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Abstract: This article investigates the influence of random microwave discontinuities on the character-
istics of long transmission paths. This is most important for dynamic measuring stands, accompanied
by multiple space movement of long transmission paths with their bending or twisting during
the measurement process. In modern active electronically scanned arrays this issue also becomes
relevant, due to increased requirements for the accuracy of beam shaping. The aim of this study is
to develop a theoretical background and perform experimental verification for taking into account
the effect of random microwave discontinuities on the transmission path characteristics. A method
for correcting the effect of such irregularities is considered based on electrical length control by
measuring the input reflection coefficient. Relations for the magnitude and phase of the path’s input
reflection coefficient depending on the S-parameters of a long four-terminal network terminated with
mismatched load are obtained and plotted. Using theory of sensitivity, the mathematical expressions
of conditions were obtained to achieve maximum accuracy of measuring the electrical length of a
long microwave path. The possibility of dynamic error correction in antenna measurements with a
long test path caused by random microwave irregularities along it has been experimentally proved.

Keywords: long transmission paths; dynamic measuring; random microwave discontinuities;
dynamic error correction

1. Introduction

At present, various microwave systems are being developed, which require high
stability of the oscillation signal parameters. Such systems include, for example, active
electronically scanned arrays (AESA) [1,2], providing a narrow radiation pattern (RP). On
the other hand it can be monopulse antenna arrays, which have a high value of difference
pattern null slope, and therefore a high resolution. Thus, it expands the accessible amount
of information about the propagation of electromagnetic waves from sources of radiation
or reflection in the space around. However, these advantages are realized due to high
identity of the channels output signals that is subject to various destabilizing factors.

All measurement errors arising under the influence of destabilizing factors can be
grouped into systematic and random ones. Systematic errors can be partially removed
by introducing some compensating correction during the initial setup, whereas random
errors cannot be systematized. To take into account the influence of random errors on
the output signal variation of long microwave transmission lines, it is necessary to create
special methods and algorithms for their determination and compensation.

Radio engineering systems, which include antennas and antenna arrays, require
increased accuracy of test procedures [3]. Ensuring high-precision measurements of the
antenna technology parameters allows one to increase the development efficiency of the
complex devices, potentially improve the technical performance of systems used and verify
the characteristics of off-the-shelf products [4–7].

Antenna measurements are carried out in the near [8] or far field [9] regions using
specialized test facilities such as anechoic or reverberation chambers [10], free-space test

Appl. Sci. 2021, 11, 8183. https://doi.org/10.3390/app11178183 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11178183
https://doi.org/10.3390/app11178183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11178183
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11178183?type=check_update&version=2


Appl. Sci. 2021, 11, 8183 2 of 18

ranges [11] or other equipment types. At the same time, not only the measured data
themselves are of interest, but also issues related to the estimation of the measurement
error [12], as well as the measurement reproducibility [13]. It is often necessary to provide
the relative movement between the measuring antenna and the antenna under test (AUT)
during a measurement process, so measurements are not static in the general case. An
example is AUT rotation in the azimuthal plane when measuring cross-sections of RP [14]
or near-field scanning to obtain the amplitude-phase distribution with the probe [12]. The
effect of changes in test cable characteristics due to twisting or bending is usually not taken
into account in such measurements.

The aims of the work were to systematize the theoretical aspects of taking into account
the influence of random factors on the characteristics of long measurement paths, develop
an error correction mechanism and verify the proposed calibration method.

As a result, relations were obtained indicating the need to correct random errors at
the output of long microwave transmission lines found in both AESA feeding systems and
measuring systems.

2. Mathematical Model of a Long Microwave Path

When investigating the output signal of various transmission systems, it is necessary
to take into account all the factors affecting their stability over time. In general, errors occur
as a result of combining two types of processes, namely slow and fast. A slow process is
associated with a variation in electrical length of the signal path due to both environmental
conditions and the electrical parameters drift of its component parts. In turn, fast process
is associated with thermal, shot and flicker fluctuations.

Let us compare errors at the output of a long microwave path based on the theory of
network synchronization before and after applying the correction [15]. To do that, we write
output signal of the signal source as:

.
S(t) = A(t)sin

.
Φ(t),

A(t) = A + δA(t),

where δA(t) is an amplitude variation of the signal source output, relative to some fixed
value A (amplitude fluctuations);

.
Φ(t) is a phase at the signal source output. Since the

phase at the output of the signal source changes with time, we will denote the function
describing the behavior of the phase in time by the term “phase process”.

Next, we write the function of the instantaneous angular frequency of the signal
source [16].

