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Abstract: Excessive addition of food waste fertilizer to organic fertilizer (OF) is forbidden in the
Republic of Korea because of high sodium chloride and capsaicin concentrations in Korean food.
Thus, rapid and nondestructive evaluation techniques are required. The objective of this study is
to quantitatively evaluate food-waste components (FWCs) using hyperspectral imaging (HSI) in
the visible–near-infrared (Vis/NIR) region. A HSI system for evaluating fertilizer components and
prediction algorithms based on partial least squares (PLS) analysis and least squares support vector
machines (LS-SVM) are developed. PLS and LS-SVM preprocessing methods are employed and
compared to select the optimal of two chemometrics methods. Finally, distribution maps visualized
using the LS-SVM model are created to interpret the dynamic changes in the OF FWCs with increasing
FWC concentration. The developed model quantitively evaluates the OF FWCs with a coefficient of
determination of 0.83 between the predicted and actual values. The developed Vis/NIR HIS system
and optimized model exhibit high potential for OF FWC discrimination and quantitative evaluation.

Keywords: organic fertilizer; food waste; hyperspectral imaging; partial least squares; support
vector machine

1. Introduction

With the increasing growth of the global economy and population, the associated
increase in food consumption has resulted in large volumes of food waste (FW). Moreover,
the amount of FW is predicted to grow by 44% from 2005 to 2025 [1]. FW is usually inciner-
ated with municipal solid waste or dumped in landfills [2,3]. However, incineration and
landfills can have harmful effects on human health and can contribute to global warming
and environmental pollution through toxic gas emission, ground water contamination, air
pollution, fire hazards, and so on [2,4,5]. Thus, FW should be properly managed to prevent
negative environmental impact. Therefore, recycling technology and related biotechnology
are undergoing rapid development [2,6–8].

As a typical recycling method, FW is often converted into organic fertilizer (OF)
because the former is a valuable resource that contains plant nutrients, which can mitigate
the serious organic matter deficit of agricultural soils [2,3]. Despite the advantages of FW
fertilizer, in the Republic of Korea, it is not considered a good additive for OF because of its
high level of sodium chloride (NaCl). Note that soil salinity is one of the most significant
abiotic constraints, as high salinity severely affects agricultural productivity and disturbs
the soil nutrition balance [9]. The high NaCl concentrations in Korean food are attributed to
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kimchi, soy sauce, and soybean paste, which are fermented and stored in high-saline water
for food preservation. Therefore, NaCl is a limiting factor for FW fertilizer production with
Korean FW [10]. In addition, kimchi has high capsaicin content, and capsaicin has negative
effects on plant growth; this is another major limiting factor for FW fertilizer [11]. Thus,
the government of the Republic of Korea has restricted the NaCl content in OF to 2% and
established the maximum permissible content of Korean FW in OF as 30% [12]. However,
some entrepreneurs have recently produced OF mixed with a high percentage of Korean
FW (over 30%) to reduce production costs. These illegal products have been distributed
and sold nationwide. Therefore, a nondestructive evaluation technique for food-waste
components (FWC) in OF has drawn considerable research attention.

Hyperspectral imaging (HIS) can simultaneously acquire spatial and spectral data
from a target by combining image processing and spectroscopy techniques, and is a pow-
erful tool for agricultural analyses [13–15]. Rapid improvements in HSI technology have
facilitated nondestructive evaluation of soil nutrition, fertilizer quality, plant productivity,
and so on. HSI technology has also been used in fertilizer nutrient analysis, salt stress
assessment, plant growth monitoring according to fertilizer type, etc. For instance, An et al.
(2016) developed a soil salinity model for satellite hyperspectral remote-sensing data and
used it to evaluate salt stress on winter wheat [16]. Further, Kumar et al. (2018) investigated
the spectral signature of a soil and fertilizer mixture and developed a quantification equa-
tion incorporating the diagnostic depth and the soil fertilizer concentration [17]. Wang et al.
(2018) evaluated the nitrogen fertilizer levels of a tea plant using visible and near-infrared
HSI techniques with multivariate classification algorithms; hence, they discriminated tea
plants subjected to three different nitrogen treatments [18]. Finally, Sha et al. (2019) pro-
posed a HSI method, including multivariate techniques, to discriminate fertilized from
unfertilized grasses and showed that specific wavelengths can be effectively used to assess
the influence of different fertilizers on the grasses [19]. However, to the best of the au-
thors’ knowledge, no nondestructive HIS technology for FWC evaluation in OF within the
visible–near-infrared (Vis/NIR) region has been developed to date. Vis/NIR spectroscopy
has been widely known to be one of the most effective techniques for visualization of
soil nutrient contents and their related distributions, and for rapid evaluation of fertilizer
components [20].

