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Featured Application: The proposed robotic deburring cell with integrated rotary table is de-
signed to improve the performance of robotic deburring when deburring large workpieces.

Abstract: Deburring is recognized as an ideal technology for robotic automation. However, since the
low stiffness of the robot can affect the deburring quality and the performance of an industrial robot
is generally inhomogeneous over its workspace, a cell setup must be found that allows the robot to
track the toolpath with the desired performance. In this work, the problems of robotic deburring are
addressed by integrating components commonly used in the machining industry. A rotary table is
integrated with the robotic deburring cell to increase the effective reach of the robot and enable it
to machine a large workpiece. A genetic algorithm (GA) is used to optimize the placement of the
workpiece based on the stiffness of the robot, and a local minimizer is used to maximize the stiffness
of the robot along the deburring toolpath. During cutting motions, small table rotations are allowed
so that the robot maintains high stiffness, and during non-cutting motions, large table rotations are
allowed to reposition the workpiece. The stiffness of the robot is modeled by an artificial neural
network (ANN). The results confirm the need to optimize the cell setup, since many optimizers
cannot track the toolpath, while for the successful optimizers, a performance imbalance occurs along
the toolpath.

Keywords: deburring; robot; stiffness; artificial neural network; genetic algorithm

1. Introduction

The increasing heterogeneity of industrial robots and the development of new manu-
facturing techniques have helped to extend the use of robots to a variety of non-optimized
manufacturing processes. Nowadays, robots are more commonly used in machining than
ever before. Some of the advantages of machining with robots, such as their price com-
petitiveness, wide range of applications and flexibility, have proven to be beneficial for
profitability compared to the general disadvantages, such as lower accuracies due to the low
stiffness of the robot and higher cycle times when machining parts with long toolpaths [1].
Deburring is recognized as a technology where robots have a performance advantage over
traditional methods such as manual labor or CNC deburring. CNC machines, which are
mainly specialized for milling, are oversized and costly, making them inefficient for the
deburring process. The short deburring toolpath also requires frequent workpiece changes,
which are best handled by a robotic machine service. The ability of a robot to manipulate
the workpiece from an input buffer of a deburring cell, perform the deburring operation
and transport the finished product to the output buffer suggests that a robotic deburring
solution could be very efficient.

For robotic deburring to be competitive, standard deburring accuracies must be
achieved. Compared to CNC machines, robots have some significant disadvantages. In
general, inaccuracies are caused by loading conditions that the robot cannot compensate
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for. Characteristic sources of inaccuracies in robotic machining include a robot control loop
that is not optimized for the machining tasks, backlash hysteresis [2,3] and robot structural
and posture effects. Some combinations of robot posture and cutting parameters cause
chatter, which can lead to poor machining accuracy or even tool breakage [4–6].

It is interesting to note that the uncertainty and imperfections of a real electromechani-
cal system do not always result in poor system performance, as in some cases it has been
found that chaotic control can compensate for mechanical imperfections, which can have a
positive effect on the overall performance of the system [7].

To increase the accuracy of robotic machining, many authors have addressed these
problems by optimizing the robot trajectory based on a dynamic robot model and the
model of the machining process [8–10], as well as by online force control [11,12]. Laser
trackers [13] and optical measurements [14] have been used as an alternative to force
control to efficiently track the desired path with the robot and achieve accurate machining.

A particular problem in deburring is also the high variance of burr sizes, which can
lead to a sudden increase in cutting force, damaging the workpiece, the deburring tool or
even the robot. In deburring, the normal force, which is perpendicular to the workpiece
surface, and the tangential force, which is aligned with the feed direction, are important.
The most common approach to deal with the stochastic forces is to use adaptive algorithms
that control the contact force based on online force measurements [15]. The control of
tangential force has been successfully solved by reducing the feed rate of the tool [16] and
the control of normal force by position correction [17]. An impedance controller has been
found to be most effective in achieving a stable contact force between the deburring tool
and the workpiece.

