node-based structure, where nodes represent the meeting points of the room walls, the
visualization of the obtained floor plans is straightforward. Such a representation is effi-
cient, and the computational cost of the operations performed for it is low. This allows
for representing not only rectangular spaces but any rectilinear rooms as well. It also
implements the actual dimensions of the designed floor layout. Moreover, in our approach,
the specified design constraints and requirements are taken into account by the fitness
function, and by using optimization techniques, the proposed framework generates floor
plans together with an assessment that determines the degree of their compliance with the
design task specifications.

The problem of generating new designs can be seen in computer science as a search
problem [23]. There are many different approaches to search problems, with one of them
being the evolutionary technique. It is generally based on natural evolution, where instead
of working with one solution at a time, a larger subset of the search space, known as a
population, is considered. In the design context, this translates to evaluating, testing and
refining many designs (instead of just one) at the same time. Moreover, it can be observed
that as an evolutionary search consists of evaluating and refining possible solutions, it
can be seen as analogous to a human design iterative process of analysis, testing and
optimization [24]. Like in the refinement step in human design, which is based on earlier
knowledge, analysis and testing, the evolutionary search designs to be modified are
determined according to their evaluation (so-called fitness). The fitter the design, the more
chances it has to contribute to the newly generated and refined designs [25,26].

No formal definition of an evolutionary algorithm exists, but there is an agreement
that some standard elements such as a population of solutions, a method of encoding them,
genetic operators that can generate new elements, an evaluation method, a method of
selecting elements to be transformed and a stop condition for the whole process must be
defined [23–26]. There has also been a lot of research in different types of evolutionary
algorithms. The domain, collectively called evolutionary computation, includes such
approaches as genetic algorithms (GAs), introduced in [26], evolutionary strategies (ESs),
evolutionary programming (EP) and genetic programming (GP).

In this paper, evolutionary programming is proposed as a method for the quick
generation of many possible (but still valid) floor layouts as early solutions of the given
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design task. This allows for visual exploration of the designer’s preliminary ideas, which is
necessary in the conceptual phase of design. In evolutionary programming, the crossover
operation is not used, while the mutation mechanism is constructed in such a way that
radical changes are very unlikely and weak changes are preferred. In the evaluation
module, the domain knowledge is required to decide which generated potential solutions
are to be kept in future evolution cycles. In this manner, a gradual improvement in the
overall quality of the proposed solutions is obtained.

In the proposed framework for visual floor plan generation, early design solutions are
generated based on the designer’s knowledge, and the design specifications are determined
in collaboration with the customer. In these specifications, the required number of rooms,
their areas and functions as well as the rules of their arrangement can be determined.
Design constraints as well as many requirements (called hard ones) determined in the
specifications are to be fully satisfied (e.g., ‘one room must be at least 27 m2’). Some other
requirements are soft ones (i.e., they are to be fulfilled to some degree (e.g., ‘the kitchen
should be big’)). There are also sharp requirements, the fulfillment of which would be
desirable but is not absolutely necessary (e.g., ‘the wardrobe should be next to the main
bedroom’) [27]. As most design problems involve several criteria, the weights determining
their importance can be defined. Then, the quality of the generated solutions and the
degree to which they meet the design specifications can be properly assessed.

In the area of computer-aided design, the problem of how to represent the objects to
be designed is of high importance. Over the years, many different approaches have been
used to represent objects such as boundary representations, sweep volume representations,
surface representations or Constructive Solid Geometry (CSG) [28–30]. These methods
rely mainly on the geometrical features of an object, such as the size or position of its
elements. Other proposed approaches are based on the structural relations within the
designed objects, and they include trees and different types of graphs [31]. One of the first
graph representations was based on the boundary representation, where a so-called face
adjacency graph was used to represent an object consisting of faces [32].

A number of different representations is possible for the floor layout problem. Each of
them has both advantages and drawbacks. In this paper, the genotypes of floor plans are
represented in the form of numerical vectors consisting of numbers of nodes representing
points where the walls of the rooms meet. Such a representation makes the description of
evolutionary operators very straightforward and allows for fast computing of all mutation
types. The other possible representations, such as the half-edge one, would require much
more complex definitions of mutation operators.

Based on the specified design requirements, the initial population of floor plan geno-
types is created by the designer. During the process of evolution, the genotype vectors are
modified by mutation. After each evolutionary step, a new generation of phenotypes being
floor plans corresponding to the obtained population is rendered. The fitness function,
which evaluates generated floor plans, takes into account the number of generated spaces
and their geometrical properties.