The primary aim of this study is to develop an optimal model for qualitatively and
quantitatively detecting FWCs in OF, based on the Vis/NIR HIS technique. To accomplish
this, the minor objectives are the following: (1) analysis of the spectroscopic data of OF
and FW fertilizer raw materials, (2) calculation of the NaCl and capsaicin concentrations in
FWC using inductively coupled plasma optical emission spectroscopy (ICP-OES), (3) de-
velopment of optimal models for OF FWC evaluation, and (4) acquisition of hyperspectral
images suitable for OF FWC detection based on pixel information using the developed
optimal models. Partial least squares (PLS) and least-squares support vector machine
(LS-SVM) techniques are used to develop the optimal model because these techniques have
been widely used for nondestructive evaluation of biochemical and biophysical variables in
various agricultural applications [18,21–24]. In addition, to improve the performance of the
developed models, various pre-preprocessing methods are applied. Hence, the potential
for qualitative and quantitative evaluation of OF FWCs is investigated using the developed
optimal model based on HSI technology.

2. Materials and Methods
2.1. Sample Preparation

Raw materials of OF and commercial FW fertilizer (Daewon-Nongsan, Chungbuk,
Republic of Korea) were purchased for NaCl concentration analysis and hyperspectral
image acquisition. Six OF raw materials were selected: castor oil cake, rapeseed oil cake,
soybean oil cake, bone dust, rice bran, and fish meal; these items are widely consumed
in Korea. The spectral data of the six raw materials and FW fertilizer were then obtained.
The FW fertilizer was uniformly mixed with the raw materials, for FWC concentrations
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ranging from 0 to 100%, i.e., 0, 5, 10, 15, 20, 30, 40, 50, and 100%, and the spectral data of the
various samples within the Vis/NIR region were obtained. A total of 275 mixture samples
with different FWC concentrations were fabricated on the laboratory scale. FW fertilizer
and OF particle sizes were measured as ranging from 0.1 to 5 mm.

The ICP-OES method, one of the most widely used physicochemical analysis tech-
niques in agricultural studies [25,26], was used to analyze the NaCl concentrations in the
six major OF components and FW fertilizer. Table 1 lists the ICP-OES measurement results
(ICP-OES 5100 series, Agilent Technologies, Santa Clara, CA, USA).

Table 1. NaCl concentrations of major materials used for organic fertilizer in Korea.

Materials NaCl (mg/g) Capsaicin (mg/g)

FW fertilizer 752.52 1637.31
Castor oil cake 57.29 0

Rapeseed oil cake 37.77 0
Soybean oil cake 2.56 0

Bone dust 479.32 0
Rice bran 9.64 0
Fish meal 412.58 0

In Table 1, FW fertilizer, bone dust, and fish meal have relatively high NaCl concentra-
tions compared to the plant-based OF materials. Only the FW fertilizer has a very high
level of capsaicin. As expected, although bone dust and fish meal have higher NaCl levels
than the other components, the FW fertilizer has the highest concentrations of both NaCl
and capsaicin.

2.2. Hyperspectral Imaging System

The line-scan-based HSI technique was used in this study as it allows rapid detection
of the physical and chemical information of a sample in terms of the spectral data. These
data are obtained for each spatial pixel of a captured image and a three-dimensional (3D)
hyperspectral cube is simultaneously produced [27–29]. Figure 1 is a conceptual diagram
of the Vis/NIR HSI system based on the line-scan method employed in this work.

The main components are a 400–1000-nm low-light sensitive electron-multiplying
charge-coupled-device (EMCCD; MegaLuca, Andor Technology Inc., Belfast, Northern
Ireland) camera including a detector array of 1002 vertical and 1004 horizontal pixels
thermo-electrically cooled to −20 ◦C via a two-stage Peltier cooler; an imaging spectrograph
(VNIR Hyperspec, Headwall Photonics Inc., Fitchburg, MA, USA) for line-scan imaging;
a Schneider–Kreuznach Xenoplan 1.4/23 C-mount lens (Schneider Optics, Hauppauge, NY,
USA); six 100-W quartz–tungsten halogen lamps.