However, the implementation of sensors and complex control algorithms in an “out-
of-the-box” robotic deburring cell is a major obstacle in transitioning the technology from
a clean research laboratory environment to a highly stressed industrial environment. As
an alternative, an industry-oriented engineering approach to optimize the deburring
parameters considering spindle speed, feed rate and contact force was presented in [18]. In
another study, improved control of the robotic deburring process was achieved by shifting
the force control from the robot to a simpler external mechanism that is easier to control and
designed to compensate for high nominal forces by varying its stiffness [19]. To completely
remove larger burrs, several deburring passes were added. The adjustable stiffness of such
a mechanism is easy to determine, but the approach still requires some design effort and
reduces the flexibility of an autonomous robotic solution. To some extent, force control
can also be shifted directly to the cutting tool [20]. To highlight the advantages of robotic
deburring, an optimization of the deburring toolpath with respect to the robot stiffness is
required. This is essentially a well-known optimization problem for workpiece or trajectory
placement [21–23], where robot stiffness is used as the optimization objective [24–28].

To optimize the stiffness of the robot along a trajectory, the stiffness of the robot
throughout the workspace must be known. The following two main methods have evolved
to determine the stiffness of the robot: global and local [29]. The advantage of the global
approach is the ability to capture nonlinear effects due to friction and transmission losses,
while the disadvantage is that the model does not generalize well to the entire workspace
of the robot. As a result, the established analytical models are sensitive to measurement
noise and generate significant errors [30,31]. On the other hand, the more accurate local
approach requires the identification of the stiffness matrices of all the robot components,
which means that the robot must be disassembled [32]. The scope of analytical modeling of
robot stiffness is presented in [33], where a comprehensive six DOF robot stiffness model
with 258 identifiable parameters is presented.

Recently, artificial neural networks (ANN) have been discovered in robotics as an
alternative to analytical modeling. Their main advantage is that they can approximate
nonlinear behavior (which is common in robotics) with the desired accuracy [34,35]. Similar
to analytical modeling, ANN modeling requires a large amount of measured data, but
in the case of describing the structural properties of a robot, such as stiffness, an ANN
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model is much easier to implement and can even improve as new data is collected [36,37].
Since stiffness correlates with accuracy, the kinematic properties of a robot can be used as a
general guide for robotic machining [38]. Serial robots, which have the greatest stiffness at
the edges of the workspace, are more suitable for machining smaller workpieces, while
quasi-serial robots, which have the greatest stiffness in the center of the workspace, are
recommended for machining larger workpieces.

A peculiarity of the deburring process is that most of the workpieces in the deburring
phase were preproduced on a different setup. Due to the new setup, any uncertainty in the
placement of the workpiece can lead to a collision during operation. Therefore, a reference
system must be used to detect the position and orientation of the workpiece and adjust the
deburring toolpath to the new workpiece offset. As a solution, an iterative nearest point
based contour matching algorithm was applied in [39] to match the toolpath extracted from
the CAD model to the teach points. Another advantage of autonomous robotic deburring
is that the robot can autonomously place the workpiece in the deburring fixture and then
perform the required calibration. It has been shown that a robotic machining setup with a
static worktable can increase the machining quality, and a robotic machining cell with a
rotary table has also been developed [40], but using a rotary table to support the robot to
increase the machining performance during operation is new.

The objective of this paper is to study the performance of robotic deburring with a
rotary table. The stiffness of the robot is used as a performance measure and modeled using
ANN based on measured data. First, the stiffness-based optimization of the workpiece
placement is performed, followed by the optimization of toolpath tracking. For toolpath
tracking, two scenarios are considered; during cutting motions, the table rotates to position
the workpiece such that the robot maintains high stiffness, and during non-cutting motions,
the workpiece is repositioned by large rotations according to the stiffness of the robot. The
approach is designed to be industry oriented. It integrates components that are common in
the machining industry and does not require sensitive sensors or complex algorithms once
it is set up.

The paper is organized as follows: In Section 2, the kinematic model of the deburring
cell is established. In Section 3, the stiffness model is presented. Section 4 presents the
optimization algorithm. Section 5 presents the results. Section 6 concludes the article.

2. Robotic Deburring Cell

One possible setup of the robotic deburring cell is shown in Figure 1. The setup shown
includes a quasi-serial robot with a deburring head, a rotary table and the workpiece. In
this theoretical study, no fixture is considered, as these are usually custom made. In the
non-optimized setup, the workpiece is placed in the center of the rotary table.
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2.1. Kinematic Model of Robot ACMA XR701

The kinematic model of the quasi-serial ACMA XR701 robot is constructed using DH-
notation and direct homogeneous transformations. First, a simplified model is constructed
in DH-notation by considering only the serial kinematic chain and excluding the kinematic
parallelogram. Then, the kinematic parallelogram is added to the simplified model using
direct homogeneous transformation matrices (HTM) to construct a detailed kinematic
model of the robot (Figure 2).
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Figure 2. Detailed kinematic model of ACMA XR701.

