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Abstract: We investigated whether the use of technological tools can effectively help in manipulating
the increasing volume of audio data available through the use of long field recordings. We also
explored whether we can address, by using these recordings and tools, audio data analysis, feature
extraction and determine predominant patterns in the data. Similarly, we explored whether we
can visualize feature clusters in the data and automatically detect sonic events. Our focus was
primarily on enhancing the importance of natural-urban hybrid habitats within cities, which benefit
communities in various ways, specifically through the natural soundscapes of these habitats that
evoke memories and reinforce a sense of belonging for inhabitants. The loss of sonic heritage can
be a precursor to the extinction of biodiversity within these habitats. By quantifying changes in the
soundscape of these habitats over long periods of time, we can collect relevant information linked
to this eventual loss. In this respect, we developed two approaches. The first was the comparison
among habitats that progressively changed from natural to urban. The second was the optimization
of the field recordings’ labeling process. This was performed with labels corresponding to the
annotations of classes of sonic events and their respective start and end times, including events
temporarily superimposed on one another. We compared three habitats over time by using their
sonic characteristics collected in field conditions. Comparisons of sonic similarity or dissimilarity
among patches were made based on the Jaccard coefficient and uniform manifold approximation and
projection (UMAP). Our SEDnet model achieves a F1-score of 0.79 with error rate 0.377 and with the
area under PSD-ROC curve of 71.0. In terms of computational efficiency, the model is able to detect
sound events from an audio file in a time of 14.49 s. With these results, we confirm the usefulness of
the methods used in this work for the process of labeling field recordings.

Keywords: urban wetlands; feature visualization; soundscape; sonic event detection

1. Introduction

Natural-urban hybrid habitats are defined as natural landscapes that are close to
an urban context, and they capture the interest of this work. The presence of natural
wetlands in cities is vital for many animal species living in them and also offers citizens the
possibility of being in touch with nature on a daily basis [1]. Wetlands provide a wide range
of benefits to social welfare: (1) climate regulation through the capture of CO2 emitted
into the atmosphere [2]; (2) flood protection during heavy rains [3]; (3) water quality
improvement (acting as filters by absorbing large amounts of nutrients and a variety of
chemical contaminants) [4,5]; (4) a habitat for preserving insects, plants and animal life [6];
and (5) cultural services and non-use values [7], such as educational and artistic values [8],
recreation and reflection, aesthetic experiences [9], a sense of place [10,11] and, particularly,
sonic heritage [12].
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While urban wetlands provide the above mentioned benefits, concerns about their
degradation have increased in recent years [13]. Most of the literature on urban wetlands
assumes that they are interrelated patches [14] of a landscape mosaic [15] rather than
islands separated by inhospitable habitats [16] (see Figure 1).

Figure 1. Aerial view of the Angachilla urban wetland showing a mosaic with three distinct compo-
nents: green spaces of natural land, water body and urban land.

It is clear from recent research that urban wetlands are under threat as a consequence of
the intensification of anthropogenic activities associated with increases in population [17].
As a result of this phenomenon, wetland landscapes are changing, with green spaces
becoming increasingly urbanized. These changes in habitats can produce competition and
predation in certain species, which would modify the characteristics of the landscape [18].
This produces an increase in the fragmentation of these interrelated pieces of a mosaic
and, as a result, diverse proximal patches and the loss of a connection among them,
simultaneously affecting the biodiversity contained [19].

In order to deal with this issue, we took inspiration Tobler’s first law of geography [20],
which states that if a given patch of the original mosaic, owing to anthropogenic activities,
is divided into two patches, then both patches should be related.

This law predicts that regardless of the distance between the two patches, they will
always have interrelationships with each other, but the smaller the geographical distance
between the patches, the stronger these interrelationships [21].

Thus, our first hypothesis is that the smaller the distances among urban wetlands,
the more similar their acoustic environments will be. Under this hypothetical viewpoint,
urban wetlands can be considered as habitat patches of a landscape mosaic that have been
fractured over time because of the urban growth of the city. By investigating the temporal
evolution of sonic events present in each patch, one can estimate the effects of the temporal
changes in the city on these patches. In this context, in order to measure whether the
sonic structures are similar among habitats, we use only acoustic features, and hence we
require a substantial amount of labeled sonic data extracted from field recordings carried
out in each patch. However, the process of labeling these recordings is costly and time
consuming. The second hypothesis is that the use of supervised deep learning methods
such as SEDnet can be faster and more time efficient than the traditional process of labeling
field recordings carried out in these natural-urban habitats. We analyze interactions and
temporal similarities among the habitat patches depending on their closeness in the space
of the city and synchronism of acoustic events throughout the day.

Valdivia is a medium-sized city in the south of Chile that is rich in urban wetlands [22].
We selected and compared three natural–urban habitats of the city. These patches have
undergone intervention at varying scales over time, which may be due to their different
geographical locations within the city and their interactions with the anthropogenic compo-
nents of the urbanized landscape [23]. We employ, for feature visualization purposes, the
uniform manifold approximation and projection (UMAP) unsupervised algorithm [24] to
represent, in a 2D space, the similarity and separability of the acoustic features of the urban
wetlands. Moreover, we adopt the concept of Jaccard’s similarity, grouping the patches
in pairs to evaluate their synchronicity over time and quantify sonic similarities between
the habitats. We highlight that among social species, individuals living in the same group
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might have synchronized activities (e.g., movements and vocalizations) [25]. We believe
that the method used here can be adapted and extended to any kind of environment of
biological interest.