Line-scan imaging was achieved when light from the line-scanned field of view (FOV)
was passed through the slit of the imaging spectrograph. Here, to produce a 2D image
featuring the spatial (horizontal axis) and spectral (vertical axis) dimensions, the light was
dispersed and then projected by the dispersive gratings of the EMCCD detector array. The
lamps were integrated with fiber-optic line lights (Fiber-Lite, Dolan-Jenner Industries Inc.,
Lawrence, MA, USA) positioned 500 mm from the sample and 220 mm apart to illuminate
the line-scan FOV at forward and backward angles of approximately 10◦ with respect to the
vertical. The samples were transported by a programmable motorized translation sample
holder (25 mm × 25 mm × 3 mm; Velmex, Inc., Bloomfield, NY, USA) under illumination,
and their hyperspectral line-scan images were taken using a 0.2-mm incremental step.

2.3. Hyperspectral Image Acquisition

The displacement of the sample translation unit was 210 mm in 0.2-mm increments
under illumination (500 mm below the camera lens), and the single-pixel size of the hyper-
spectral image was 0.2 mm. The hyperspectral data of the mixture samples were acquired
simultaneously during translation. The scan area described by one pixel was 0.04 mm2
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[0.2 mm (spatial) × 0.2 mm (scan)]. The camera region of interest (ROI) was identical to
the translation unit size (25 mm × 25 mm). The backgrounds of the sample images were
removed by setting the pixels to zero, to exclude unnecessary pixel information. Thus, the
specifications of the obtained 3D hypercubes of each sample were 125 (spatial) × 125 (scan)
pixels with 128 wavelengths (channels), excluding their backgrounds.

Figure 1. Conceptual diagram of HSI system: (a) imaging spectrograph with electron-multiplying
CCD, (b) C-mount lens, (c) quartz–tungsten halogen lamps, (d) sample holder, and (e) programmable
monoaxial stage.

The actual spectral information of the hyperspectral images was obtained through rel-
ative reflectance correction (spectral calibration) of the sample images, using a 99% diffuse
reflectance white reference image (SRT-99-120, Labsphere, North Sutton, NH, USA) and a
dark reference image. The dark reference image was acquired by deactivating the illumina-
tion and was obtained to enable correction for noise from the EMCCD camera. The spectral
calibration reflectance values were acquired according to the following equation [14,30]:

IR =
Ir − Ib
Iw − Ib

(1)

where IR is the relative reflectance image and Ir, Iw, and Ib are the obtained hyperspec-
tral, white reference, and black reference images, respectively. Before image processing
for FWC detection in the mixture samples, the spectral data of the raw materials were
acquired for analysis of their chemical characteristics. Then, after background removal
and spectral calibration, the hyperspectral images of the samples were used to develop the
optimal model.
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2.4. Model Delvelopment

PLS and SVM techniques were chosen for the main algorithms used to develop the
FW-component detection models. PLS is a multivariate analysis method that extracts
new latent variables or factors from raw spectra. These factors indicate the maximum
covariance between the reference and spectral information [13]. Thus, the PLS method
can resolve the multi-collinearity problem using the latent variables of the independent
and dependent variables. Unlike the PLS technique, the LS-SVM method can optimize
separation of hyperspectral matrixes that minimize the misclassification rate for groups
and can solve non-linear problems [31,32]. By comparing the results of both techniques,
the linear and non-linear features of the OF FW component evaluation could be compared
and analyzed. Of the 275 samples, 205 and 70 were used for model development and
prediction, respectively.

To enhance the forecasting capacity and robustness of calibration of the PLS and
LS-SVM models, it is important to derive the effective wavelength (EW) region and PLS
factors [33]. The EW regions were selected using the intermediate PLS (iPLS) method,
which can prevent overlap and weak absorption intensity in the obtained spectral data.
The effective PLS factors were determined from the minimum root mean square error of
the validation (RMSEV) value and the EW regions were extracted using a baseline lower
than the average RMSEV values. The RMSEV values were calculated from the following
equation [33]:

RMSEV =

√√√√∑n
i=1

(
yi, actual − yi, predicted

)2

n
(2)

where yi,actual and yi,predicted are the actual and estimated values for the developed PLS
model, respectively, and n indicates the actual/predicted samples. To accomplish this, the
total wavelength was divided by 50-nm intervals and the regions lower than the average
of the entire subinterval were selected as the EW regions.