The simplified model is sufficient to describe the transformation from the robot base
frame to the end-effector frame required for inverse kinematics. Moreover, solving the
inverse kinematics using the simplified model with fewer components is computationally
more efficient than using the detailed kinematic model of the robot. Therefore, the simpli-
fied model is used for computationally intensive optimization, while the detailed model is
used for result validation and presentation.

The DH-parameters for the simplified robot model are shown in Table 1. The simplified
kinematic modeling approach considers θ3 as the actuated joint, which is also intuitively
the resulting angle between link two and three. The homogeneous transformation matrix
0
6T between frames zero and six is expressed as follows:

0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T (1)

Table 1. DH-kinematic parameters.

Link i ai−1 (m) αi−1 (rad) di (m) θi (rad)

1 0.2500 −π/2 0.9500 0
2 1.0000 0 0 −π/2
3 0.2300 −π/2 0 0
4 0 π/2 1.3294 0
5 0 −π/2 0 0
6 0 0 0.2500 0

The detailed kinematic modeling approach with the kinematic parallelogram considers
θA as the actuated joint, which is consistent with the kinematics of the real robot. The
parallelogram structure is difficult to account for using the DH-approach. A much more
convenient approach is to use HTMs to account for the parallelogram. In this way, frames
A, B and C are added as an open kinematic chain to frame two of the simplified kinematic
model to represent the kinematic parallelogram. The HTM-kinematic parameters for the
detailed kinematic model are shown in Table 2.
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Table 2. HTM-kinematic parameters.

Link i x (m) y (m) z (m) α (rad) β (rad) γ (rad)

A 0 0 0 0 0 0
B −0.42 0.075 0 −π/2 0 0
C 1 0 0 0 0 0

Each individual homogeneous transformation matrix i−1
i T is obtained by multiply-

ing the homogeneous transformation matrix i−1
i T t represented by the translation vector

ti = [xi, yi, zi] and the homogeneous transformation matrix i−1
i Tr represented by the

Euler angles ri = [αi, βi, γi], as expressed by the following:

i−1
i T = i−1

i T t
i−1
i Tr (2)

The homogeneous transformation matrix 0
CT between frames 0 and C can now be

expressed as follows:
0
CT = 0

1T1
2T2

AT A
B T B

CT (3)

where the functional dependence of θ3, θB, θC on θ2 and θA is expressed as follows:
θ3 = −(θ2 + π/2) + θA
θB = (θ2 + π/2)− θA
θC = θA

(4)

2.2. Kinematic Model of the Deburring Head

The deburring head significantly changes the kinematics of the robot. The robot’s reach
is increased, but at the same time, some areas become more difficult to reach, especially
when collisions are considered. The deburring head also influences the structural properties
of the robot and, thus, the machining accuracy [41]. Considering both aspects, a deburring
head design, as shown in Figure 3, was chosen.
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To include a deburring head in the robot kinematic model, HTMs representing the
translation and orientation of the spindle frame 2

0T tool were multiplied by 0
6Trobot. 1

0T tool is
obtained from ttool

1 = [−0.075, 0, 0.456], which is the translation vector representing the
position and rtool

1 = [0,−π/4, 0], which are the Euler angles representing the orientation
of the spindle frame relative to the robot end-effector frame 6Trobot. 2

1T tool is obtained by
adding a final rotation by Euler angles rtool

2 = [0, 0, π] to align the orientation of the
spindle frame according to the post-processed toolpath. All the position coordinates are in
meters and all the orientation coordinates are in radians. The spindle rotation is unlimited.
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2.3. Kinematic Model of the Rotary Table

Optimal placement of the workpiece allows postures with maximum stiffness to be
used in robotic machining. In a static rotary table position, the drilling accuracy could be
increased [42]. To exploit this finding, the current research focuses on optimizing the table
rotation during deburring.