.
ωG(t) = ω0 +

M−1

∑
k=0

Q(k)
k!

tk +
.
ξ(t), (1)

whereω0 is the nominal value of the natural angular frequency of the signal source; Q(0)
is a random value with a zero mean that expresses the initial frequency error. This error
occurs due to uncertainty in the initial setting of the source’s natural frequencies (setting
error); Q(k), (k = I, . . . , M− I) is a set of time-independent random variables that simulate
frequency drifts of k-th order (long-term instability);

.
ξ(t) is a stationary random process

with zero mean, describing short-term instabilities of the signal source.
The phase process of the signal source is found as a result of integration (1) on interval

[0, t]:
.

ΦG(t) = Φ(0) + ω0t +
M

∑
k=1

Q(k− 1)
k!

tk +
[ .
ξ(t)−

.
ξ(0)

]
, (2)

where
[ .
ξ(t)−

.
ξ(0)

]
is generally a non-stationary stochastic process that describes short-

term instabilities of the reference signal source (phase noise).
Consider two types of long signal paths—without error correction and with full error

correction. The first type includes, for example, passive systems for signal routing in the
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form of a series-parallel combination of power dividers and transmission lines [17], as well
as test cables between the measuring equipment and AUT during antenna tests [18]. Based
on (2), let us write the phase process at the output of any v-th channel of such a system:

.
Φv(t) = Φ(0) + ω0t +

M

∑
k=1

Q(k− 1)
k!

tk +
[ .
ξ(t)−

.
ξ(0)

]
+ βlv(t) + Nkv(t), (3)

where βlv(t) = Lv(t) is electrical length of a given channel; Nkv—additive thermal noise of
v-th channel.

The mathematical model of the passive signal routing unit of the source signal without
phase stabilization can be written in matrix representation as:

Φp(t) = ΦG(t)γ + L(t) + Nk(t), (4)

where Φp(t) = [Φ1(t), Φ2(t), . . . Φn(t)]
T is a column vector of the output phase process;

n is the total number of output channels of the system; ΦG(t) is the phase process at the
output, determined by (2); γ = [I, I, . . . I︸ ︷︷ ︸]

n

T is identity column vector,

L(t) = [L1(t), L2(t), . . . Ln(t)]
T , Nk(t) = [Nk1(t), Nk2(t), . . . Nkn(t)]

T .

Expression (4) shows that the phase process at each channel output of a passive long
signal path without phase stabilization is determined by the phase process of the signal
source, the channel electrical length and its equivalent thermal noise.

The second class of signal paths includes transmission systems with a driving oscillator,
the parameters of which are stabilized either by correction or by auto-tuning for each
channel separately [19]. The phase process at the output of the v-th channel of such a
system in generalized form is written as:

.
Φv(t) =

.
ΦG(t) +

k

∑
j=1

avj

{
KvjYvj(p)

[
gvj

[ .
Φvj(t)

]
+ εvj(t)

]}
, (5)

where k is the number of steps (hierarchy levels) for distributed transmission systems; Kvj
represents gain of the correction loop for v-th channel at j-th step; Yvj denotes the transfer
function of correction loop; gvj[. . .] is phase discriminator frequency response; αvj stands
for weight coefficients of adder (in the self-correction system, αvj = I); εvj is the equivalent
phase noise of the channel. A mathematical model of the system with a driving oscillator
and a correction can be written in the form:

ΦS(t) = ΦG(t)γ + A(t), (6)

where A(t) = [A1(t), A2(t), . . . AN(t)]T is a column vector containing the diagonal of
a square matrix D(t) of N × N size: Av(t) = Dvj(t)

∣∣
v=j. Matrix D(t) is defined by

the expression:
D(t)N×N = Y(p)GT(t) (7)

G(t) = B(t) + N(t),

B(t) = [Kvjgvj
[
Φvj(t)

]
]N×K (8)

N(t) = [Kvjεvj(t)]N×K (9)

Y(p) = [Yvj(p)]N×K (10)

The phase process at the output of each channel of considered excitation system is
determined, in particular, by the phase of the signal source, the system structure, the gain
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of the correction loop, the discriminator frequency response, and the phase noise of the
system, as shown through expressions (6)–(10).

Comparing mathematical models of two classes of excitation systems (4) and (6), we
can conclude that the accuracy of phase stabilization of the output signal in first class
systems is determined by difference in electrical lengths of the channels, the phase noise
of the source, as well as channels themselves. Thus, total phase error in such a system
can significantly exceed tens of degrees due to unregulated changes in the path’s electrical
length (for example, due to changing environmental conditions or mechanical impact).
In second class systems, the total error is determined by the parameters of the correction
system; therefore, it is possible to minimize it using a dynamic calibration.

