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Abstract: In the present paper, we model the cumulative number of persons, reported to be infected
with COVID-19 virus, by a sum of several logistic functions (the so-called multilogistic function).
We introduce logistic wavelets and describe their properties in terms of Eulerian numbers. Moreover,
we implement the logistic wavelets into Matlab’s Wavelet Toolbox and then we use the continuous
wavelet transform (CWT) to estimate the parameters of the approximating multilogistic function.
Using the examples of several countries, we show that this method is effective as a method of fitting
a curve to existing data. However, it also has a predictive value, and, in particular, allows for an early
assessment of the size of the emerging new wave of the epidemic, thus it can be used as an early
warning method.

Keywords: logistic wavelet; logistic equation; logistic function; COVID-19 infection; Eulerian number;
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1. Introduction

The logistic equation is defined as

() =

u(0) = up. 1)

U(Umax — 1),
Umax ( e )
where t is time, u = u(t) is the unknown function and the parameters s-steepness and 4~
saturation level are constants. The integral curve u(t) fulfilling condition 0 < () < Uy
is known as the logistic function.
After solving (1) we obtain the logistic function in the form

Umax
L — 2
u(h) = ®
u
where t is the inflection point, which is related to the initial condition u(0) = 1y = 1_:1%,

Umax — UQ
U

The logistic function finds applications in many fields, including biology, biomathe-
matics, chemistry, demography, economics, physics, probability, sociology, statistics, and
artificial neural networks. The logistic function and the logistic equation, as well as some
of their generalizations, have also been widely used in epidemiology to describe various
phenomena with a sigmoid trend (see for example papers by Kartono et al. [1] and Peli-
novsky et al. [2], and the references therein). Fokas et al. [3] used a generalization of the
logistic function for forecasting the number of individuals reported to be infected with
COVID-19 in different countries.

1
therefore ty = 5 log ( ) Putting t = t( in (2) we see that u(ty) = Umax /2.
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Wavelet analysis is now frequently used to extract information from epidemiological
and other time series. Grenfell et al. [4] introduced wavelet analysis for characterizing
non-stationary epidemiological time series. Cazelles et al. [5] used the Morlet wavelets for
applications in epidemiology. Krantz et al. [6] proposed a two-phase procedure (combining
discrete graphs and Meyer wavelets) for constructing true COVID-19 epidemic growth.
Jose and Bishop [7] used the reverse biorthogonal wavelet pairs for modeling the rotavirus
epidemic dynamics. They also mentioned that they obtained similar results when using the
Haar wavelet. Wang et al. [8] apply the Daubechies wavelet (db2) and the Coiflets wavelet
(coifl) for modeling of pertussis incidence in China from 2004 to 2018. Santos et al. [9]
and Zhang et al. [10] use the wavelet analysis to investigate the correlation between the
incidence of dengue and weather conditions. Liu [11] applies the Haar wavelet transform
and the simplex forecasting method to the dataset of hepatitis A in the United States to
give predictions of its incidence.

Lavrova et al. [12] modeled the disease dynamics caused by Mycobacterium tuber-
culosis in Russia using a sum of two logistic functions (2) (so-called bi-logistic model).
Similar method was used by E. Vanucci and L. Vanucci [13] for predicting the end date of
COVID-19 disease in Italy.

From a slightly broader point of view, the logistic Equation (1) can be considered in
the context of the following non-linear first-order autonomous differential equation

du
T fu), 3)

where f(u) is a real, continuous function of u, representing a non-linear part of the equation.
Several exact forms for f(u) have been studied by Tsoularis [14] and by Tsoularis and
Wallace [15]. An advanced theory with important applications of Equation (3) is provided
by Kowalski and Steeb [16]. The connections with Lie algebra, Bose-Einstein state, and
quantum theory, are put there in evidence.

The method of separated variables gives a first stage of the solution of (3) in terms of
t(u). This function is explicit only if the integral of the reciprocal of f (1) is exactly available.
The second stage of the solution depends on if ¢(#) can be inverted in a closed form. Most
of the important equations are not exactly solvable in terms of (1) and we need to solve
them with numerical integration and inversion.