The kinematic model of the one DOF rotary table is assembled from the following two
components: the fixed table base and the rotary clamping plate (Figure 4). The translation
vector ttable

1 = [1.815, 0.750, 0] represents the position of the table base 0T table relative to
the robot base 0Trobot. The translation vector ttable

2 = [0, 0, 0.550] represents the position
of the rotating clamping plate frame relative to the table base frame and forms the final
homogeneous transformation matrix 2

0T table. The rotation of the rotary table is limited to
the interval rotPT,max ∈ [−2π, 2π].
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2.4. Workpiece Offset

The workpiece offset W defines the position and orientation of the workpiece in the
deburring cell. In our case, an engine block is used as the workpiece and W is presented
with the XM-YM-ZM frame (Figure 5). The translation vector tW = [xW , yW , zW ] rep-
resents the position of the workpiece offset and the Euler angles rW = [αW , βW , γW ]
represent the orientation of the workpiece offset relative to the rotating clamping plate
frame 2

0T table. By default, the workpiece offset matrix 1
0TW is identical to 2

0T table.
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2.5. Deburring Toolpath

The deburring toolpath is generated relative to the workpiece offset (Figure 6). In
robotic machining, the generated toolpath cannot contain circular interpolations; therefore,
all the circular motions are postprocessed as incremental linear motions. In general, the
toolpath consists of cutting and non-cutting motions defined between Cartesian points. All
the movements must be executed at a specific feed rate and tool orientation to meet the
technological requirements. Therefore, each toolpath segment is represented by a frame
with an origin defined by three position and three orientation coordinates. With respect to
the workpiece offset, the position and orientation of each toolpath segment can be expressed
by a translation vector tt = [xt, yt, zt] and by three Euler angles rt = [αt, βt, γt], where
t = 1, . . . , n, and n is the total number of toolpath segments.
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3. Stiffness Model

An approach based on structural stiffness measurements and FEM model calibration
was used to build a stiffness model of the ACMA XR701 robot. The full parameter identifi-
cation procedure is explained in our previous work [43]. The experimental matrix can be
found in Table S1.

ANN sti f _net was used to correlate joint rotations θ2, θ3, θ4, θ5 and the load with
structural stiffness. To train the ANN sti f _net, the Levenberg–Marquardt backpropagation
algorithm was used with two hidden layers, the first layer with ten neurons and the second
with five neurons. The best architecture of the network was found by a random search.
To build the structural stiffness model, 70% of the data were used for training, 15% for
validation and 15% for testing. Based on the available data, the ANN sti f _net model errors
were found to be between −54.5793 and 59.5260 N/mm, corresponding to an absolute
deformation error of −0.01929 and 0.046024 mm, respectively.

The structural stiffness was determined to be load dependent, and the dependence is
nonlinear. In the present study, only the output of the structural stiffness model obtained
for the end-effector load of 150 N is used. The low load case is considered because the
contact forces during deburring are small and mainly depend on the workpiece material
and the current burr size. The same load was also used as a limit value for robotic deburring
with the support of a variable stiffness mechanism [19]. However, the stiffness modeling
approach presented in this work allows lower, even adjustable, stiffness values. With
online force measurements, the model can also adapt to the current load. A drawback
of the presented approach is the inability of the model to predict stiffness in more than
one direction. To be able to align the stiffness ellipsoid of the robot along the direction of
the forces applied by the machining process, additional stiffness measurements should be
performed on the robot.

Figure 7 shows the structural stiffness T in a section of the theoretical workspace of
the robot for the end-effector load of 150 N. The figures were obtained by discretizing
the workspace of the robot. Each point represents the end-effector position of the robot
without the tool. The color of the point represents the structural stiffness of the robot.
The points were generated with rotations of each robot axis as shown in Table 3. In the
workspace of the robot, the distribution of the structural stiffness shows two divided areas
of low stiffness, with the highest stiffness in the middle of the workspace. This is due to
the topology of the robot and is characteristic of quasi-serial robots [44,45].

Table 3. Limit values and step sizes for discrete rotations of the robot axis.

θ1 (◦) θ2 (◦) θ3 (◦) θ4 (◦) θ5 (◦) θ6 (◦)

min. 0 −50 30 −200 −120 0
max. 0 65 155 200 120 0
step 0 5 5 50 30 0
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4. Optimization of Robotic Deburring

The robotic deburring optimization is divided into two steps. In the first step, the GA
is used. The objective is to find the optimal initial position of the workpiece that allows
the robot to debur the workpiece with the maximum total stiffness. The total structural
stiffness of the robot along the entire toolpath is considered as an objective function and
evaluated when the entire toolpath has been traversed from the current initial position. If
the robot is unable to track the toolpath or violates predefined constraints, the objective
function is penalized. The first optimization step is described in more detail in Section 4.1.