3. Analysis of the Electrical Length Control Method

Long transmission path stabilization is determined by two factors: the accuracy of the
electrical length control and the total error tracking. The accuracy of phase error tracking is
determined by the parameters of stabilization system. The accuracy of the electrical length
control is determined by the chosen measurement method.

A number of works have been devoted to methods for measuring the electrical length
of long paths [20–23]. The viability of using a particular method depends on the specific
situation. In our work, a measurement method using load reflections was investigated.
The method of unmodulated reflection from the load has found application mainly in
the impedance and reflection coefficient measurements [22], as well as in power supply
systems of linear accelerators [19]. It is proposed to use this method for measuring the
electrical length of a long microwave path as follows.

When oscillations are excited in the lossless line terminated with a mismatched load, a
part of the incident wave, reflected from the load propagates in the opposite direction. Due
to the interference of the incident and reflected waves, the mixed standing and travelling
wave mode is established in the line. When changing the line length, the waves shift
along it, by an amount equal to the electrical length deviation from the nominal value. By
registering the standing wave shifting, for example, on the displacement of the wave nodes,
it is possible to control the electrical length of the microwave path.

The accuracy of electrical length control with the presented method is influenced
by several factors: reflections from microwave discontinuities within the path, the cable
attenuation, the load reflection, as well as the signal source reflection. With a theory of
sensitivity, we will estimate the degree of influence of these factors on the oscillation signal
in case of the electrical length control [24]. Sensitivity analysis is associated with the study
of the effect of parameters variation on the behavior of dynamic systems. The goal is to
find the sensitivity matrix:

U(p) =
[

∂x
∂p

]
=

[
∂xn

∂pm

]
, (11)

where x is the N-dimensional vector of the system state; p is the M-dimensional vector
containing system parameters.

In practice, the sensitivity matrix is most often determined with the mathematical
model of the system [25]. To design and analyze the model, we will use the well-known
theory of directed graphs [26,27]. A measuring system for determining the electrical length
of a long transmission line using the unmodulated reflection method can be considered
as a cascade connection of several blocks. The first of them is the two-terminal device,
which represents a signal source, then there is the four-terminal device, which stands
for a transmission path with microwave discontinuities and attenuation, and finally the
two-terminal device, which acts as the load (Figure 1).
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Each of the n-terminal networks of the system is assumed to be linear and described
by the corresponding equation:

.
bG =

.
EG +

.
aG

.
ΓG – signal source( .

b1.
b2

)
=

[ .
S11

.
S12.

S21
.
S22

]( .
a1.
a2

)
– transmission path

.
bZ =

.
aZ

.
ΓZ – load

(12)

where
.
a1,

.
a2,

.
aG,

.
aZ are incident waves at the input and output of the transmission path, the

source output and load input, respectively;
.
b1,

.
b2,

.
bG,

.
bZ are corresponding reflected waves;

.
EG—the source voltage value;

.
ΓG,

.
ΓZ—complex reflection coefficients of the source and

load, respectively;
.
S11,

.
S22,

.
S12,

.
S21—scattering parameters of the four-terminal network of

a microwave transmission path.
To analyze the measuring accuracy of the system parameters, it is necessary to obtain

an analytical expression for the reflection coefficient at the input of microwave path. When
combining element blocks in pairs in accordance with (12), the same wave is incident for
one of them and reflected for the other, i.e.,

.
aG =

.
b1,

.
bG =

.
a1,

.
a2 =

.
bZ,

.
b2 =

.
aZ

Since one of the connected nodes for each pair is a source, a direct connection of the
considered directed graphs is acceptable. Figure 2a shows a total directed graph of the
circuit combined. Figure 2b shows the result of simplifying the graph obtained.
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It can be used to write an expression for the input reflection coefficient of a four-
terminal network:

.
Γin =

.
aG
.
EG

=

.
S11

(
1−

.
ΓZ

.
S22

)
+

.
ΓZ

.
S12

.
S21

1−
.
ΓZ

.
S22 −

.
S11

.
ΓG +

.
ΓG

.
ΓZ

.
S11

.
S22 −

.
ΓG

.
ΓZ

.
S12

.
S21

(13)
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To obtain the magnitude and phase of the input reflection coefficient of the path, it is
useful to represent (13) in trigonometric form:

.
Γin = Γincosϕin + jΓinsinϕin.
S11 = S11cosϕ11 + jS11sinϕ11.
S12 = S12cosϕ12 + jS12sinϕ12.
S21 = S21cosϕ21 + jS21sinϕ21.
S22 = S22cosϕ22 + jS22sinϕ22.
ΓG = ΓGcosϕG + jΓGsinϕG.
ΓZ = ΓZcosϕZ + jΓZsinϕZ

The elements of the sensitivity matrix of the investigated system (11) are determined
from (13). In this case, x = [Γin,ϕin] is the vector describing the state of the system N = 2;
p = [S11, S12, S21, S22,ϕ11,ϕ12,ϕ21,ϕ22, ΓG,ϕG , ΓZ,ϕZ ] is the vector containing system
parameters, M = 12.