The functional inversion can be performed with the Lagrange inversion method
for some particular forms of f(u) and with a general procedure described in a paper by
Dominici [17] through recursive application of nested derivatives on the kernel f(u). The
result is expressed in terms of the Taylor expansions of u(t) at a given point. One of the
authors (GF) of the present paper is preparing a new efficient inversion technique based
on an auxiliary exact function and through the fast direct derivative of t(u) followed by a
linear triangular recursive inversion algorithm. In his method, the nested derivatives are
not necessary.

In the present paper, we introduce logistic wavelets and describe their properties in
terms of Eulerian numbers. We add the second logistic wavelet into Matlab’s Wavelet
Toolbox, to be able to use the continuous wavelet transform (CWT). We then perform
CWT analysis for the second differences of a smoothed total number of people reported
as infected with the COVID-19 virus. We model the total number of people infected with
the COVID-19 virus by the sum of several logistic functions (the so-called multilogistic
function). The CWT analysis allows to estimate parameters of the successive logistic waves,
which together form the multilogistic function. All three parameters (i.e., the inflection
point, the steepness and the saturation level) of each logistic function can be read from
the CWT scalograms. Then we use the non-linear generalized reduced gradient method,
minimizing the RMSE error, to optimize the parameters, mainly the saturation levels. To
show the accuracy and effectiveness of our method, we apply it to the cases of COVID-19
infection in several countries, as well as around the world. This method, in addition to the
curve-fit property to existing data, has also a predictive value, and, in particular, allows for
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an early assessment of the size of the emerging new wave of the epidemic. Thus it can be
used as an early warning method.

This paper is organized as follows. In Section 2.1, we discuss basic properties of
Riccati’s equation, logistic equation, and logistic curve. For this purpose, we use Eulerian
numbers. Sections 2.2 and 2.3 are devoted to introduction and study of the logistic wavelets.
In Section 3 we model the cumulative number of persons reported to be infected by COVID-
19 in several countries and also in the whole world. The results are discussed and concluded
in Section 4.

We use the following convention for the Fourier transform:

A

f@) = = [ s @

where f € L1(R) N L?(R) (the intersection of the space of integrable functions and the
space of square integrable functions defined on the set of real numbers R).

2. Materials and Methods
2.1. Logistic Function and Its Derivatives

For the convenience of the reader, we now briefly describe the logistic function and
some of its properties, which have been proven mainly in our paper [18].

Equation (1) is a particular case of Riccati’s equation with constant coefficients

W' (t) = r(u—uy)(u—up). ®)

The constants r # 0, u1, up can be real or complex numbers.
If u(t) is a solution of (5) then the nth derivative u(") (t) (n = 2,3,4,...) of u(t) can be
expressed as a polynomial of the function u(t) itself:

0 =T (1) ) ©

k=0

n
wheren =2,3,...and > denotes the Eulerian number (number of permutations of the

k
set{1,2,...,n} havingk, (k =0,1,2,...,n—1) permutation ascents, see Graham et al. [19]).
The first few Eulerian numbers are given in the Table 1.

) G Q)

Table 1. Eulerian numbers.

W )

0 1

1 1 0

2 1 1 0

3 1 4 1 0

4 1 11 11 1 0

5 1 26 66 26 1 0

6 1 57 302 302 57 1 0

7 1 120 1191 2416 1191 120 1 0

Formula (6) was discussed during the Conference ICNAAM 2006 and it appeared,
with an inductive proof, in paper [20] (see also [21]). Independently the formula has been
considered and proved, with the proof based on generating functions, by Franssens [22].
The polynomial of u, of order (n + 1), appearing on the right-hand side of (1) is known in
the literature as the so-called derivative polynomial. In [23], we proved that all (n + 1) zeros
of the polynomial are simple and lie in the interval [u3, u3]. The derivative polynomials
have been recently intensively studied.
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Formula (6) applied to the particular case of the logistic Equation (1) is as follows:

Umax =0

It is easily seen that if ug is a zero of the polynomial on the right-hand side of (7) then
U/ Umax is the zero of the polynomial

n—1
Pusalu) = (-1 1 ( Ju*i =1y ®)

k=0

The first few derivatives (7) (for uy,x = 1, s = 1) are as follows

By direct calculation, one can show that the smallest positive zeros of the polynomials
Py(u), P5(u), Ps(u) are, respectively, 0.211, 0.0917, 0.0413. From this it follows that if,
e.g., t1 is the smallest root of the equation u”/(t) = 0, where u(t) is given by (2), then
u(t;) = 0.211upqy. Simultaneously, at t = t;, u” (t) attains its maximum. Similarly, if ¢,
and t3 are the smallest roots of the equations u(*) (£) = 0 and u® () = 0, respectively, then
u(ty) = 0.0917u0y and u(t3) = 0.04131 4y

One can also calculate distances of points t1, t, t3 from the inflection point ¢.
For example

- Umax o
u(t1> — m — 0211 umux/

from which we get

1.319
fo—t =~ ©)

2.2. Wavelets Based on the Second Derivative of the Logistic Function

Let a mother wavelet ¢ (x) (see Figure 1) be the second derivative of the logistic
function u(x) = H% Since #/(x) = —u(u — 1), then by (6) or directly we get
u”(x) = u(l—u)(1—2u), (10)

and by (10) it follows that the wavelet has the following exact form

—2x _ ,—X
Pa(x) = 1 —i—le*" (1 1 —i—le*") (1 1 —I—Ze*x) - il + e—i)3' (11)

By changing the variable u = u'(x) = u(1 — u) in the following three

1
Lexp(—x)’
integrals we calculate

/00 pa(x)dx = /1(1—2u)du =0

— 00 0 7

© 1

[ atax = [ - 2ujau = 5,

" (pa()Pdx = [ w1~ u)(1 - 2u)2du = \
/_oolpzx X—/Ou —u)(1—2u) u_%, (12)
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which proves that (x) € L'(R) N L?(R) (the intersection of the space of integrable
functions and the space of square integrable functions defined on the set of real numbers
R). In fact ¢ (x) € S(R) (the space of rapidly decreasing functions on R). We will discuss
this in the next section.

Logistic wavelet
01 T T T

0.08 -

0.06

0.04 -

0.02

-0.02

-0.04

-0.06

-0.08

_Ol Il Il Il Il Il Il Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1. Wavelet ¢, (x).

The Fourier transform of 1, (x) is as follows [24]:

N 1 © N N
Pa(G) = ﬁ[m a(x)eSdx = \/;smh(mf) (13)

It is well known (see Daubechies [25]) that a mother wavelet ¢(x) € L'(R) N L2(R)
should satisfy the following admissibility condition

2 [ 1e 79 (E) g < o (14)

We will show that for ¢, (x) the condition (14) is satisfied and even the integral can be
expressed in a closed form in terms of the Riemann zeta function. Namely, using (13) and
the following formula from Dwight’s Tables [26] (item no 860.519):

R _T(p+1
/0 (sinh(an) 27 = 2p Tgpi1® (p), a>0p>1, (15)
we have |€|3 .
[eS) e 5 5 o B 30(3
27 [P = [ Eh (2% = 2 (16)

As usual, we generate from ¢, a doubly-indexed family of wavelets by dilating
and translating,

W) = —= (),

a

where a,b € R, a > 0.
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2.3. Wavelets Based on Higher Derivatives of the Logistic Function

Similarly, as in the previous section we define a wavelet i, (x) to be the nth (n = 3,4, ...)