In the second optimization step, a one-dimensional minimizer is used. The objective is
to increase the stiffness of the robot while it tracks the deburring toolpath. The rotary table
is used to help the robot to adopt a posture with high stiffness on each successive toolpath
segment. The structural stiffness of the robot is considered as an objective function. The
second optimization step is described in more detail in Section 4.2.

4.1. Workpiece Initial Placement

To find the initial position and orientation of the workpiece that allows the robot to
debur the workpiece with the maximum overall stiffness, an optimization was created
using a genetic algorithm (GA). The general GA procedure is shown in Table 4, where S
represents the variables, S∗ the search space, P the population size, E the constrained space
and C the objective function.

Table 4. Pseudocode of the genetic algorithm.

1 Initialize Pt generation with random individuals from S∗

2 For each individual i ∈ Pt
2.1 Evaluate C (S, Pt)
3 Until convergence, do
3.1 Reproduction of best individuals from Pt (based on C)
3.2 Crossover of random individuals from Pt
3.3 Mutation of random individuals from Pt
3.4 Pt+1 ← create new generation
3.5 For each individual i ∈ Pt+1
3.5.1 Evaluate E (S, Pt+1)
3.5.2 For each individual i /∈ E
3.5.2.1 Evaluate C (S, Pt+1)
4 Retrun best individual from P

4.1.1. Variables, Search Space and Population Size

The placement of the workpiece offset is a six DOF problem. To optimize the placement
of the workpiece offset, which determines the placement of the workpiece, we define three
position [xabs, yabs, zabs] and three orientation parameters [αabs, βabs, γtabs]. In practice,
the placement of the workpiece is constrained by the deburring setup. In the algorithm,
the constraints are considered by the search space (Table 5). In our setup, to find the
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optimal placement of the workpiece on the rotary table, only three variables are considered
xvar, yvar, αvar. Considering the placement of the workpiece in the variable Z-direction or
with variable rotation around the X- or Y-axis is technically challenging as it requires a
very complex fixture to hold the workpiece. To allow variable placement of the workpiece
with rotation around the X- or Y-axis, the one DOF rotary table should rather be replaced
by a two DOF rotary table.

Table 5. Search space defined by lower and upper bounds of the variables.

xvar (m) yvar (m) zvar (m) αvar (rad) βvar (rad) γvar (rad)

LB 1.255 0.190 0 −π 0 0
UB 2.375 1.310 0 π 0 0

The position and orientation parameters zabs, βabs, γabs are preset as the following:
zabs = 0
βabs = 0
γabs = 0

(5)

The remaining position and orientation parameters xabs, yabs, αabs are expressed as
the following: 

xabs = xvar − 1.815
yabs = yvar − 0.750
αabs = αvar

(6)

where xvar, yvar, αvar are the optimization variables. The population size was set to 50.

4.1.2. Nonlinear Constraints

Two nonlinear constraints are considered in the algorithm to avoid undesired solutions.
The first nonlinear constraint restricts the combinations of the variables xvar and yvar to the
area within the cylinder defined by the outer edge of the rotary table as follows:

(xvar − x0)
2 + (yvar − y0)

2 < r2 (7)

where x0, y0, r = d/2 are the rotary table kinematic parameters (Figure 4):
x0 = 1.815
y0 = 0.750
r = 0.560

(8)

Considering zabs = 0, this means that the algorithm places the workpiece offset W
exclusively on the rotary table.

The second nonlinear constraint restricts the orientation of the workpiece offset W to
one full revolution, as follows:

αvar
2 ≤ pi2 (9)

This ensures that the cyclically equivalent placements of the workpiece are not consid-
ered by the algorithm.

4.1.3. GA Objective Function

The algorithm must ensure that the robot performs the deburring task with the highest
total structural stiffness. Since the optimization is a minimization, the inverse of the stiffness
at each toolpath segment is evaluated.

The inverse of the robot’s stiffness is obtained by simulating ANN sti f _net with the
current robot configuration under the current external load (cur_con f ig_load), as follows:

Tinv = (sim(sti f _net, cur_con f ig_load))−1 (10)
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For this theoretical study, an external load of 150 N was used throughout the toolpath.
To maximize the total structural stiffness over the entire deburring path, the objective
function can be expressed as follows:

Tinv
tot =

n

∑
i = 1

Tinv
i (11)

where n is the total number of toolpath segments.