The following characteristics shown in Figure 3a–f are particularly interesting for the
study of the microwave discontinuities influence on the electrical length control of the
transmission path.
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Based on the obtained results, preliminary conclusions can be drawn that are useful
for the electrical length control of long microwave paths:

• to improve the accuracy of ϕ21 control by the method of unmodulated reflection from
the load, it does not need to be perfectly matched with line. Moreover, the value of
the reflection coefficient from the load can reach ΓZ = 0.5 . . . 0.75 (Figure 3a,b);

• the non-identity of the Γin(ϕ12) and Γin(ϕ21) characteristics of the microwave path
leads to measuring errors the electrical length due to changes in ΓZ (Figure 3c,d);

• to reduce the influence of S11 and ϕ11 (the direct wave reflection from irregularities)
on the measuring accuracy of the path’s electrical length, it is necessary to increase ΓZ
(Figure 3e,f).

Consider sensitivity matrix elements of the system (11), which characterize the influ-
ence of the parameters ϕ11, ϕ12, ϕ21, ϕ22, ϕZ on the change in the phase of ϕin. Analysis
of these elements will make it possible to mathematically write the conditions for the
maximum accuracy of the electrical length control. Based on (11) we can write

dϕin
dϕ11

=
S2

11 + ΓZS11S12S21cos θ

S2
11 + (ΓZS12S21)

2 − Γ2
ZS11S22S12S21 cos F + 2ΓZS11S12S21cos θ

; (14)

dϕin
dϕ22

=
Γ2

ZS22S12S21[ΓZS12S21 cos(ϕZ +ϕ22) + 2S11cos θ− S11 cos F]
S2

11 + ΓZS12S21
[
ΓZS12S21 + 2S11cos θ− 2Γ2

ZS22S12S21 cos(ϕZ +ϕ22)
] ; (15)

dϕin
dϕ12

= dϕin
dϕ21

= (ΓZS12S21)
2+ΓZS11S12S21cosθ

S2
11+(ΓZS12S21)

2+2ΓZS11S12S21cosθ
+

+ ΓGΓZS12S21cosψ
1−2ΓZS22 cos(ϕZ+ϕ22)−2ΓGΓZS12S21cosψ ;

(16)

dϕin
dϕZ

= (ΓZS12S21)
2+S11ΓZS12S21cosθ

S2
11+(ΓZS12S21)

2+2S11ΓZS12S21cosθ
+

+ ΓZS22 cos(ϕZ+ϕ22)−(ΓZS22)
2+ΓGΓZS12S21cosψ

1+(ΓZS22)
2−2ΓZS22 cos(ϕZ+ϕ22)−2ΓGΓZS12S21cosψ

;
(17)

where
ϕZ +ϕ12 +ϕ21 −ϕ11 = θ

ϕZ +ϕ12 +ϕ21 +ϕG = ψ

ϕ11 +ϕ22 −ϕ12 −ϕ21 = F

Let us write down the conditions for the maximum accuracy of the electrical length
control of the transmission path.

1. Based on (14), the condition under which reflections from random irregularities rel-
ative to incident waves do not affect the phase ϕin is dϕin/dϕ11 = 0. This is provided with
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S11 = 0, but unfeasible on practice, or with S11 = −ΓZS12S21 cos(ϕZ +ϕ12 +ϕ21 −ϕ11).
Section 4 of this present article examines the influence of microwave discontinuities reflec-
tions that randomly distributed along a transmission path.

2. Based on (15), a similar condition for the reflected wave from the load is dϕin/dϕ22 = 0.
The possible solutions are: ΓZ = 0, S22 = 0, S12 = 0 and S21 = 0. None of these conditions
are met in real systems. Note that the condition:

ΓZS12S21 cos(ϕZ +ϕ22) + 2S11cos θ− S11 cos F = 0

can be approximately reduced to: ϕZ +ϕ22 = π
2 + kπ, k = 1, 2 . . .

3. From (16) we obtain the condition for the maximum measuring accuracy the
electrical length of the path dϕin/dϕ12 = dϕin/dϕ21 = 1. That is possible with S11 = 0
and ΓG = 0.