To improve the performance of both models, five spectral preprocessing methods
were applied to the hyperspectral images of the samples: multiplicative scatter correction
(MSC), standard normal variate (SNV) transformation, the Savitzky–Golay derivative
(SGD), smoothing, and normalization methods. These processes simplified the obtained
spectrum such that the spectral peaks (corresponding to specific chemical characteristics)
were emphasized through removal of noise signals such as scattering effects generated
by the irregular surfaces of the samples and irregular changes in the illumination paths
and intensity [22,33]. Among them, a preprocessing method with a low standard error
of calibration (SEC), a low standard error of prediction (SEP), and a high coefficient of
determination (R2) was selected to realize the optimal model imaging.

2.5. Image Processing

The HSI technique can create pixel images or a chemical concentration map based
on the spatial distribution of the chemical components in the sample. In this study, the
predicted hyperspectral images were determined based on the FWC quantity and allowed
improved interpretation of the sample chemical dynamics and distribution patterns based
on the contained pixel information. The obtained hyperspectral images were also pro-
cessed by removing the backgrounds of the sample images and through application of
preprocessing methods. The higher the peaks of the beta-coefficient absolute values in the
PLS model, the greater the effect on the model development. Hyperspectral images for
qualitative and quantitative evaluation of the OF FWCs were acquired using the above
procedures and image processing technique. The workflow of the HSI data processing
procedures is shown in Figure 2. All pixel mapping, data analysis, HSI control, model
development, and image processing were implemented using Matlab software (version
7.13; MathWorks Inc., Natick, MA, USA) with a Microsoft Windows operating system
(Windows 10; Microsoft, Redmond, WA, USA).
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Figure 2. Workflow of HSI analysis for qualitative and quantitative evaluation of OF FW components.

3. Results
3.1. Spectral Data

Figure 3 shows the spectral data obtained for the mixture samples and FW fertilizer
within the Vis/NIR region using the HSI system. Figure 3a,b show the raw spectral data of
the mixture samples for different FWC content ratios (0 to 100%) and their average values,
respectively.

Figure 3. Spectral data of mixture samples with increasing FWC concentration (0, 5, 10, 15, 20, 30, 40,
50, and 100%): (a) whole and (b) average spectra.

3.2. Model Development

As noted above, incorporation of all wavelengths also includes unrelated information
for modeling and noise, which can cause multicollinearity and data overlap problems [27].
To avoid these issues and improve the FWC model predictability, EW regions were defined
and applied to both PLS and LS-SVM models. These EW regions were selected using a
baseline that was lower than the average RMSEV values of the FWC but with higher R2

values than other wavelengths. Figure 4 shows the calculated baseline RMSEV values
(black dashes, 12.4) for the FWC of the mixture samples. An EW region (475 to 775 nm)
was then selected.
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Figure 4. Selected effective wavelength region using FWC RMSEVs.

The beta coefficients of the developed PLS model are shown in Figure 5. Because
the high peaks of the absolute values mainly influenced the model development, four
wavelengths (470, 625, and 675 nm) were selected.

Figure 5. PLS model beta-coefficient plot for FWC detection in OF mixture samples.

Table 2 lists the results of both the PLS and LS-SVM models produced using five
preprocessing methods within the selected EW region. The overall results of the LS-SVM
model were superior to those of the PLS model. Based on R2, SEC, and SEP, the LS-SVM
model was selected. The correlations between the FWC concentrations, given by the
mixture sample and by the LS-SVM model with the range normalization method, are
shown in Figure 6.
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Table 2. FWC prediction outcome for OF mixture samples from EW region.