4.1.4. Objective Function Constraints

Some workpiece offsets accepted by the algorithm may result in an undesirable
toolpath placement that makes it impossible to debur the workpiece with the desired
accuracy. The individuals that lead to an undesirable toolpath placement are artificially
penalized to degrade their fitness and reduce their chances of advancing to the next
generation. The traits of the punished individuals will be less common in the individuals
that form the future generations.

The first case of undesirable toolpath placement is when at least one toolpath segment
lies outside the cylinder defined by the outer edge of the rotary table, as follows:

(xt − x0)
2 + (yt − y0)

2 < r2, t = 1, . . . , n (12)

where xt and yt are the coordinates of the current machining toolpath segment and n is the
total number of toolpath segments. At such a machining toolpath segment, a workpiece
protrusion occurs, which reduces the clamping stiffness of the workpiece. The clamping
stiffness of the workpiece is considered negligible without a protrusion.

Another case of undesirable toolpath placement is when a toolpath segment cannot
be reached due to the robot’s axis limits. The kinematics of the robot are different from that
of a machine tool, which usually has at least three linear axes; therefore, some seemingly
easy-to-reach toolpath segments are unreachable by the robot. In addition, the robot is
equipped with a deburring head, which further increases the kinematic complexity of
the system.

The limit values for the position axes with respect to the home position of the robot,
as defined by the DH-parameter values in Table 1, are as follows:

θ1 ∈ (−180◦, 180◦)
θ2 ∈ (−55◦, 65◦)
θ3 ∈ (−60◦, 65◦)

(13)

where θ1, θ2, θ3 are the first three axes of the robot.
The limit values for the orientation axes are as follows:

θ4 ∈ (−200◦, 200◦)
θ5 ∈ (−120◦, 120◦)
θ6 ∈ (−300◦, 300◦)

(14)

where θ4, θ5, θ6 are the last three axes of the robot.
The last considered case of undesired toolpath placement is when at least one toolpath

segment cannot be reached by the robot with the desired accuracy. For position coordi-
nates, the restriction is set above the standard CNC machining accuracy of 3·10−5 m. The
acceptable deburring accuracy is defined as follows:

∣∣xi − xi,des
∣∣ < 3·10−6∣∣yi − yi,des
∣∣ < 3·10−6∣∣zi − zi,des
∣∣ < 3·10−6

(15)
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For orientation, the restriction is set as follows:
∣∣αi − αi,des

∣∣ < 3·10−4∣∣βi − βi,des
∣∣ < 3·10−4∣∣γi − γi,des
∣∣ < 3·10−4

(16)

4.2. Tracking the Toolpath

The second optimization step is to ensure that the robot tracks the deburring path
with the highest possible overall structural stiffness, starting from an initial workpiece
placement determined by the GA. A rotary table is used to position the workpiece during
deburring to assist the robot in maximizing its stiffness. One table rotation is allowed for
each successive segment of the toolpath. For each rotation, the workpiece is repositioned,
and the robot must adopt a new posture to reach it. For cutting motions, a limited rotation
of the rotary table is allowed to avoid collisions due to the relative motion between the
tool and the workpiece. For non-cutting motions, the rotary table is used to reposition the
workpiece with unrestricted rotation.

The optimization problem to determine the stiffest robot posture for the next segment
of the toolpath is formulated as a one-dimensional maximization problem with fixed
constraints. The inverse of the structural stiffness of the robot, as given in Equation (10),
was used as the objective function.

For computational efficiency, every tenth segment of the toolpath was considered
in the optimization; therefore, the optimized toolpath consisted of 155 segments. The
optimization problem was solved using the MATLAB function fminbnd.