In order to optimize the labeling task, we tackle the challenge of complementing
manual annotations with the use of new methods that automatically detect sound events of
interest [26,27]. We assume here that the samples of sonic events have class labels with no
errors annotated by the experts. Unfortunately, manual annotation is an error-prone task,
especially when the number of hours of the recording to be labeled increases. However,
long field recordings are needed to understand the effects that the changes occurring in
the city have on these habitat patches [28]. We employ machine-learning and data-mining
methods as they are two of the most accepted techniques for this purpose nowadays [29].
We create a manually labeled dataset consisting of common and characteristic sonic events
present in the three natural–urban wetlands. In order to validate our second hypothesis,
we used this dataset to train a deep learning model based on SEDnet [30] to automatically
detect sonic events in these patches and evaluate its performance using an independent
test set.

The paper is organized as follows. Section 2 describes related works in the field
of sonic event characterization, with a focus on natural-urban habitats and on the use
of technological tools to manipulate field recordings in long periods. In Section 3, we
describe the three habitats studied, as well as the materials and methods used in the context
of the research. The experimental results are presented in Section 4. In Section 5, we
discuss the research findings, and in Section 6 we provide conclusions and possible future
developments of the work.

2. Background and Related Works

Farina et al. (2021) [31] specified that, in recent decades, sound has been recognized as
a universal semiotic vehicle that represents an indicator of ecological structures and that is
a relevant tool for describing how animal dynamics and ecosystem processes are affected
by human activities.

Farina [32] compiled the fundamentals of various processes in animal communication,
in community aggregation and in long-term monitoring, as well as in several processes of
interest in ecology, providing space for soundscape ecology and ecoacoustics.

Bradfer-Lawrence et al. (2019) [33] explored various ecoacoustic practices, such as
the use of various acoustic indices that reflect different attributes of the soundscape and
recording collection methods.

Gan et al. (2020) [34] explored the problem of acoustic recognition of two frog species
by using long-term field recordings and machine-learning methods. Acoustic data were
extracted from 48 h of field recordings under different weather conditions. These data were
used to conduct experiments and to assess recognition performance. The labeling task of
frog chorusing was performed manually by trained ecologists who proposed, as features,
spectral acoustic indices extracted from the recordings’ spectrograms.

For recognition experiments, they used the following as supervised learning algo-
rithms: support vector machine (SVM), k-nearest neighbors (kNN) and random forest.
The best score reported was 82.9% of accuracy obtained with the SVM classifier and
combinations of synthetic and real-life data.

Mehdizadeh et al. (2021) [35] report that there is evidence that certain species at birth
produce calls that are important in mother-child communication that are characterized
mostly by calls of low frequency, multi-harmonic and with specific temporal pattern. As
they grow, these songs grow shorter in duration and their frequency rises. This is an
evidence that indicates that the sonic characteristics of these species change with age, and
that this should, therefore, be taken into consideration.

De Oliveira et al. (2020) [36] developed a task for the acoustic recognition of birds
and specified that this requires large amounts of audio recordings in order to be used by
machine-learning methods. In this case, the main problem is the processing time. They
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addressed this issue by evaluating the applicability of three data reduction methods. Their
hypothesis was based on the notion that data reduction could highlight the central char-
acteristics of features without the loss of recognition accuracy. The investigated methods
were random sampling, uniform sampling and piecewise aggregate approximation. They
used Mel-frequency cepstral coefficients (MFCC) as features and hidden Markov models
(HMM) as learning algorithms. The most advantageous method reported was uniform
sampling, with a 99.6% relative reduction in training time.

Sophiya and Jothilakshmi (2018) [37] addressed the classification of 15 different acous-
tic scenes, both outdoors and indoors, and the problem of expensive computation time
in the training stage. They used the architecture of a deep multilayer perceptron as the
baseline system. For the experiments, they employed the datasets from the 2017 IEEE AASP
Challenge on the Detection and Classification of Acoustic Scenes and Events (DCASE) and
40 mbe (log of Mel-scale frequency energy) features as feature vectors, extracted every
40 ms of frame length and overlapped at 50%. They divided the dataset into three parts for
training (60%), validation (20%) and testing (20%), and each trained model was evaluated
by using a four-fold cross-validation approach. They reported an averaged overall result of
74% accuracy for the baseline system and a computation time of 20 min 40 s. When they
used the Apache Spark MLlib platform along with the baseline system, they achieved 79%
accuracy and a computation time of 0 min 55 s.

Knight et al. (2020) [38] addressed the problem of how to predict whether the detection
of a recognizer of two bird species that uses machine-learning methods is a true or false
positive. By means of employing audio recordings, they used HMM, convolutional neural
networks (CNN), and a training method with denominated boosted regression trees (BRT).
The results for the two species studied (Chordeiles minor and Seiurus aurocapilla) showed
a reduction in the number of detections that required validation by 75.7% and 42.9%,
respectively, while retaining at least 98% of the true-positive detections.

Lostanlen et al. (2018) [39] developed a method for modeling acoustic scenes and
for measuring the similarity between them. They used the bag-of-frame (BoF) approach
for acoustic similarity, which models an audio recording using the statistics of short-term
audio attributes based on MFCC. The performance of the BoF approach is successful for
characterizing sound scenes with little variability in audio content but cannot accurately
capture scenes with superimposed sound events.

In the context of Chile, urban wetlands have a highly significant value for the inhab-
itants of the city of Valdivia, which have been increasing over time. Over the past two
decades, wetlands legislation and policy have evolved significantly. There has been debate
surrounding this issue, with citizen participation of the main social and environmental
scientists from Chilean universities, different social actors, policy makers and private
sector representatives [40]. These recent events demonstrate that the majority of the local
community are willing to protect, use and plan these natural-urban habitats. In 2020, the
Chilean Parliament approved a law that aims to protect urban wetlands declared by the
Ministry of the Environment of Chile [41].