This paper contributes to the field of computer-aided architectural design based on
evolutionary algorithms by proposing the new representation of floor plan genotypes,
mutation operations adapted to this representation and a fitness function, which is deter-
mined by evaluating the designs based on their geometrical properties and the degree of
compliance with the specifications determined by the user.

This paper is organized as follows. In Section 2, the visual floor plan generation
framework is presented. In Section 3, a case study is considered. The obtained results are
described in Section 4. Finally, the conclusions are drawn.

2. Visual Floor Plan Generation (VFPG) Framework

During the conceptual stage of design, many ideas are expressed graphically, and the
diagram itself is being explored as an essential stage of the design process and the design
thinking [33]. Computer-aided design can significantly speed up the time-consuming



Appl. Sci. 2021, 11, 8229 4 of 14

decision-making stage by benefitting from the dynamic character of the design context. In
the proposed VFPG framework (see Figure 1), for quick, efficient and effective floor layout
generation, the designer actively explores and moderates the design context. Together
with the customer, he or she determines the may be requirements (and their importance
coefficients) and the must be constraints. After that, based on his or her professional
experience, he or she selects a set of startup floor plan solutions that constitute the input
to the evolutionary programming generation engine. In addition to the requirements and
constraints defined by the designer and customer, domain knowledge plays an important
role in the generative process. It is used by the designer during the preparation of the
initial designs and by the fitness function during the evaluation process. Such domain
knowledge may contain both the information derived from the design standards (e.g., from
the building code) and any additional information from the design domain. In the case of
floor plans, layout design in addition to building code environment laws or the availability
of infrastructure-specific information for the area where the building is located should
be used.
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During the ongoing generation of the possible solutions, the designer sees various
layouts and moderates the evolutionary parameters to achieve better results. The evolu-
tionary process stimulates the creativity of the designer, who can explore many potential
solutions. Some floor plans generated by the system can be unexpected or innovative, and
this enables the designer to experiment with his or her own design ideas.

In the last stage of generation, the function mapping between the obtained geometry
and how the space is going to be used is performed by assigning labels determining the
functions of the spaces. This final assignment can lead to significantly different functionali-
ties for floor plans with the same geometry. It can be proposed by the software according
to given requirements and constraints; however, the designer is free to modify it regardless
of the predefined conditions.

Floor layout planning in architectural design starts with in-depth study of the utility
zones and the activities that will take place in them. Thus, it is in fact the search process of
the best floor plan behavior that adapts to the specific customer’s environmental conditions.
Such a defined design task is ideally suited to be solved by the means of computational
intelligence methods like evolutionary programming (EP).
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EP was developed to imitate the evolution of behavioral traits (i.e., to evolve a set
of semi-optimal behaviors where the focus is on the phenotypic evolution instead of the
genotypic one like in other evolutionary methods (e.g., genetic algorithms)) [34]. Thus,
EP does not apply any recombination operators that exchange genetic material between
individuals, and the search process is driven solely by mutation and selection. There is
no single method of individual representation, like bitstrings in Holland’s genetic algo-
rithms [26]. Instead, the representation is tightly connected to the current problem domain.
The fitness function takes into account the environment of the individual and evaluates its
behavior. The pseudocode of the basic evolutionary programming algorithm is presented
in Figure 2. The proposed approach was implemented and reviewed using Python in the
Jupyter Notebook, which is especially useful for interactively developing and visually
verifying the ongoing evolutionary design process.
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Representation: In our approach, we assume that all rooms in a floor plan are poly-
gons. Thus, each room can be uniquely identified by a set of points P = {p1, . . . , pn} where
pi = (x,y) ∈ R2,1 ≤ i ≤ n ∈ N. Each point represents the place where the walls of the rooms
meet. Hence, individuals in our approach use a representation of a real-valued point
sequence. In order to interpret such a sequence as a valid space plan, a preprocessing flood
fill algorithm [35] is applied to determine the connected areas that constitute a room. In this
way, the individual phenotype I is created in the following way: I = {‘R1’:[p11,p12, . . . , p1j_1],
‘R2’:[p21, . . . , p2j_2], . . . , ‘Rk’:[pk1, . . . , pkj_k]}, where R1, . . . , Rk denote recognized rooms
and [pm1, . . . , pmj_m] is a sequence of points of all walls’ connections in a room Rm. The
example floor plan, its simplified sketch with marked points and the actual representation
are presented in Figure 3. Special points called immobile, which define the outline of the
layout and as such cannot be changed by any evolutionary operation, are also indicated.