derivative of the logistic function u(x) = m Thus, (6) gives

u(x) = (_1)11% <Z>uk+1(u _ )k,

and then ¢, (x) can be explicitly expressed as

(DD (et
n) =0 (D) (e ) e @

By definition, the function ¢, (x) is an even function for odd n and an odd function
when n is even. The numerator of the expression (17) is a polynomial of degree n of
the variable e™*, while the denominator of degree n 4- 1. Therefore, for any polynomial
p(x) we have xlgmw p(x)Pn(x) = 0. Since ¢, (x) has the symmetry property then also

lim p(x)n(x) = 0. The last conclusion results also from multiplying the numerator and
X—00

the denominator of (17) by e"+1)*. From this and from the fact that g1 (x) = ¥} (x) for
any integer k > 2 it follows that ¢, (x) € S(R), (n = 2,3,...).
By (13) we have

VS S e, [m Q)"
Pu(G) = E/—oo P (x)e S dx = \/:smh(ngf) (18)

Now, using (18) and once again formula (15) we can calculate the integral of the
admissibility condition (14) as follows:

N A o |21 or(2
o [ e @ P = [ e 2O )
— i - 1), 19)

As usually we generate a doubly-indexed family of wavelets from ¢, by dilating
and translating,

1 x—b
a,b _
= Ze(4)
wherea,b € R, a >0, n=2,3,....

3. Results

We model the cumulative number of persons reported to be infected by COVID-19
virus, using a sum of logistic functions (multilogistic function) of the form

k X
fl) =y, (20)
j=11+exp(— Z L)

where k is the number of all considered logistic waves.

Denote by y;, the total cumulative number of individuals reported to be infected up to
nth day in a country or a region and by y, the 7-day moving arithmetic average for the
sequence y;, i.e.,

1 0
*
Yn = 7 Z Yu+i-
i=6
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We will look, in the sequence (y,), for points (days n) corresponding to zeros of the
second or the third derivative of the logistic function. This is equivalent to detect points,
where the sequence of second differences,

A% = Y1 — 20 + Yn-1,

takes a value close to zero or a maximum, respectively.

In order to calculate the continuous wavelet transform (CWT) coefficients for (A%y,),
we implemented ¢, (x) into Matlab’s Wavelet Toolbox giving the following definition of
the Logistic wavelet:

function [psi,t] = logist(LB,UB,N,~)

% LOGISTIC Logistic wavelet.

% [PSI,T] = LOGIST(LB,UB,N) returns values of
% the Logistic wavelet on an N point regular

% grid in the interval [LB,UB].

% Output arquments are the wavelet function PSI
% computed on the grid T.

% This wavelet has [-7 7] as effective support.

% See also WAVEINFO.

% Compute values of the Logistic wavelet.

t = linspace(LB,UB,N); % wavelet support.

psi = (exp(- 2* t)-exp(-t))./ (1+exp(-t))."3;

end

Observations show that successive, relatively large, logistic waves arise at fairly long
time intervals. Therefore, usually, the second differences corresponding to all previous
waves are small as the next wave unfolds. However, the largest wave (with relatively
high values of both the saturation level u,,,, and the parameter a), may be an exception.
Therefore, at least for some countries, we perform the next wavelet analysis and calculate
the CWT coefficients after subtracting the largest wave. Hence, we calculate the second
differences and perform their wavelet analysis for the following new time series

Ui max
= 1+ exp(—x;—ibi),
where for j = i, the parameters a;, b;, U; 4, correspond to the largest wave in (20). Moreover,
if necessary, we also carry out the wavelet analysis for shorter periods of time.

We find the above mentioned points and parameters either directly by observing the
sequence of second differences (A%y,) or read them from the scalograms of the CWT trans-
form of Matlab’s Wavelet Toolbox by using the Logistic wavelet. From the considerations
in Section 2.1 and from (9) it follows that parameter b should be determined as that point
where the sequence (A%y,) changes sign. Parameter a should be chosen in such a way
that the distance between the zero and the maximum of (A%y,) was approximately 1.319a
(see (9)). Thus, we obtain two parameters defining a logistic function approximating the

time series (y,,). It remains to determine the third parameter of the wave, i.e., its saturation

level u. Assuming that (i, ) follows locally a logistic function y, ~ y(n) = Hmax 2