As highlighted by Mansell [42] (2018), this recognised high social value of urban
wetlands enables inhabitants to gain a sense of belonging to nature even in their sonic
dimension. Mansell notes that our sonic environment is an essential element of the cultural
politics and of the urban identity that can help us to rethink how the natural-urban habitats
are conceptualized and developed.

In addition, as was noted by Yelmi [12] (2016), for any urban identity, the sonic values
that define the city connect people to their culture and their lands and relate them to their
geographical location, climate and the everyday routine of a community or a region. For
this reason, Yelmi states methods for protecting the characteristic sounds of everyday life of
the city (e.g., wind, water and market noises) from a sonic viewpoint in order to strengthen
the cultural memory of the city.

However, it is very important to understand that despite government efforts, debates
and citizen participation, urban wetlands are ecosystems that are extreme fragile and
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particularly vulnerable to urban changes and anthropogenic pressure, as was mentioned
by Chatterjee and Bhattacharyya (2021) [43] (2021). The authors note that severe habitat
fragmentations are primary drivers of biodiversity loss, and that mammals are particularly
vulnerable to this fragmentation.

3. Materials and Methods

The work presented here is part of a research project supported by the National Fund
for Scientific and Technological Development, FONDECYT, Chile (2019–2021), conducted to
implement a interdisciplinary platform in order to enhance the sonic heritage of the urban
wetlands of Valdivia, Chile, from the application of a new sonic time-lapse method [44,45].

Periodic 5 minute stereo field recordings were carried out every hour during a year
in the three wetlands of the city of Valdivia. The collected recordings include a variety of
sound sources that characterize the acoustic scene of the wetlands, which can be divided
into three categories: anthropophony (human-produced sounds), geophony (geophysical
sounds) and biophony (biological sounds).

We believe that the research presented here provides a preliminary analysis of the
collected data due to the fact that we only considered ten days of recordings in each habitat,
equivalent to 720 processed audio files, representing approximately 3% of a complete
dataset. It is worth mentioning that one year of field recordings results in 26,280 generated
audio files that need to be processed and analyzed efficiently. The analyzed dataset with
annotations comprises more than two days and twelve hours of samples of sonic events
with class labels.

3.1. Field Recordings for Long Periods and Sonic Events of Reference

An inherent characteristic of these three natural–urban habitats studied is that the
sonic events collected came from distinct sound sources.

These common and characteristic acoustic events are present in each habitat. We
analyzed a set of five events of reference (Er) that comprise the vocalizations of birds,
amphibians and dogs without distinction of subspecies or ages in addition to rain and
mechanical engines, including both fixed sources (e.g., woodchippers commonly present
in certain areas of the city) and mobile sources (e.g., motorcycles, cars, buses and trucks).
With this acoustic framework in mind, we carried out synchronous field recordings us-
ing three water-proof programmable sound recorders, Song Meter SM4 Wildlife Acous-
tics [46], mounted on tree trunks approximately at 3.0 m above ground level. These robust
and affordable digital recorders collected audio samples during the first five minutes
of each hour for 5 days (27–31 October 2019) and then 5 more days at a following date
(6–10 January 2020). Synchronous recordings of sonic event data in the three wetlands
were made by using two omnidirectional microphones per set of equipment at a sampling
frequency of 44,100 samples per second so that any sonic event data of up to 22.050 kHz
could be distinguished. Each audio recording was saved as a 16-bit PCM uncompressed
.wav file.

3.2. Habitat Descriptions

Valdivia is a southern city of Chile (39◦48′00′′ S 73◦14′00′′W) located at a confluence
of several rivers, one of which, the Cruces River, is within one of the aquatic biodiversity
hotspots of the world [47]. Within the boundaries of the city are 77 urban wetlands [22].
The experimental part of the study took place at three urban wetlands in Valdivia: An-
gachilla (39◦51′24′′ S 73◦14′06′′W), Miraflores (39◦50′22′′ S 73◦15′07′′W) and El Bosque
(39◦50′21′′ S 73◦14′37′′W) (see Figures 2 and 3). The approximate geographical distances
between the recording positions at Angachilla–Miraflores, Angachilla–El Bosque and
Miraflores–El Bosque were 2300 m, 2040 m and 700 m, respectively. The Angachilla wet-
land is the farthest habitat from the city center. It is located in an urban sector with patches
of green areas with the presence of small mammals as well as a significant number of birds
of prey. On the other hand, the Miraflores wetland is located in a mixed residential and
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industrial area with factories surrounding it, such as shipyards and woodchippers that
operate continuously 24 h a day for seven days a week. This wetland has muddy substrates,
is characterized by its calm waters, is protected from the wind and has urban swamps
grazed by local horses. The El Bosque wetland is located in an urban residential area of
the city with a prevalence of hospital, school and commercial activities. It is characterized
by the surrounding shallow waters, with little streams and shadowy areas given its high
vegetation, which constitute an excellent refuge habitat, especially for groups of birds.
Some bird species found in these natural-urban habitats are pequén (Athene cunicularia),
chucao (Scelorchilus rubecula) and cisne de cuello negro (Cygnus melancoryphus). Moreover,
the amphibian species present include sapo (Eupsophus roseus) and sapito de anteojos (Batra-
chyla taeniata). Based on the literature, the fauna records in the urban wetlands of Valdivia
show that the wetland fauna is dominated by 71 species of birds (76% of the total), as well
as 5 species of amphibians (5% of the total). The rest of the fauna diversity comprises
mammals, fish, crustaceans and small reptiles. The urban areas of the city of Valdivia are
characterized by dwellings with concrete walls, where loud, continuous sounds of low
frequency are dominant components of the urban landscape [23,48].