Initialization: It is not trivial to generate the initial population where individuals
are to fulfill all the constraints and meet the given requirements of architectural design.
Therefore, at this stage of the algorithm, the designer domain knowledge is irreplace-
able, and he or she explicitly points out a set of start-up solutions from the Floor Plan
Solutions Database.



Appl. Sci. 2021, 11, 8229 6 of 14Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 15 
 

 
Figure 3. The example floor plan, its sketch with marked points and EP representation. 

Initialization: It is not trivial to generate the initial population where individuals are 
to fulfill all the constraints and meet the given requirements of architectural design. There-
fore, at this stage of the algorithm, the designer domain knowledge is irreplaceable, and 
he or she explicitly points out a set of start-up solutions from the Floor Plan Solutions Da-
tabase. 

Fitness Evaluation: The fitness of each individual F(I) is measured as the individual’s 
ability to fulfill all the constraints and the degree to which it achieves the objectives of the 
design task. There are different approaches to handle the constraints, like penalty func-
tions or problem redefinition to an unconstrained one [36,37]. We propose defining the 
mutation in such a way that most of the generated offspring are feasible, and if an unac-
ceptable solution unfortunately occurs, it is rejected. The requirements Reqi(I) є [0,1] (i = 
1,…,n) have the importance coefficients assigned such that wi (i = 1,…,n), and the weighted 
sum of the degree to which they are achieved gives the final value of the fitness evaluation, 
which may be summarized as follows: 

𝐹(𝐼) = ൞ −∝, ∃𝑢𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡෍ 𝑤௜௡
௜ୀଵ 𝑅𝑒𝑞௜(𝐼), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (1)

Mutation: The mutation operation is the only procedure that introduces variation in 
a population. In the early generations, it should dynamically explore the search space, and 
when the space is sufficiently covered, it should allow for exploiting the obtained results 
to fine tune them. The exploration–exploitation trade-off in EP is moderated by strategy 
parameters. So far, the static strategy has been implemented, which is the simplest one, 
where the value of deviation is fixed and there is one strategy parameter per operator. 
However, it is straightforward that in the future, it will have to be dynamically changed 
over the generation time and over the individual fitness value. The following mutation 
operators have been defined: a new point can be added, a point can be deleted and a point 
can be moved. The operators may be applied individually with a given probability or in 
a randomly selected sequence. Since we assume that, in most cases, the mutation 

Figure 3. The example floor plan, its sketch with marked points and EP representation.

Fitness Evaluation: The fitness of each individual F(I) is measured as the individual’s
ability to fulfill all the constraints and the degree to which it achieves the objectives of the
design task. There are different approaches to handle the constraints, like penalty functions
or problem redefinition to an unconstrained one [36,37]. We propose defining the mutation
in such a way that most of the generated offspring are feasible, and if an unacceptable
solution unfortunately occurs, it is rejected. The requirements Reqi(I) ∈ [0,1] (i = 1, . . . , n)
have the importance coefficients assigned such that wi (i = 1, . . . , n), and the weighted sum of
the degree to which they are achieved gives the final value of the fitness evaluation, which
may be summarized as follows:

F(I) =

 − ∝, ∃un f ul f illed constraint
n
∑

i=1
wiReqi(I), otherwise (1)