4. To fully take into account the effect of the load reactance on the output signal
phase in the proposed system, it is necessary that dϕin/dϕZ = 2. It can be seen from
expression (17) that this is possible if two conditions are met at the same time:{

S11 = 0
cos(ϕZ +ϕ22) = ΓZS22

Thus, conditions have been obtained for achieving the maximum measuring accuracy
the electrical length of a long microwave path with method of unmodulated reflection
from the load. To improve the control accuracy of the electrical length, the most important
conditions are:

• eliminate the wave reflection from the signal source, which is achieved by adding a
microwave isolator at its output;

• take into account during calibration the influence of microwave discontinuities ran-
domly distributed along the channel on its input reflection coefficient.

4. Errors in Measuring the Electrical Length

The use of load reflection to account for random deviation of the electrical length is
based on controlling the node shift of the mixed standing and travelling wave. As shown
earlier, the accuracy of such control is significantly affected by the presence of random
microwave discontinuities along the path. That introduced reflection creates an additional
wave shift and therefore introduces a measurement error of the electrical length.

4.1. Influence of Microwave Discontinuities a Long Transmission Path on the Node Shift of the
Mixed Wave

A long microwave path contains a number of elements that create stray reflections
along it, and neither the true parameters of each irregularity, nor their exact location
are known in advance. A statistical approach is used to study the effect of microwave
discontinuities on the input reflection coefficient of the transmission path.

Each i-th random element of the transmission path has a reflection coefficient
.
ρi = ρiejϕi

where ρi and ϕi are random values of the magnitude and phase of the reflection coefficient,
respectively. The random nature of the input reflection coefficient

.
ρ is the result of cumula-

tive effects of a large number of reflections from equivalent input irregularities of the path.
When assessing the effect of microwave discontinuity on the input reflection coefficient of
a path, only the magnitude of its reflection coefficient is essential.

Each discontinuity along the path affects a node shift of the mixed standing and
travelling wave sin 180◦ ∆li

λ = ρi, where ∆li is the node shift of single irregularity; λ is an
operating wavelength [20]. Thus,

∆li =
λ

180◦
arcsinρi, (18)



Appl. Sci. 2021, 11, 8183 9 of 18

where λ is a deterministic, and ρi is a random quantity having the Rayleigh distribu-
tion [28–30]. Since ∆li and ρi are linked through the inverse trigonometric function, the
distribution law of ∆li cannot be precisely determined. It is necessary to solve the problem
using an approximate method. Let us analyze the resulting displacement of the mixed
wave ∆l at the path input. In this case, one can make the assumption that the ∆l value has a
probability distribution close to normal and verify this by constructing a quantile—quantile
(q–q) plot.

To obtain statistical data, the magnitude of the reflection coefficient ρwas measured
at the long path input—a coaxial cable 20 m long, terminated with mismatched load. The
measurements were made at frequencies of 1, 5, and 9 GHz. The conditions for the cable
movement along with the turntable rotation were reproduced and 100 samples at each
frequency were taken. Histogram plots of the arcsinρ = ∆l

λ 180◦ value for each frequency
were constructed (Figure 4a–c). The histogram presents density of arcsinρ values (i.e.,
number of hits r of the values in the corresponding interval; y-axis) over chosen intervals
(x-axis).
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By the type of histogram dependence, one can make an assumption about the distri-
bution law of the investigated quantity. In this case, the histograms in Figure 4a–c allow
one to assume a normal law of arcsinρ.
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In order to prove this, it is necessary to construct q-q plots of the random variable
arcsinρ. The quantile plot is built on the normal probability paper and presents the
investigated quantity arcsinρ (y-axis) over the cumulative frequency (x-axis). The plotted
data points (Figure 5a,c) are arranged so that a straight line can be drawn through them.
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A straight line drawn on normal probability paper represents a normal distribution.
Therefore, considering the deviations of the scatter diagram from a straight line as a result
of random influences, we can assume the distribution of arcsinρ is close to normal.

It can be seen that the deviations of the points from the theoretical line are less
noticeable for the central frequencies (close to 0.5) than at the edges (close to 0 or 1).
That is, when plotting a straight line, which is a theoretical estimate, the end points are
less important than the mid-range ones. The q–q plot allows you to determine the main
characteristics of the investigated probability distribution.

The mean value on the plot is 0.5; M1[arcsinρ] = 18.33◦ at 1 GHz; M2[arcsinρ] = 4.68◦

at 5 GHz; M3[arcsinρ] = 2.32◦ at 9 GHz. The standard deviation is found as the difference
between M and its value at the level of 0.159 along the cumulative frequency (upper x-axis)
or −1 along the theoretical quantile (lower x-axis). σ1 = 0.085◦ at 1 GHz; σ2 = 0.031◦ at
5 GHz; σ3 = 0.013◦ at 9 GHz.