Figure 2. Map of Valdivia with the locations of the Angachilla, Miraflores and El Bosque wetlands.

Figure 3. Angachilla (left), Miraflores (center) and El Bosque (right) urban wetlands.

3.3. Manual Labeling Process

The total amount of field recordings used to carry out our analysis of sonic events
consists of 720 audio files that are two-channeled (stereo) and stored in .wav format. These
audio files were recorded at three natural-urban habitats synchronously. Before the feature
extraction stage, we carried out manual labeling to obtain a ground truth for the sonic
event analysis. We annotated the reference events (Er) in each of the audio files, which
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are characteristic and common at each habitat. As a result, our ground truth contains
information on the audio file name, wetland name, day and hour of the recording, start and
end times of each event and the names of the events in that time interval. In our auditory
analysis of the recordings, we found some time intervals containing more than one sonic
event; we call this situation a multi-event. Meanwhile, we refer to the presence of a single
event as simply a single event. Both multi-events and single-events constitute the classes
(Cp) that we may find during the auditory analysis of the audio files. The ground truth
data cover an approximated total period of two days and twelve hours of annotations.

3.4. Sonic Feature Extraction Process

The feature extraction stage is based on the log energies of Mel-frequency scale trian-
gular filter bank outputs (mbe from here on) [30] that use a short-time Fourier transform
process to estimate time-varying spectra. The number of Mel filters used was 40 bands
on each audio channel. During this process, each input audio recording was divided into
overlapping sequential sample windows called frames. In this study, a fixed window
size of 2048 samples was used, which is 46 ms, considering our sampling frequency of
44,100 samples per second and an overlap between subsequent windows of 50%. This
provides a reasonable commitment between time and frequency resolution. Prior to the
Fourier transform, we used a Hanning window function in each frame. The magnitude
spectrum of the Fourier transform was estimated frame by frame using 2048 frequency
bins (21.5 Hz per bin).

3.5. Dataset Analysis

After an audio file has been partitioned into small time frames, we establish a criterion
for unifying the durations of sonic events to create a class label (Lc) and associate it with
each frame, taking as reference the known ground truth data [30]. The advantage for using
mbe acoustic features to train a classifier and visualize features within a 2D space is that
we also used them to analyze temporal changes in quantities and distributions of classes,
considering both single events and multi-events throughout the day. Figure 4 shows a
summary of the global temporal evolution of the classes (and their quantities) of all the
datasets collected at the three urban wetlands during the ten-day experiment. Each day
was divided into four six hour periods, with an early morning peak between 00:00 a.m. and
05:00 a.m., a morning peak between 06:00 a.m. and 11:00 a.m., an evening peak between
12:00 p.m. and 17:00 p.m. and a nighttime peak between 18:00 p.m. and 23:00 p.m. We
expressed the average duration of each class and all its possible combinations in seconds.
The value of 300 s on the ordinate axis corresponds to the period of 5 min during which the
audio samples were recorded per hour.
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collected at the three urban wetlands during the ten days of activity.
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3.6. Data Visualization Using UMAP

Before training the neural network classifier, we propose to visually inspect the data
using unsupervised learning techniques. The objective is to explore and assess if the
different sonic events, as characterized by their mbe features, form groups or clusters. As
these data might be too complex for linear methods, we propose to perform dimensionality
reduction using the Uniform Manifold Approximation and Projection (UMAP) [24], a state
of the art algorithm that non-linearly projects the data to a low dimensional manifold,
aiming to preserve the topology of the original space.

The UMAP algorithm is applied on 1,950,438 frames from 720 recordings belonging
to single-events. The input dimensionality is 40, which corresponds to the number of
mel filter banks (two channels). The output dimensionality is set to 2. Due to the large
volume of data, we consider the high-performance and GPU-ready implementation of the
UMAP algorithm found in the cuML library [49]. The hyperparameters for obtaining the
low-dimensional embeddings are as follows:

• Size of the local neighborhood: 35;
• Effective minimum distance between embedded points: 0.1;
• Effective scale of embedded points: 1;
• Initialization: spectral embedding.

These hyperparameters were obtained by qualitative assessment of the resulting
visualizations.

As an example, we present a visualization of the mbe features of seven audio record-
ings (33,431 frames) containing single events in Figure 5. From the embedding, it is clear
that the five labeled classes, birds, amphibians, dogs, rain and motors, can be easily sepa-
rated by their mbe features. We note, however, that most of the time, the audio data coming
from the field recordings show the presence of multi-events, which makes class separation
extremely difficult for an event detection model in a machine-learning perspective.

Figure 5. Uniform manifold approximation and projection (UMAP) plot showing the separability of
the single-event classes. Seven field recordings were selected in which multi-events were absent.