4.2.1. Rotary Table Constraints

The deburring toolpath consists of cutting and non-cutting motions. During non-
cutting motions, the tool is not in contact with the workpiece. The tool moves to a clearance
where no collisions are possible, and a large rotation of the rotary table can be allowed. Dur-
ing non-cutting motions, unrestricted table rotation is permitted, in the following interval:

rott,n ∈ (−π, π) (17)

During cutting motions, the tool is in contact with the workpiece, which means that
excessive table rotation can cause damage to the workpiece. To keep the inaccuracies
caused by the relative motion of the workpiece and the tool within an acceptable range,
the maximum allowable table rotation is set based on the deburring accuracy tolerance.
Depending on the current toolpath segment ct = [xt, yt, zt], the relative motion between
the tool and the workpiece can be expressed as the Euclidean distance between two points,
as follows:

dist =

√
(xt+1 − xt)

2 + (yt+t − yt)
2 + (zt+1 − zt)

2 (18)

where
ct+1(x, y, z) = rz·ct(x, y, z) (19)

and rz is the counterclockwise rotation around the Z-axis.
For an acceptable deburring accuracy of less than 3·10−5 m, the maximum rotation of

the rotary table at each toolpath segment must be in the following interval:

rott,c ∈
(
−π·10−5, π·10−5

)
(20)

If the current toolpath segment is at the outer edge of the table, the maximum relative
motion between the workpiece and the tool is 2.4880·10−5 m.

4.2.2. Current Table Configuration

To obtain the rotation of the rotary table that allows the robot to operate with the
highest stiffness, a one-dimensional minimizer is used. The initial table configuration is set
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to rott,c = 0, while for each subsequent toolpath segment, the new configuration is found
by searching for the maximum stiffness of the robot on the interval rott,c.

5. Results and Discussion

The first solution was obtained as an inverse kinematic problem with the engine block
placed in the center of the table, as shown in Figure 1. With the non-optimized setup, the
robot manages to debur the outer edges on one side of the workpiece but exceeds the joint
limits before reaching the cylinder bores, even though the table rotation is enabled, as
explained in Section 4.2.

Several feasible solutions were found by optimizing the workpiece placement. The
best solution was found with the minimum total inverse of stiffness along the toolpath
at 0.339 mm/N. The corresponding optimization variables are xvar = 1.631988 m,
yvar = 1.075345 m and αvar = 2.6278 rad. The optimized setup is shown in Figure 8.
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Figure 8. Optimized robotic deburring cell setup.

Toolpath tracking was divided into the following two types of motion: cutting motion
and non-cutting motion. Based on the type of motion in the current toolpath segment,
different sizes of rotary table rotation were allowed. Table 6 shows the maximum rotational
difference on the representative toolpath segments when deburring or moving between
the deburring features.

Table 6. Maximum rotational difference on different toolpath segments.

Outer Edges Bore 1 Edges Bore 1–4 Traverse

Table rotation (◦) 0.12 0.05 5.07 147.50

A comparison between the original (a) and the optimized (b) toolpaths is shown in
Figure 9. Both toolpaths are shown relative to the base frame of the robot. The optimized
toolpath spans a larger workspace and gives the robot more freedom to adopt a stiff posture.
The largest distortions seen in the Cartesian representation of the optimized deburring
toolpath occur during non-cutting motions. This can be observed even for short segments
such as the path between the deburring of cylinder holes, where the toolpath is compressed
into a smaller space compared to the original toolpath. Toolpath distortion is virtually
non-existent during cutting motions because the permissible table rotations and the number
of toolpath segments are small.
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When deburring the outer edges on the left side of the engine block, the maximum
rotational difference of the table is 0.12◦. It should be noted that the toolpath segments
created for deburring the outer edges sometimes require long linear motions. To reach the
next toolpath segment during a long linear motion, the robot must travel a long distance,
which can lead to a reduction in stiffness or even a constraint violation. To increase the
performance of the robot and reduce the risk of constraint violation, the table rotation could
be activated during the long linear motions. This would require breaking down the long
linear motions into smaller toolpath segments, which was not performed in this study.