Mutation: The mutation operation is the only procedure that introduces variation in
a population. In the early generations, it should dynamically explore the search space, and
when the space is sufficiently covered, it should allow for exploiting the obtained results
to fine tune them. The exploration–exploitation trade-off in EP is moderated by strategy
parameters. So far, the static strategy has been implemented, which is the simplest one,
where the value of deviation is fixed and there is one strategy parameter per operator.
However, it is straightforward that in the future, it will have to be dynamically changed
over the generation time and over the individual fitness value. The following mutation
operators have been defined: a new point can be added, a point can be deleted and a
point can be moved. The operators may be applied individually with a given probability
or in a randomly selected sequence. Since we assume that, in most cases, the mutation
generates feasible solutions, some accompanying actions for every mutation operator has
to be performed. When adding a new point, two situations have to be considered: a new
point is (1) on the existing wall or (2) inside a room. In the first situation, an additional
point has to be added, and there are at most two different ways to do that (see Figure 4A).
In the second one, at least a further two points have to be included (see Figure 4B). Deleting
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a point requires indication of another point connected to it by a wall, and these two points
are deleted together (see Figure 5). Moving a point is the action that requires the most
additional activities. After selecting a point to change, all the rooms that contain this wall
connection are selected, and all walls are adjusted to a new (mutated) position. If there are
still rooms that may become invalid after this translation and may have walls joined at
an angle other than 90 degrees, an extra new point at the position before the mutation is
added (see Figure 6).
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Selection: The selection operator is applied to choose the individuals that survive
to the next generation. In EP, both parents and their offspring compete to survive, and
this competition is based on the relative fitness value. The relative fitness may be simply
calculated as the number of competitors that are less adapted and have lower fitness
function evaluations. It expresses how well an individual performs in a group, and based
on that score, any of a number of selection operators that have been developed can be
used: random, proportional, tournament, rank-based, elitism, hall of fame, etc. Since the
goal of our approach was to preserve the high diversity in the population, a roulette wheel
proportional selection, which is the operator with a low selective pressure, was applied.
An operator with a high selective pressure, such as tournament or elitism, would limit the
exploration abilities of the search process and produce a uniform population.

3. Case Study

Let us consider the example of designing a floor layout of a bungalow for a family
with two children. The dimensions of the house cannot exceed 8.5 × 13 m. The customer
specified the following constraints (CON) and requirements (REQ):

CON 1: There have to be six spaces (three bedrooms, one bathroom, one kitchen and
one living room).
REQ1: There should be at least eight spaces and w1 = 0.8, Req1 ∈ {0, 0.33, 0.5, 0.67,1}
(see Figure 7).
REQ2: The largest room should be bigger that 21 m2 and w2 = 0.7, Req2 ∈ {0,1}.
REQ3: There should exist a room larger than 7 m2 adjacent to the largest room and
w3 = 0.6, Req3 ∈ {0,1}.
REQ4: The largest room should be oriented to the south and w4 = 0.5, Req4 ∈ {0,1}.
REQ5: There are not many spaces with areas less than 2 m2 and w5 = 0.5, Req5 ∈
{0,0.2,0.4,0.6,0.8,1} (see Figure 7).

The only constraint imposed by the designer was that there be no spaces with any
wall shorter than 0.8 m:

CON2: No walls shorter than 0.8 m.
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According to Equation (1), if the evaluated solution I meets the constraints CON1 and
CON2, its fitness is calculated as follows: F(I) = 0.8Req1 + 0.7Req2 + 0.6Req3 + 0.5Req4 +
0.5Req5.

Based on the above-mentioned criteria, the floor plan shown in Figure 3, which
fulfilled them all (F(I1) = 3.1 Figure 8), was chosen. The representation of this plan became
the first individual of a population. During the ongoing evolution, in the first step, all
floor plans with at least one wall shorter than 0.8 m and the ones with less than 6 spaces
were removed. In the next step, the remaining solutions were evaluated, taking into
account requirements REQ1–5. As far as the first requirement was concerned, the solutions
were evaluated according to the trapezoidal function REQ1 presented in Figure 7, which
assigned a value of 1 to the plans with 8, 9 and 10 spaces and correspondingly smaller
values to the floor plans with the lower or higher number of spaces. Then, the system
checked if there existed a room with an area larger than 21 m2, a room larger than 7 m2

adjacent to the largest room and if the largest room was oriented to the south. It was
assumed that the southerly direction was on one of the long sides of the building. In the
last step (REQ5, Figure 7) the solutions were evaluated using a linear function f(x) = −1/5x
+ 6/5 for x >= 1, and f(x) = 1 for x = 0, where x is the number of spaces with an area smaller
than 2 m2. The maximum value was given to the plans with only one or no such small
spaces. The greater the number of such spaces, the lower the evaluation of the solution.
The plans with six or more small spaces were given a value of zero.

In Figure 8, there is a startup floor plan (I1) and three others obtained during the
evolution (I2, I3, I4) with the highest possible value of the fitness function (F(I) = 3.1).

In Figure 9, there are two quite different floor plans that have very similar fitness
values. Only one requirement, namely REQ2 (the largest room size), was evaluated
differently and took the value of 1 for I5 and 0 for I6. The large number of spaces made
Req1 equal to zero. Both plans had two spaces with areas lower than 2 m2, and therefore,
Req5 had a value of 0.8. Thanks to this approach, we could achieve very large diversity in a
highly adapted population of individuals. It is also worth stressing that both presented
solutions were generated by a single application of the moving mutation to the start-up
solution I1 (Figure 8). Thus, a considerable variety of individuals was already noticeable in
the first generations.
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Figure 9. Two example floor plans I5 and I6 where only REQ2 had a different evaluation value.