Thus, the distribution of the electrical length fluctuations, caused by the influence
of microwave discontinuities, is close to normal. Accordingly, this makes it possible to
correct the accuracy of the electrical length control by the studied method of unmodulated
reflection from the load.
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4.2. Attenuation Influence on Accuracy of the Electrical Length Control of a Inhomogeneous
Microwave Path

A statistical study of random microwave discontinuities along the lossless transmis-
sion path was carried out in a number of works [31,32]. A key finding of the previous
studies is that in a lossless path with irregularities the input wave is determined by equiva-
lent reflection coefficients. As a first approximation, they are the sum of partial reflection
coefficients ρi, translated to the input of the path. In real microwave paths with attenuation
losses the magnitude of the incident wave along the path does not remain constant. The
further the irregularity is from the beginning of the transmission path, the less influence it
makes, which reduces the probable value of the equivalent reflection coefficient. Let us
carry out a statistical analysis of the influence of n random irregularities along the real
transmission path with attenuation losses on the equivalent input reflection coefficient,
taking into account the conclusions obtained.

Let us recalculate the partial reflection coefficients into the common section at the path
beginning, taking into account the attenuation losses:

.
ρi
′
= ρie−j2βLi e−2αLi ejϕi = ρie−2αLi e−j(2βLi−ϕi) =

= ρie−2αLi cos(2βLi −ϕi) + jρie−2αLi sin(2βLi −ϕi) = ρxi + jρyi,

where ρi and ϕi are the magnitude and phase of the partial reflection coefficient, respec-
tively, α is attenuation of transmission path, β = 2π/λ is phase constant, Li is the distance
to the i-th irregularity from the beginning of the path.

Phase shifts (2βLi −ϕi) are random variables uniformly distributed over the [0; 2π]
interval, thus the mean values ρxi and ρyi are equal to zero. The input reflection coefficient
of the transmission path is defined as the sum of the partial reflection coefficients

.
ρi
′,

translated to the input section of the path.

.
ρ =

n

∑
i=1

[
ρie
−2αLi cos(2βLi −ϕi)

]
+ j

n

∑
i=1

[
ρie
−2αLi sin(2βLi −ϕi)

]
= ρx + jρy

ρx and ρy are the sum of normally distributed quantities and, by the central limit theorem,

have a normal distribution with probability density W(ρx) and W
(
ρy

)
. Assuming ρx and

ρy to be statistically independent, we find the joint probability as the integral of the product

of W(ρx) and W
(
ρy

)
in polar coordinates ρ, ϕ.

W(ρ) =

2π∫
0

W(ρx)W
(
ρy

)
ρdϕ =

ρ

2πσ2

2π∫
0

e
−ρ2

1e−2αLs

2σ2 dϕ =
ρ

σ2 e−
ρ2

2σ2 e−2αL

where

ρ1 =
n

∑
i=1
ρi, Ls =

n

∑
i=1

Li

and W(ρx) =
1√

2πσx
e−ρ

2
x/2σ2

x , W
(
ρy

)
= 1√

2πσy
e−ρ

2
y/2σ2

y are probability density distribu-

tions with variances σ2
x = σ2

y = σ2 = 1
2

n
∑

i=1
σ2

i .

Thus, the magnitude distribution of the input reflection coefficient is subject to the
law of

W ′(ρ) =
ρ

σ2 e−
ρ2

2σ2 e−2αL
(19)

Let us show that this is the Rayleigh distribution law. Changing of the parameters
σ2 = A1, e−2αL = A2, we equate (19) to some Rayleigh law with parameter σ′ and
variable ρ′:
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ρ

A1
e−

ρ2
2A1

A2 =
ρ′

σ′2
e
− ρ′2

2σ′2

From this equality follows a system of equations:
ρ
A1

= ρ′

σ′2

ρ2

2A1
A2 = ρ′2

2σ′2
(20)

Solving the system (20), we obtain:{
ρ′ = ρe−2αL

σ′2 = σ2e−2αL

Thus, the desired magnitude distribution of the input reflection coefficient is subject
to the law of Raleigh.

W
(
ρ′
)
=
ρ′

σ′2
e
− ρ′2

2σ′2

Its parameter is the most probable value of the input reflection coefficient ρ′m = σ′ =

σ
√

e−2αL, corresponding to the top of distribution. That is, the input reflection coefficient
variance σ′2 of the transmission path with attenuation losses is e2αL times less than in the
case of a lossless path σ2, by reducing the additional node shift ∆l of the wave.