When deburring the edges of the first cylinder bore, the maximum rotational difference
of the table is 0.05◦. One reason for the small rotational difference is that only every
tenth toolpath segment was considered in the optimization. If the complete toolpath
was considered, each additional segment would also contribute to the maximum rotation
difference. Second, the absolute maximum table rotation was evaluated for a worst-case
scenario. If the Euclidean distance, based on which the absolute maximum table rotation
was calculated, were to take the current toolpath segment into account, a larger maximum
table rotation difference could also be achieved. Between the deburring of each edge and
each cylinder bore, non-cutting motions occur. During the non-cutting motions, free table
rotation is enabled. The table rotation during deburring of the first and the fourth cylinder
bore on the left side of the engine block was 5.07◦. Despite the possibility of a larger table
rotation, only a small rotation is performed to reposition the workpiece to the area with
the highest stiffness of the robot, which shows that the workpiece placement found by the
optimization algorithm is robust. Figure 10 shows the posture of the robot and the rotation
of the table when deburring the first cylinder bore on the left and when deburring the
fourth cylinder bore on the right.
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The most problematic segment of the toolpath for the robot is the traverse from the
left to the right side of the engine block. Most optimizers have failed on this motion. In the
optimized case, a table rotation of 147.50◦ was performed. Figure 11 shows the posture
of the robot and the rotation of the table when deburring is changed from the left side
of the engine block, as shown on the left, to the right side of the engine block, as shown
on the right. Due to the large change in posture of the robot, it is interesting to compare
the performance of the robot in deburring each side. The average inverse of stiffness is
0.00213 mm/N when working on the left side of the engine block and 0.00226 mm/N
when working on the right side. It is also interesting to note that the absolute maximum
rotational difference when working on the left side is 37.82◦ and when working on the
right side is 8.92◦, which means that the robot is less flexible when working on the right
side. The higher maximum rotational difference of the table when the robot works on the
left side of the engine block is mainly due to a large rotation when changing from the outer
edge to the edges of the cylinder bores.
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6. Conclusions

In this study, a methodology for planning a deburring toolpath of a robot considering
its structural stiffness is presented. When deburring a large workpiece, such as a cast
iron or aluminum alloy engine block, path optimization is advantageous because the
robot’s stiffness varies greatly over its workspace, which affects the quality of the process.
The same is true when the parts produced by machining operations such as grinding,
drilling, milling, engraving or turning are intended for robotic deburring. The proposed
methodology helps in planning efficient deburring, especially when the workpiece is large
and complex in shape.

To improve the deburring performance, an industry-oriented robotic deburring cell
with integrated rotary table is presented, which helps the robot to increase the effective
reach and maintain high stiffness. To achieve the required deburring accuracy and still
exploit the functionality of the rotary table, large rotations of the table are allowed during
non-cutting motions and small rotations of the table are allowed during cutting motions.
To maximize the overall stiffness of the robot along the deburring toolpath, an optimization
of the workpiece placement is first performed, followed by an optimization of the toolpath
tracking. A genetic algorithm is used to find the optimal workpiece placement and a local
minimizer is used to find the optimal table rotation at each toolpath segment.

The structural stiffness of the robot is modeled by a novel approach using an ANN.
The advantage of ANN modeling is the possibility to collect data through global stiffness
measurements. In this way, the ANN stiffness model considers nonlinear effects such as
friction, wear, and gaps between the components, in addition to the full flexibility of all the
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joints and links and allows the structural stiffness to be considered as a function of load.
The errors and trends of the ANN structural stiffness model are comparable to the results
of other studies on similar robots.

The optimization results show that the deburring of large workpieces, such as an
engine block, must be carefully planned. By placing the engine block in the middle of the
rotary table, the robot was not able to track the toolpath. With the optimized setup, the
robot can track the toolpath, but since the effective table rotations are small, the deburring
performance could be further improved. The main reason for the small table rotations is
that table rotations only occur at the beginning of each toolpath segment and only to an
extent that does not affect the required deburring accuracy, which was evaluated in a worst-
case scenario. Larger table rotations could be enabled by considering the coordinates of the
current toolpath segment. In addition, only every tenth toolpath segment was considered in
the optimization and the long linear motions were not broken down into smaller segments.
If each toolpath segment was considered and the long linear motions were broken into
smaller toolpath segments, the table rotations would occur more frequently. However,
increasing the number of toolpath segments would not only increase the computational
effort, but also the effort for generating the toolpath, since the decomposition of the toolpath
into smaller segments is not readily possible in the CAM software.

The optimization also showed that many optimizers did not find a solution, mainly
because the robot could not reach both sides of the engine block. Moreover, the optimized
solution showed better flexibility and average stiffness of the robot when it worked on one
side of the engine block than when it worked on the other side. This imbalance could be
reduced by allowing the table to rotate during long linear movements. However, a more
general conclusion is that the placement of the table should be optimized before building
the cell, or that additional axes such as a rail should be considered for the robot to increase
the kinematic freedom of the system. In addition to validating the results experimentally,
these concerns will be addressed in our future work.
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