In Figure 10, two different floor plans that were very similar and were similarly
evaluated are presented. Only one requirement, this time REQ1 (the number of spaces),
was evaluated differently and had values of 1 for I7 and 0.67 for I8. In this case, the fitness
value was in line with our intuition. The better evaluated individual I7 was more flexible
and gave more freedom in assigning labels for determining the functions of spaces. Some
of the possible assignments are presented in Figure 11. The possible assignments of space
labels were created for floor layouts selected by the designer. He or she could also select
the evaluation threshold value from 0 to 3.1 or the number of solutions to be presented on
the screen.
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Figure 11. Four different assignments of labels determining the functions for a single floor plan I7 from Figure 10.

In Figure 12, two low-rated example layouts are presented, namely I9 and I10. Both
arrangements qwre very similar: 16 spaces (Req1 = 0), a room larger than 7 m2 adjacent to
the largest room (Req3 = 1), the largest room not being oriented toward the south (which
was on one of the long sides of the building (Req4 = 0)) and 5 spaces with areas less than
2 m2 (Req5 = 0.2). However, there was one difference that had a huge impact on the
individual fitness value: the fulfillment of the second requirement (REQ2) stating that the
largest room should be bigger than 21 m2. This requirement was met by the solution I9, and
taking into account the assigned importance coefficient (0.7), it yielded a solution twice the
value of the fitness of the solution I10. This is a good example of how sensitive the results
were to the values assigned to the coefficients used while blending requirement fulfillment.
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4. Discussion

In the current research described in this paper, the floor plans were represented as real-
valued point sequences, where points determined the locations of the wall endpoints. Thus,
the mutation operations which added, moved or removed points changed the numbers,
sizes and even shapes of the rooms. The solutions with L-shaped or T-shaped rooms could
be obtained; however, the generation of semicircular walls was not considered.

The presented EP-based approach allows for the quick generation of many potential
solutions, which are evaluated according to the given design criteria specified by the user.
The system can automatically label the generated spaces, giving them functions like the
bathroom, kitchen, living room or bedroom. However, this assignment of labels should be
treated only as a proposition, and the final labeling should be left to the designer. He or
she can also make some corrections in the layout and specify accessibility relation between
spaces by adding door icons.

There can be many design constraints defined in the domain knowledge, the use of
which influences the shape of the solution. For example, in our approach, we eliminated
solutions with very narrow spaces, as we did not allow walls shorter than 0.8 m. Changing
this parameter would affect the size of the obtained plan spaces. The solutions with
very small spaces could be shown to the designer, who could then modify the walls him
or herself.

In our framework, the style-related knowledge of the designer can also be used.
The user can express design requirements related to styles like the presence of some
characteristic features, such as symmetry of the plan, sizes and proportions of rooms, and
assign to them specified weights. Then, the system will evaluate the generated solutions,
taking into account the degree of their maintaining the given style. The presence of the
predefined style features in generated designs can be a source of design inspiration and
make designers creatively reuse interesting design details.

In order to properly assess the effectiveness of the proposed EP algorithm, a series
of experiments should be carried out in the next step. First of all, we have to consider a
mutation operator: the exploration–exploitation trade-off. So far, a non-adaptive static
approach has been used, where the strategy parameters (probabilities of the proposed
mutation operators) remain fixed. In future research, we will consider both dynamic and
self-adaptive EP. In the dynamic approach, a deterministic function is used to change the
parameters over time. In self-adaptive EP, parameters are learned in parallel with the
evolution of individuals. Secondly, different selection operators will be applied (propor-
tional, tournament, elitism, etc.) to find the best strategy for indicating the individuals that
will survive.

Another issue that should be considered is the selection of weights for the require-
ments. In the current research, they are set by the designer based on their knowledge and
experience, as well as the importance given to the requirements by the customer. Such
an approach may result in giving too much importance to some requirements. Thus, it
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seems that modifying the importance coefficients over the evolution process could address
this problem.