3.7. Sonic Comparisons among Habitats

We compared the three habitat patches, which over the years have changed from
natural to urban habitats, by using their sonic characteristics collected in field condi-
tions. Comparisons of similarity or dissimilarity among the patches were based on the
Jaccard coefficient (J). These comparisons were carried out in pairs: Angachilla–Miraflores,
Angachilla–El Bosque and Miraflores–El Bosque. For the analysis of sonic similarity or
dissimilarity between the pairs, we considered Tobler’s first law of geography and sup-
posed that, under this law, two habitat patches might share similarities with each other
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and that the smaller the geographical distance between the patches, the stronger these
similarities. In our analysis, we assumed that we have five reference sonic events, which
are denoted as Er = {E1, . . . , E5}with nE = 5 as the number of events. We defined the total
number of potential classes as nC = 2nE arising from the different combinations of events,
including both the absence of events (noise) as well as single events and multi-events. For
a particular day, under field conditions we have 24 audio files (one for each hour of the
day). In a frame-by-frame analysis, we associated one of the classes Cj ∈ {C1, C2, . . . , CnC}
where 1 ≤ j ≤ nC to a particular frame (i-th frame) with its label Li with 1 ≤ i ≤ nL,
where nL is the number of frames in which all the audio files were divided. In order to
compare the temporal variation between a pair of habitats A and B in the particular hour
of a determined day, we selected from A its i-th frame, Ai, and from B its i-th frame, Bi,
where i is a frame synchrony index (that is, the index i varies in such a way that Ai and Bi
move forward together). We defined J(CA, CB) as the Jaccard similarity coefficient for a
particular frame.

J(CA, CB) =
|CA ∩ CB|
|CA ∪ CB|

(1)

We interpreted the Jaccard coefficient as the intersection of the classes CA and CB

divided by their union—that is, the more the two classes overlap when superimposed
on each other, the larger their intersection and the greater the similarity coefficient. The
values of J can range between 0 and 1, where a result of 1 means that the two classes are
identical and a result 0 means that the classes have no sonic characteristics in common. We
calculated the average Jaccard coefficient by hour, summing up the coefficients frame by
frame and dividing by nL:

J =
∑nL

i=1 J(CA
i , CB

i )

nL
(2)

where CA
i is the class label for the i-th frame of wetland A and CB

i is the class label for
the i-th frame of wetland B. We explained the computation process of J in a frame-by-
frame manner, as seen in Figure 6. We take two wetlands, A and B, and use three of their
synchronous time frames, where each frame has an associated class label. For instance, the
second frames in A and B have, as an intersection, two events in common (Bird and Dog),
while they have, as a union, three events detected in the time frame (Rain, Bird and Dog).
As a result, J is obtained as the ratio between the intersection and the union of the class
labels for the frame.

  1    2     3   1    2     3

1: Dog
2: Bird + Dog
3: Motor + Bird + Dog

1: Dog
2: Rain + Bird + Dog
3: Rain + Motor + Dog

Frame 1:

Intersection: Dog → 1

Union: Dog→ 1

Frame 2:

Intersection: Bird, Dog → 2

Union: Rain, Bird, Dog→ 3

Frame 3:

Intersection: Motor, Dog → 2

Union: Motor, Rain, Bird, Dog→ 4

2

4
J =

1

1
J =

2

3
J =

Wetland A Wetland B

mbe frames

class labels

Figure 6. Explanation of calculation process of Jaccard’s similarity coefficient for particular frames.
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3.8. Neural Network Model for Sonic Event Detection (SED)

Figure 7 shows a schematic summary of the neural network model in operation. This
architecture, which is commonly referred to in the literature as SEDnet [30], is a particular
type of convolutional recurrent neural network. Our motivation to use this system is
based on the fact that it has shown high capability for recognizing sonic events on real-life
datasets [50], achieving first place (minimum error rate) in the third task of the DCASE
Challenge 2017 [51]. For this particular case, the input to the model is the set of mbe
features previously extracted from the audio files in the feature extraction stage. In what
follows, we explain the different processing stages of the model.

Figure 7. SEDnet arquitecture.

The initial stage is composed of three convolutional layers which perform two tasks.
First, shift-invariant features can be extracted layer by layer at different time scales; sec-
ondly, this can reduce the feature dimensionality, reducing training time and testing time.
The Rectified Linear Unit (ReLU) is used as the activation function in these layers. The
feature maps are then fed into a second stage based on a special type of recurrent layer
called the bidirectional gated recurrent units (GRUs) [52]. The tanh activation function is
used in these layers. The GRU layers specialize in learning temporal structures contained in
the features and are easier to train in comparison to other recurrent layers. These recurrent
units also help predict the onsets and offsets of sonic events. The output of the recurrent
layers is proceeded by two fully connected (FC) dense layers with sigmoidal activations
in order to predict the presence the probability of sonic events. The output of the SEDnet
corresponds to the predicted event probabilities over time, i.e., a vector with one element
per event and where all elements are in the range of [0, 1]. In order to define whether an
event is present or absent, we defined a threshold known as the operating point, which
indicates that if the event is present its probability is above this point, otherwise the event
is absent.

Field recordings containing 720 audio files were used as dataset during the SEDnet
training procedure. The dataset was shuffled and splitted in order to assess the gener-
alization capacity of the sonic event detector model. We implemented a four-fold cross
validation procedure, where in each fold 75% of the data were used for training and 25%
for testing. Moreover, a third of the training data in each fold was selected randomly as
validation data. The model is trained by minimizing a distance between a reference and
the sonic event predictions. In this case we consider the binary cross-entropy loss as an
objective function to detect both sonic single events and multi-events that are commonly
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present in natural-urban habitats. The adaptive moment estimation (ADAM) method [53]
with mini-batches of the data is used to minimize the loss and update the weights of the
SEDnet model. The maximum number of training epochs, i.e., complete iterations through
the entire training dataset, is set to 500. Early stopping is considered to avoid overfitting.
The training stops if the F1-score in the validation set does not improve for 50 epochs. To
In order to address overfitting, the dropout regularization technique [54] is also considered.
Dropout switches off a random subset of the FC layers neurons every epoch during training.
This avoids co-adaptation and improves generalization.