Let us find the difference between node shifts for a transmission path with and
without attenuation losses. The magnitude of the input reflection coefficient is assumed
to be ρ′0.9 = 2.14ρ′m = 2.14σ

√
e−2αL, where ρ′0.9 is reflection coefficient with level of

probability P(ρ < ρ′0.9) = 0.9. Relative node shift of the wave:

∆l′/λ =
1

180◦
arcsinρ′0.9 =

1
180◦

arcsin
(
ρ0.9

√
e−2αL

)
where ρ0.9 = 2.14σ.

The difference in relative shifts in terms of the electrical length for a transmission path
with and without attenuation losses:

δβl = ∆βl − ∆βl′ = 2
(

arcsinρ0.9 − arcsin(ρ0.9

√
e−2αL)

)
Figure 6 depicts the dependence δβl(2αL). As the attenuation over transmission path

increases, the node shift of the wave decreases, and consequently the shift difference grows.
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As an example, for 2αL = 4.6 Np, and ρ0.9 = 0.3, the node shift in the lossless path is
equal to 35◦, whereas in the path with attenuation it is 3.4◦. The standing wave arises due to
reflection from microwave discontinuities along the transmission path. Thus, an increase in
the attenuation losses of the path reduces the probable node shift of the mentioned standing
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wave, and, therefore, reduces their influence on the result of antenna measurements.
However, with a large attenuation, the standing wave ratio of the transmission path
decreases, and the standing wave mode is observed near the AUT only. This makes it
difficult to control the electrical length using the main load reflection. In addition, with
increasing path attenuation, less power is supplied to the antenna, which reduces the
signal-to-noise ratio during measurements. Optimization of antenna measurements and
measurement conditions may be the subject of separate studies.

5. Measurement Results

Over the past decades, meters of the scattering parameters, also known as network
analyzers, have become widespread in the analysis of microwave devices. A number of dif-
ferent calibration types of vector network analyzers (VNA) and their variations are known
today [33–36]. The calibration process of VNA is designed to minimize the systematic term
of the measurement uncertainty. The extension of this tool makes it possible to implement
in practice the method proposed for taking into account random measurement errors in the
moving long microwave paths. In the general case, the considered algorithm for correcting
the measurement results is applicable to any family of calibration types. The following
describes the main steps in the process regarding SOLT calibration.

5.1. 1P Calibration

If it is necessary to measure the reflection coefficient at the input of a device under test
(DUT), a 3-term error model of a one-port (1P) VNA is considered. This model is derived
from a 12-parameter model of a two-port (2P) VNA (EURAMET CG No. 12 «Guidelines on
the Evaluation of Vector Network Analysers (VNA)» Version 3.0) through simplification.
To calibrate the VNA, it is necessary to measure the reflection from three different known
loads—open circuit (OC), short circuit (SC) and matched load (ML). As a result of solving
a system of linear equations, the following VNA error factors are determined: directivity
.
ED, source match

.
ES, and reflection tracking

.
ER. Then, the corresponding correction for

the reflection coefficient of the measured load is written as:

.
Γ

a
=

.
Γ

m
−

.
ED

.
Γ

m .
ES −

.
ED

.
ES +

.
ER

(21)

where
.
Γ is the reflection coefficient of the DUT; subscripts “a” and “m” refer to actual and

measured value, respectively;
.
E—error terms of 1P VNA model.

When moving from the classic 1P calibration, which assumes static measurements,
i.e., fixed cables, to the case of dynamic process, no additional measuring equipment is
required. It is assumed that each error term now depends not only on frequency, but also
on the spatial coordinates of the measuring stand components—measuring antenna and
antenna under test. In other words, the dynamic calibration allows one to determine terms
of the VNA error model and perform an unique correction of the measured data depending
on spatial coordinates of antennas. Since this technique implies data post-processing,
the measurements associated with it can be carried out both before and after the main
measurements of the DUT. The process for measuring the reflection of calibration standards
should be the same as for DUT measuring, that is, process is repeated for the available OC,
SC and ML standards, connected consistently to the measuring cable instead of the DUT.

For example, the considered calibration can be applied in the far field antenna measure-
ments jointly with the transmission coefficient normalization when measuring a reference
antenna. The described process takes advantage of the unmodulated load reflection method
and assumes ensuring the repeatability of the measurement conditions.

5.2. 2P Calibration

The two-port VNA model contains 12 error terms. In addition to the mentioned 1P
VNA terms, the following errors are included in the model: load match

.
EL, transmission
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tracking
.
ET and isolation

.
EX . Due to the VNA model symmetry, the obtained six error terms

describe it in one of the probing directions, e.g., forward. Similar six parameters describe
the error model in the other—reverse—probing direction. Conventional 2P error correction
is carried out in three stages: (a) 1P calibration of ports; (b) response measurement of two
ports through the adapter; (c) optional measurement of error terms

.
EX with two MLs,

otherwise considered
.
EX = 0.