At this moment, some of the requirements have a binary form; that is, they are either
satisfied or not. As a result, a very small difference in the design can have huge impact on
the computed fitness value. A good example of this problem can be observed in Figure 12,
where the difference in fitness resulted from the lack of a space larger than 21 m2, thus
not satisfying one of the binary requirements with a weight of 0.7. Therefore, even the
presence of a space having 20.99 m2 would result in a low evaluation, while a very large
room of, for example, 50 m2 would yield a much higher value. Yet, it is very likely that
the user might prefer the former over the later. The solution to this problem may be the
use of a fuzzy function to evaluate the degree of satisfying a given requirement, which is
not a hard one. In order to take into account the individual preferences of the designer,
the metaevolution can be implemented, which would better fit the fuzzy membership
functions determining the degree of fulfillment of the requirements. Using the possibilities
offered by the evolutionary programming, together with the strategy parameters, different
shapes of the fuzzy functions can be evolved and examined.

5. Conclusions

In this paper, the evolutionary technique is proposed as a method for generating
new design solutions, with genotypes represented in the form of numerical vectors. The
proposed original representation is simple but, at the same time, intuitive, and it has great
expressive power. The real-valued points denote the endpoints of room walls, and the
application of the flood fill algorithm determines the connected areas that constitute a room.
As shown in the case study, three specified mutation operators, namely adding a new
point, deleting a point and moving a point, already introduce a great variety of solutions
in the first generations. Thus, a large area of the search space is covered in a relatively
short generation time. This is a very promising indicator for our main goal of building an
efficient tool for the conceptual stage of design. Additionally, the indicated properties of
the proposed evaluation approach of the generated solutions are highly promising (like
promoting flexible solutions (Figure 10) or the possibility of fuzzy parameter adjustment
using metaevolution).
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13. Grabska, E.; Grzesiak-Kopeć, K.; Ślusarczyk, G. Designing Floor-Layouts with the Assistance of Curious Agents. In Proceedings
of the Computational Science—ICCS 2006, 6th International Conference, Reading, UK, 28–31 May 2006; Springer Science and
Business Media LLC: Berlin/Heidelberg, Germany, 2006; Volume 3993, pp. 883–886.

14. Krishnamurti, R. Explicit design space? Artif. Intell. Eng. Des. Anal. Manuf. 2006, 20, 95–103. [CrossRef]
15. Beirão, J. CItyMaker: Designing Grammars for Urban Design; Delft University of Technology: Delft, The Netherlands, 2012.
16. Merrell, P.; Schkufza, E.; Koltun, V. Computer-generated residential building layouts. ACM Trans. Graph. 2010, 29, 1–12.

[CrossRef]
17. Wu, W.; Fu, X.-M.; Tang, R.; Wang, Y.; Qi, Y.-H.; Liu, L. Data-driven interior plan generation for residential buildings. ACM Trans.

Graph. 2019, 38, 1–12. [CrossRef]
18. Hu, R.; Huang, Z.; Tang, Y.; van Kaick, O.; Zhang, H.; Huang, H. Graph2Plan: Learning Floorplan Generation from Layout

Graphs. ACM Trans. Graph. 2020, 39, 1–14. [CrossRef]
19. Rodrigues, E.; Gaspar, A.R.; Gomes, A. An evolutionary strategy enhanced with a local search technique for the space alloca-tion

problem in architecture, part 2: Validation and performance tests. Comput. Aided Des. 2013, 45, 898–910. [CrossRef]
20. Bao, F.; Yan, D.; Mitra, N.J.; Wonka, P. Generating and exploring good building layouts. ACM Trans. Graph. 2013, 32, 1–10.

[CrossRef]
21. Shi, F.; Soman, R.K.; Han, J.; Whyte, J.K. Addressing adjacency constraints in rectangular floor plans using Monte-Carlo Tree

Search. Autom. Constr. 2020, 115, 103187. [CrossRef]
22. Flemming, U.; Coyone, R.; Gavin, T.; Rychter, M. A Generative Expert System for the Design of Building Layouts—Version 2; Topping,

B., Ed.; Artificial Intelligence in Engineering Design; Computational Mechanics: Southampton, UK, 1999; pp. 445–464.
23. Rocke, D.M.; Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. J. Am. Stat. Assoc. 2000, 95, 347.

[CrossRef]
24. Bentley, P.J. Generic Evolutionary Design of Solid Objects Using a Genetic Algorithm. Ph.D. Thesis, UCL, London, UK, 1997; pp.

3–38.
25. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989.
26. Holland, J.H. Genetic Algorithms and Adaptation. In Adaptive Control of Ill-Defined Systems; Springer: Boston, MA, USA, 1984; pp.

317–333.
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