The detection performance of SEDnet depends on several hyperparameters. The
following combinations of the most sensible hyperparameters are evaluated using a grid
search strategy:

• The size of the minibatch: varied from 32 to 256 in steps of multiples of 2;
• The length of the sequence: varied from 64 to 1024 in steps of multiples of 2;
• The initial learning rate: vested values are 0.0001, 0.001 and 0.01;
• The dropout rate: varied from 0.25 to 0.75 in steps of 0.05.

The best hyperparameter combination is found by maximizing the average F1-score
for the four-fold validation partitions.

Metrics and Performance

In order to quantify the performance of the SEDnet model, we used two groups of
metrics. The first group includes the multi-event F1-score and the error rate, as proposed
in [30]. The F1-score is defined as follows:

F1- score =
∑K

k=1 2 · TP(k)

∑K
k=1 2 · TP(k) + FP(k) + FN(k)

(3)

where

• TP(k), the number of true positives for event k, is the number of frames in which
sound event k is present in both the groundtruth and in the predictions;

• FP(k), the number of false positives for event k, is the number of frames in which
sound event k is present in the predictions but not in the groundtruth;

• FN(k), the number of false negatives for event k, is the number of frames in which
sound event k is present in the groundtruth but not in the predictions.

Note that in order to compute these metrics, we need to set a threshold for the detection
probabilities given by the SEDnet model. This threshold can be set in a event by event
basis, i.e., we can adjust the sensitivity of different sound events independently. Unless
specified, this threshold is set to 0.5 for all events. After thresholding, a binary decision
representing either the presence or the absence of the sound event is obtained. From these
metrics, we can write the multi-event error rate as follows:

error_rate =
∑K

k=1 min(FP(k), FN(k)) + max(0, FN(k)− FP(k)) + max(0, FP(k)− FN(k))

∑K
k=1 N(k)

(4)

where N(k) is the total number of labels of event k present in groundtruth. A good model
should have an error rate close to zero and a F1-score close to one.

The second group of metrics includes the True Positive Ratio (TPR(k)), False Positive
Rate (FPR(k)) and Cross-Trigger Rate (CTR(k)) for sound event k, as proposed in [55].
These are defined as TPR(k) = TP(k)/N(k), FPR = FP(k)/TN and CTR = CT(k)/ ∑ ∆L,
respectively. The cross-triggers (CT) represent a subset of the FP that match another labeled
event of the set of events, and ∑ ∆L is the sum of the differences between offset and onset
for each label. From these equations, we computed the effective FPR (eFPR) that combines
FPR and CTR through the parameter αCT:
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eFPR(k) = {x | x = FPR(k) + αCT ·mean(CTR(k)e) , ∀e ∈ Er} (5)

where Er is the set of sound events of reference. In this case we use αCT = 1 to consider all
the CTR values.

The TPR(k), FPR(k) and eFPR(k) can be computed for a set of thresholds τ = [0, . . . , 1]
or operating points to obtain the polyphonic sound detection receiver operating charac-
teristic (PSD-ROC) curves. These curves provide a more complete comparison between
different models and also allow us to search for the optimal threshold values for the differ-
ent events. Finally, we also consider the area under the PSD-ROC curves as a summary
statistic of the performance of the model under all possible operating points.

4. Results

The results of the calculations of the hourly average values of J for the ten days of
activity in the experiments are summarized in Table 1. We present these temporal variations
in four six-hour periods, with an early morning peak between 00:00 a.m. and 05:00 a.m., a
morning peak between 06:00 a.m. and 11:00 a.m., an evening peak between 12:00 p.m. and
17:00 p.m. and a nighttime peak between 18:00 p.m. and 23:00 p.m.

Table 1. Temporal variations of average Jaccard coefficient J in four periods of six hours.

Jaccard Coefficients Periods (hours)
Mean

between Wetlands 00:00–05:00 06:00–11:00 12:00–17:00 18:00–23:00

Angachilla–Miraflores 0.415 0.526 0.428 0.402 0.443
Angachilla–El Bosque 0.392 0.531 0.459 0.449 0.458
Miraflores–El Bosque 0.359 0.556 0.443 0.414 0.443

Additionally, we disaggregated the temporal evolution of the classes by its geographical
origin (wetland), as seen in Figure 8. We maintain the same time-periods used in Table 1 to
facilitate comparison of the information among the habitats.
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Figure 8. Average temporal evolution of sonic events present in each wetland, obtained from field recordings.

Figure 9 shows the two dimensional embedding obtained by applying the procedure
described in Section 3.6 over the complete dataset of mbe features. The upper and lower
subfigures show the embeddings of the frames colored by their geographical origin and
labeled single-event, respectively.
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Figure 9. Two-dimensional embedding of UMAP with visual acoustic features for three habitats (left) and for the five
single-events of reference where multi-events were absent (right).

The quality of the experimental results of SEDnet is assessed by using the F1-score
and error rate metrics. We conducted exhaustive experiments to compare the detection
performance of SEDnet by tuning the hyper-parameters and the number of audio files
for training. The results presented here are based on the best set of hyper-parameters,
which are as follows:

• Learning rate: 0.001;
• Batch size: 32;
• Dropout probability: 0.5;
• Sequence length: 1024 frames.

An example of the training and validation learning curves and the evolution of the
performance metrics during training is shown in Figure 10.

Figure 10. Learning curves for the best set of parameters.

The average values of the F1-score and the error rate obtained from the four folds
are provided in Table 2. In addition, for the best fold (according to training), we show the
F1-score and error rate.

Table 2. Average F1-score and average error rate for the best fold and average labeling time.

SEDnet F1-Score Error Rate

Average 4-folds 0.784 0.391
Best fold 0.790 0.377

Figure 11 shows a comparison between the ground truth of a 5 min recording from
the test set and the corresponding SEDnet prediction using the best model from Table 2.
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Figure 11. Comparison between manual labeling (truth) and labeling by model (pred).