Proposed dynamic 2P error correction assumes the use of a phase-stable test cable
as a thru adapter. During the measurement, the test cable is subjected to mechanical
impact, thus the thru adapter will also be affected in the same way. It is allowed to
use an assembly of measuring cables, provided that the phase-stable unit is subjected to
mechanical impact as shown in Figure 7a. The proposed extension adapter consists of
one or two phase-stable cables at the ends and a conventional measuring cable to ensure
the required length between ports. The scattering parameters of such an adapter must be
known, i.e., measured separately. The described approach is similar to calibration with a
known adapter («Defined Thru») (AN 1287-11 «Specifying Calibration Standards and Kits
for Agilent vector Network Analyzers», Agilent Tech., USA, 2009), but differs in that the
calibrated cables are not static during the measurement.
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Figure 7. Dynamic calibration: (a) full two-port SOLT calibration standards with defined thru;
(b) generalized antenna measurement diagram with 2P VNA.

A generalized scheme of the measuring setup is shown in Figure 7b, where the dotted
line at the antennas indicates possible changes in spatial coordinates during measurement
and the dashed one indicates the calibration plane.

Similar to the conventional 2P calibration, the first step is to consistently measure the
reflection of standards in calibration plane, where the measuring antenna and the AUT are
connected, respectively. The second step is to measure response between ports through
the adapter. Further, the isolation between ports is optionally measured to determine the
.
EX parameter.

The technique was tested at the far-field test setup. The scheme of the measuring
stand is shown in Figure 8. The horn antenna of the measuring complex was taken as AUT.
Measurements were carried out in the frequency range of (0.8–6) GHz. Figure 9 shows the
corrected magnitude Γin and phase ϕin components of the AUT reflection coefficient for
azimuth positions of the turntable. The gray solid line depicts direct measurement and the
red one after the data correction has been applied. The stability of the corrected parameter
along the azimuth coordinate indicates the measurements repeatability. The obtained re-
flection coefficient coincides with the measurements corrected via built-in VNA calibration
process and is in good agreement with the antenna manufacturer’s specifications.
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Figure 9. Reflection coefficient of the AUT: (a) magnitude and (b) phase.

Figure 10 shows an example of the experimental evaluation of the measuring cable
contribution depending on the angle of the AUT rotation at given frequency. The purple
and blue lines correspond to the co-polarized and cx-polarized radiation patterns of the
AUT. The red line corresponds to the total radiation pattern. Black lines correspond to
radiation patterns after dynamic calibration is applied. And the teal line corresponds to
the difference in the total characteristics obtained.

Figure 11 shows a comparison of the traditional 2P VNA calibration and the presented
dynamic by difference in the AUT radiation patterns obtained. The first curve (purple
line) corresponds to the use of error correction during traditional full two-port SOLT VNA
calibration in the specified position of the measuring stand. That is, for any other positions
of the stand, the error terms of the VNA model are assumed to be the same. The curve
2 (teal line) corresponds to the case of dynamic calibration, when calibration process is
carried out in each position of the measuring stand. Curve 3 (blue line) shows the AUT RP
difference when applying normal and dynamic calibrations.
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frequency f = 3.75 GHz.

Measurement of the radiation pattern was carried out in the usual way for the main
and cross-polarization. The obtained error in the magnitude of the transmission coefficient
is on average 0.26 dB over studied frequency band and reaches a peak value of 0.58 dB.

6. Conclusions

In this paper, mathematical models of long microwave paths with and without random
errors correction are proposed and analyzed. It is shown that it is possible to minimize the
total measurement error using dynamic calibration. The authors carried out a study of the
electrical length control method of a long microwave path based on unmodulated reflection
from the load. A mathematical model of a long microwave path has been developed. The
sensitivity matrix elements of the system under study were defined. The dependencies of
the elements of the system state vector on the system parameters were constructed.

Using theory of sensitivity, the mathematical expressions of conditions were obtained
to achieve maximum accuracy of measuring the electrical length of a long microwave
path. The usefulness of this method for antenna measurements is shown. Relationships
have been found to assess the effect of microwave discontinuities on the control accuracy
through a statistical approach.

The authors propose some improvements to the procedure for error correction in
the antenna measurements. The possibility of dynamic error correction of antenna mea-
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surements with a long test path under systematic mechanical impact on it has been ex-
perimentally proved. In turn, this reduces the contribution of systematic error in the
uncertainty budget. The presented technique can also be considered as a diagnosis tool
for measurement cables of the antenna test setup and used in various microwave signal
routing units.
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