Models Preprocessing
Calibration Prediction

R2
c SEC (%) Factors Bias R2

p SEP (%) Bias

PLS

Smoothing 0.74 10.35 9 0.69 0.65 12.27 0.57

Normalization
Mean 0.79 9.47 6 0.74 0.76 10.12 0.10

Maximum 0.8 9.22 8 0.76 0.71 11.28 0.78
Range 0.77 9.73 8 0.73 0.68 11.7 0.76

MSC 0.77 9.77 7 0.73 0.67 12.03 5.03

SNV 0.75 10.18 7 0.71 0.69 11.53 0.53

SGD
1st deri. 0.75 10.28 7 0.68 0.66 11.94 −0.12
2nd deri. 0.79 9.32 9 0.67 0.68 11.68 −0.06

Raw 0.73 10.52 8 0.69 0.676 11.73 −0.20

LS-SVM

Smoothing 0.9 6.44 - 0.76 0.76 10.03 −0.12

Normalization
Mean 0.85 7.86 - 0.82 0.82 8.62 1.17

Maximum 0.89 6.81 - 0.81 0.82 8.74 0.40
Range 0.87 7.44 - 0.83 0.83 8.46 0.94

MSC 0.9 6.36 - 0.83 0.83 8.55 4.53

SNV 0.92 5.85 - 0.81 0.81 8.96 0.78

SGD
1st deri. 0.95 4.5 - 0.83 0.84 8.34 −0.36
2nd deri. 0.99 2.26 - 0.78 0.78 9.64 −0.24

Raw 0.89 6.75 - 0.83 0.83 8.52 0.41

Figure 6. Correlation between actual and predicted FWC concentrations in mixture samples (0, 5, 10,
15, 20, 30, 40, 50, and 100%), for LS-SVM model with range normalization method.

3.3. FWC Visucalization in Mixture Samples

Figure 7 shows representative images for increasing FWC content (0, 5, 10, 15, 20, 30,
40, 50, and 100%) in the mixture samples, which were obtained through application of
the developed LS-SVM model to produce a distribution map of the FWCs of the mixture
samples. Each LS-SVM image is 500 × 500 pixels in size. With increasing FWC, more pixels
gradually change from blue to red; the color change index is described in the color bar.
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Figure 7. FWC visualization in mixture samples and images produced by LS-SVM model.

4. Discussion
4.1. Spectral Analysis

Vis/NIR region contains meaningful information about the major X–H chemical bonds,
i.e., C–H, N–H and O–H. All of the molecules including hydrogen have a measurable
Vis/NIR spectrum, resulting in a large amount of organic materials to be suitable for
Vis/NIR analysis [34]. In Figure 3, the reflective spectral signatures of the mixture samples
provide typical chemical information about the OF because they include overtones of
the fundamental vibrations of the organic molecules and combination bands caused by
the stretching and bending of N–H, C–H, and C–O groups, which primarily occur in the
Vis/NIR region [35–37]. In particular, the spectral absorption region at 655 nm shows
lipid component vibration. The feature waveband within the ranges of 600 to 700 nm is
mainly assigned to the functional lipid groups including C–H, CH2, and CH3 bonds [38].
To produce FW fertilizer, oil waste is extracted and removed from FW through oil–water
separation. After this separation process, the FW could be converted into biogas, for
combined heat and power generation, or for fuel after purification. The remaining solid
digestate was converted into OF and compost [11]. Despite the oil waste extraction process,
however, some lipid components remained and were detected in the OF spectral absorption
peak at 655 nm.

4.2. PLS and SVM Model Analysis

The RMSEV wavelength ranges smaller than the average RMSEV value in Figure 4
were used to identify EW regions for FWC in the mixture samples, while wavelengths with
RMSEV values less than the average RMSEV value were considered to be unnecessary.
Thus, only 50% of the entire spectrum included meaningful FWC spectral features and
could be used for FWC prediction in the mixture samples.

In Figure 3, the lipid component affected the LS-SVM model in the 600- to 700-nm
region; this feature is also apparent for the PLS beta coefficients. That is, in Figure 5,
all wavelengths except those in the 600- to 700-nm region almost evenly affected the
performance of the developed PLS model; therefore, this region would have a relatively
large impact on the PLS model performance.
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In Table 2, among the preprocessing methods, the range normalization method was
selected as the optimal. This approach did not produce the highest coefficient of determi-
nation values for calibration and prediction (R2

c = 0.87 and R2
p = 0.83, respectively) or the

lowest SEC (7.44%) and SEP (8.46%) values compared with the SGD method (R2
c = 0.99,

R2
p = 0.83, SEC = 2.26%, and SEP = 8.34%), the balance of the two coefficients of determina-

tion exceeded that of the SGD method because the ideal ratio of calculation to prediction
values is 1 [33] for optimal model selection.