All the results presented so far were obtained with the default threshold of 0.5. We
explore the performance as a function of the threshold or operating points using PSD-ROC
curves. Figure 12 shows the PSD-ROC curves per sound event (colored solid lines) and
the average PSD-ROC curve (black dashed line). Table 3 shows the areas under these
PSD-ROC curves.

Figure 12. The PSD-ROC curves for TPR vs. FPR (left) and TPR vs. eFPR (right) per events.

Table 3. Areas under the five PSD-ROC curves and the mean value.

AUC Amphibian Bird Dog Motor Rain Mean

TPR vs. FPR 67.800 82.345 65.837 59.112 81.847 71.000
TPR vs. eFPR 65.368 78.875 69.186 55.282 80.864 68.000

Finally, in terms of computational efficiency, the best model was able to detect sound
events from an audio file (5 min) in a time of 14.49 ± 0.17 s.

5. Discussion

The Jaccard similarity analysis found differences among the three habitat patches,
which also differ in the temporal evolution of their sonic classes arising from the different
combinations of natural and urban events in the early morning, morning, evening and
at night. These differences partially support our first hypothesis. As observed in Table 1,
only the habitat patches Miraflores and El Bosque, which possess the shortest geographical
distance (700 m), had a reasonable similarity in their sonic characteristics composition
(average coefficient of Jaccard = 0.556). This occurred particularly in the morning period
between 06:00 a.m. and 11:00 a.m., reaching the highest degree of agreement with Tobler’s
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law, confirming our first hypothesis. However, in contrast with Tobler’s prediction, in the
early morning between 00:00 and 05:00 a.m., these two habitat patches exhibited the lowest
similarity degree (average coefficient of Jaccard = 0.359), refuting our first hypothesis in
this period. The low similarity between Miraflores and El Bosque in the early morning
would suggest a temporal variation in the composition, structure and diversity of the sonic
classes. The Miraflores and El Bosque wetlands had a high presence of sonic single events
in the early morning, as observed in Figure 8. Unlike the morning period in these same
habitats, the presence of the motor and bird single events, as well as that of the sonic class
containing the (motor + bird) combination, was almost negligible in the early morning.

This led us to concentrate on the other classes that were still present in the early
morning, especially the behavior of the amphibian class. This class is clearly present as a
single event, and its combination with the dog event is also present in an important sonic
class, (dog + amphibian). As can be observed in Figure 8, 62% of the amphibian class
occurred in the Miraflores wetland, while only 20% occurred in the El Bosque wetland. The
sonic class that contains the (dog + amphibian) combination occurred predominantly in
the Miraflores wetland, with a presence of 47º%, while in the El Bosque wetland it occurred
at a rate of only 10%. Similarly, the noise class with unidentifiable sounds or no events
was more predominant in the El Bosque wetland (46%) than in the Miraflores wetland
(29%). The greater presence of the amphibian event in the Miraflores wetland compared
with the El Bosque wetland, together with a higher percentage of the noise class in the El
Bosque wetland in comparison to the Miraflores wetland, would justify the lowest Jaccard
coefficient in the early morning.

Our findings lead us to reconsider our first hypothesis in light of the temporal variation
of sonic classes. As one of our objectives was to highlight the importance of both the green
habitats within the city and the sonic events in these habitats, we analyzed the temporal
associations between single events and multi-events, both in quantities and in distributions
of classes throughout the day, without distinguishing among the habitats. Figure 4 shows
the complexity of these sonic associations collected in the three habitat patches during
the ten days of activity covered by the experiments. We found that the early morning
period between 00:00 and 05:00 a.m. had the greatest presence of single events, especially
rain, amphibians and dogs. Similarly, the greatest presence of multi-events, three or more
events simultaneously, occurred in the morning (06:00–11:00 h) and at night (18:00–23:00 h),
and these were evident over many seconds. This could be due to the presence of periodic
anthropogenic activities, which are associated with the start and end of daily activities in
the city, especially daily peaks of intense vehicle traffic, that have an impact on the natural
habitat. When we disaggregated the data of the global temporal evolution of classes at the
level of wetlands, as observed in Figure 8, we found, through the single-event analysis at
the early morning period, that the Miraflores wetland had a greater number of sonic events
of amphibians (62%) compared with the El Bosque wetland (20%), as explained above, as
well as in comparison to the Angachilla wetland (18%).

Similarly, the Angachilla wetland had a greater number of sonic events of dogs
(46%) compared with the El Bosque (29%) and Miraflores (25%) wetlands. Furthermore,
as observed in Figure 8, one of the most apparent sonic changes observed in these three
habitats between the early morning and morning periods was associated with sonic patterns
of amphibian and bird activity. Specifically, the amphibian event occurred earlier at dawn
compared with the bird event, which leads us to define the offset time of the daily sonic
activity of amphibians in the early morning and the onset time of the daily activity of birds
in the morning. Our results are consistent with those of previous studies that demonstrate
that birds avoid exposure to artificial light at night [56], and that the calling activity of
amphibians starts around sunset and extends to the first half of the night [57].