The R2
p of 0.83 obtained in this work is lower than those of the authors’ previous

studies based on HSI techniques for foreign particle detection in powder materials [22]
and food deterioration evaluation [27,32,33]. This low coefficient of determination may
have been caused by the relationship between the particle size and the wavelength of the
illumination employed in this work.

The disadvantage of the HSI technique is its low penetration depth, which occurs
because of the scattering effects of photons on the specimen surface. In general, the average
penetration depth depends on the imaging wavelength; the longer the wave, the deeper
the penetration [39]. The penetration depth of Vis/NIR sensing is typically less than a
millimeter [40], and the Vis/NIR region of this study was selected because of its color
pigment selectivity for FWC detection. However, although the mixture samples containing
FW particles used for this experiment were well-mixed, the FW particles may have been
located toward the bottom or middle of the sample holders (3 mm). Thus, the model
accuracy may have been affected by the FW particle positions. In future work, FWC
particle sizes, according to penetration depth, will be investigated with application of
different models in order to develop more precise prediction systems.

In powdered materials, the detection performance tends to decrease simultaneously
with the target particle size [41]. The FWC particle sizes of this work were tens to hundreds
of micrometers, whereas the other OF particle sizes ranged from 5 to 0.1 mm. Therefore,
the model prediction accuracy gradually decreased with increased FWC concentration in
the mixture samples, as shown in Figure 6. To improve the model performance, the sample
holder height and the particle size should be controlled according to the light source and
target particle size.

4.3. Ananlysis of Hyperspectral FWC Imaging

Although conventional spectroscopy techniques provide only one set of spectral
information per individual sample, the HSI technique can produce full spectral information
from every pixel. Thus, the mixture-sample images obtained using the LS-SVM model can
show different spectral and spatial information for each pixel. In Figure 7, the mixture
samples with different FWC levels are not easily distinguished by the naked eye, except
for the 100% FWC sample. However, the LS-SVM images clearly classify the different FWC
contents based on the number of yellow and red pixels, which increase with increasing FWC
levels. Therefore, the obtained images present the FWC concentrations on a linear color
scale with different colors being used for each pixel, facilitating improved understanding
of the spatial variation in FWC content in the mixture samples.

From Figure 7, it is particularly difficult to evaluate the FWCs added to the OF up
to 30% concentration with the naked eye. However, the LS-SVM approach detects and
distinguishes the increasing concentrations. This is because the FW fertilizer has a different
pigment to the other OF ingredients, as shown in Figure 7, and thus, the color difference
between the two groups reveals the FWC level. Note that pigment-based spectral features
could strongly affect the performance of the LS-SVM model and, thus, the output images.
Consequently, application of chemometric methods with various preprocessing techniques,
and the HSI technique used in this study has considerable potential for quantitative
evaluation of FWCs in OF.
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5. Conclusions

An HSI technique for the quantitative evaluation of FWCs in OF within the Vis/NIR
region was investigated; the HSI system, image processing method, chemometrics models,
and model preprocessing methods were developed and analyzed. The reflectance spectra
in the Vis/NIR region, which were extracted from the hyperspectral images of mixture
samples, were processed into the EW region (500 to 750 nm) for LS-SVM and PLS models.
In the EW region, the spectral band of the lipid components between 600 and 700 nm mainly
affects the hyperspectral images for determination of the FWCs in OF. After preprocessing
was applied to both models, the LS-SVM model with range normalization was selected
because of the stable performance of the coefficients of determination and the low SEP and
SEC values. The R2

p obtained for evaluation of different FWC levels (0, 5, 10, 15, 20, 30, 40,
50, and 100%) was approximately 0.83 because of the different particle sizes in the mixture
samples. However, the dynamic changes in the FWCs with increased concentration were
clearly distinguished using distribution maps visualized using the LS-SVM model. Hence,
the developed HSI technique may constitute an alternative method for a rapid and accurate
inspection system for real-time quality screening to prevent excessive addition of FW
fertilizer to OF. This approach introduces a promising research avenue for development of
various nondestructive quality and safety evaluation systems for particle-based fertilizers.
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