One non-natural sonic event that was present in the data shown in Figure 8 was the
motor event along with its combination with the bird event, which is represented in the
(motor + bird) sonic class. As observed in the figure and for the three habitats, in the
morning (06:00–11:00 a.m.), 45% of the (motor + bird) class occurred in the Miraflores
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wetland, 28% in the El Bosque wetland and 27% in the Angachilla wetland. Meanwhile, in
the evening (12:00–17:00 p.m.), 56% of the (motor + bird) class occurred in the Miraflores
wetland, 24% in the El Bosque wetland and 20% in the Angachilla wetland. Finally, at night
(18:00–23:00 p.m.), 45% of the (motor + bird) class occurred in the Miraflores wetland, 29%
in the El Bosque wetland and 26% in the Angachilla wetland. We deduce from this result
that the habitat patch associated with the greatest presence of the (motor + bird) class was
the Miraflores wetland in the morning, in the evening and at night. Our result is consistent
with the location of this habitat in an urban mixed residential and industrial area, with
the presence of factories working around it that operate 24 h a day, indicating a strong
influence of the motor event.

In the comparison by wetlands according to geographical origin, we observed in
Figure 9 (left) that there are sets of characteristics that overlap between habitats as well
as distant groups. The Angachilla wetland shows features that are mostly grouped. The
El Bosque wetland not only shares features with the other two wetlands but also shows
its own group of features as if it were a single independent group, while the Miraflores
wetland is the one that is more dispersed in terms of its features. These results indicated
that there are acoustic similarities, which are reflected in the groups that share features. This
can be important for our first hypothesis. However, there is clearly a number of features
of each wetland separated from the others, which shows that there are also differences
between them. If we relate these results to the J index, we will observe that the urban and
natural features are reflected in the embedding of the El Bosque wetland and the Angachilla
wetland, respectively, while the composition of heterogeneous features of the Miraflores
wetland would justify its greater dispersion compared to the other two wetlands.

In this same embedding, we observed the separation between features coming from
the labeled single-events (Figure 9 (right)). If we inspect the rain event in the figure, we
observe that its features are highly dispersed; this could be due to the different intensities
that this event naturally shows. Likewise, the motor event has features that are not very
concentrated among themselves. The features of the dog event, on the other hand, are
concentrated mainly in the center of the figure with a large presence of features associated
with the Angachilla wetland. The case of the bird event has features that extend through the
three wetlands as if they were a single habitat. For the amphibious event, we appreciated
only two large groups, which are concentrated in the El Bosque and Miraflores wetlands.
In summary, these results indicate that there are acoustic differences between the three
wetlands analyzed. However, we particularly find clear similarities in the case of birds
with a homogeneous presence in the three wetlands, showing that this event does not
discriminate spatiality within the city.

An analysis of Table 2 showed an average computation time for labeling each audio
recording of 14.49 s using an independent test set. This computation time was obtained
while employing the best fold of the trained model, for which its F1-score was 0.79% with
an error rate of 0.377%. Note that an expert who is skilled in both listening to and making
annotations of sonic events in field recordings would take 25 min or even more per audio
file. In other words, in the time that an expert can label a complete field recording, SEDnet
can label approximately 107 field recordings.

As can be observed in Figure 11, SEDnet model detects both single events as multi-
events with a certain degree of precision. This help us to validates our second hypothesis.

In terms of the detection capacity of the best model obtained, we observe that, for the
bird and rain events, the usefulness of the model reaches the highest performance and this
is reflected in Figure 12 (left). On the contrary, for the motor event, the usefulness of the
model is the lowest and this as can be observed in Figure 12 (left), while for the amphibian
and dog events, the usefulness of the model is very close to the mean, as observed in
Table 3.

When comparing the effects of the cross-triggers per event, we observe in Figure 12
(right) that the performance of the model is mostly reduced, as observed in Table 3, with
the exception of the dog event, i.e., this is the sound event that the model confuses the
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least. In other words, the event thresholds relax and the model begins to underperform by
confusing events. In summary, we observe, in the figure on the left, the detection capacity
of the SEDnet model, while the figure on the right allows us to infer how much the model
is becoming confused between the reference events.

6. Conclusions

From the sonic comparisons among three natural-urban hybrid habitats, we can
conclude that our first hypothesis should be reconsidered in light of the temporal variations
of the sonic classes. The city’s daily cycles of anthropogenic activity and the natural rhythms
of the habitats affect this oscillating sonic structure within wetlands.

From the labeling optimization, we can confirm the possibility of simplifying the
process of labeling in the field recordings by using tools such as SEDnet. This model,
apart from optimizing the labeling process, could have various applications or purposes,
such as studying species migrations, the relationships between species in the event of
competition or predation or helping to improve regulations related to this type of habitats.
However, one must always consider the trade-off between labeling time and precision.
Although the achieved performances of the sonic event detector, which are reflected in the
PSD-ROC curves and the AUC values, are associated with a certain degree of uncertainty,
the performance could continue to be improved in the future. In particular, the bird,
motor and rain events should be studied in carefully controlled trials in order increase the
detection rate. These events presented high intra-class variations, which were reflected in
UMAP embeddings.

Finally, it is worth it to note that the background noise in the field recordings, both
during the day and at night, can vary in the three habitats. In this work, this variation was
not considered and could affect the discrimination of the model. With regard to micro-
phones, it is important to also consider that they are omnidirectional with an enhancement
in the low frequencies, and this is a typical band of the motor events, which can also affect
the model. Moreover, the class unbalance problem was not considered in this work, and it
could affect the performance of the model.

In the future, both SEDnet and UMAP could benefit from the implementation of other
tools to complement their actual performances. This could involve covering a greater
number of days that represent the sonic variations throughout the year with the presence
of the four seasons. This increase in the number of recordings should have a positive effect
on the model. Likewise, the use of an optimal operating point per event of reference in the
SEDnet model should also be considered as a future work.

The results of this paper evidenced the most predominant sonic characteristics within
the urban wetlands of the city. These characteristics constitute an essential part of daily
life, confirming their sonic value relative to all people living in urban spaces. This value,
despite being considered intangible, must be preserved for future generations.
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