T exp(—17h)
and since by definition it holds

u a
y"(x) = 353" (%),

then by (12) we get successively
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Ly n) ~ L A%y n)gg (0 ~ [ y" (e (wdx = [ “reyt? (gl (x)ax

n

_ Umax [ b 2, Umax
- ag/z /700(1,]2 (x)) dx = 30%3/2. (21)

Using (21) we can estimate the saturation level 1, as follows
tmax ~ 30a>/2 Y A2y, 93t (n), (22)
n

Parameters a and b in (20) can also be estimated by maximizing locally the integral
(i.e., the CWT coefficient) on the left-hand side of (21). Hence, we find in the sequence Azyn
the best pattern corresponding to the wavelet l[Jg’b. The saturation level of a logistic wave
can also be estimated as twice the value of the sequence () at the point where (A%y,,)
changes signs (inflection point) or its maximal value multiplied by 1/0.211 (zero of the
third derivative). This approach is especially important for the last wave of the multilogistic
function (20), when it is still in its initial or middle stage and has not yet terminated. After
this we use the non-linear generalized reduced gradient method, minimizing the RMSE
error, to optimize the parameters, mainly saturation levels. All data were collected from
the Our World in Data website [27].

We will use the theory to build models for the total cumulative number of individuals
reported to be infected by COVID-19 successively in Germany;, Italy, Poland, the United
Kingdom, the United States, and in the world.

3.1. Germany

Using the example of Germany, we will show in detail the steps leading to the approxi-
mating function f(x) (23). We analyze the data over a period of 496 days from 7 March 2020
(n = 1) to 15 July 2021 (n = 496). On the scalogram (Figure 2a) showing CWT coefficients,
we can distinguish three large logistic waves. We read for them initially (before optimiza-
tion) the values of parameters a and b, as well as the value of the CWT coefficient (i.e.,
the integral (21)). Then, we calculate their estimated saturation levels using Formula (22).
We have:

1. Firstwave,a = 10, b = 30, CWT coeff = 248. Thus, we estimate the saturation level
as follows:

Umax = 248 x 30 x 10 x /10 = 235, 273;

2. Second wave, a = 28, b = 280, CWT coeff = 519, u;qx =2,306,883;
3. Third wave,a = 16, b = 413, CWT coeff = 557, uyqr =1,069,440.

Next, we optimize the values of these parameters by minimizing the root mean square
error (RMSE) value, which gives:

1 496
_ - _ 2
RMSE = J 196 n;l(yn f(n))2 = 15,336

with the following approximating function

_ 190654 2265636 1,308,386
1+exP(_xI135) 1+exp(—%) 1—|—exp(—x—17‘;07)'

f(x) (23)

The approximating function f(x) (23) is shown in Figure 2b. In the case of Germany,
no large, newly emerging logistic wave is visible at that time.



Appl. Sci. 2021, 11, 8147

9o0f 16

CWT coefficients for Germany (1-496 days)
‘ tent . S
W\‘\HW “"W: u ‘l 'K‘nm M
i i

[X.Y] [413 16]
Index 557.2

[X,Y] [30 10]
Index 248.4
[R,G,B] [1 0.5608 0]

[X,Y] [280 28]

Index 519.3
[R,G,B] [0.749 0 0]

d "

[R.G,B] [0.6235 0 0]

Ww‘(.l\:‘u

50 100 150 200 250 300 350 400 45

Time b, days

(a) Germany, scalogram, days 1-496

Approximating function for Germany

4 x10°

351

200
25+

15

Total number of cases
~

0.5

observed values
function f(x)

300
Days

200

400

(b) Approximating function

Figure 2. Scalogram and the approximating multilogistic function (23) for Germany.

3.2. Italy

In the case of Italy, we analyzed a period of 502 days from 1 March 2020 (n = 1) to
15 July 2021 (n = 502) and obtained the following approximating function

f(x)

(24)

B 253,302 1,517,214 693,808 n 1,815,925
1+exp(— x;én) 1+ exp(f—"—é59 1+ exp(——x’lgn) 1+ exp(f—"_zg89 ) ’

with the error RMSE = 12,926. Figure 3 shows scalograms with CWT coefficients and the
approximating function (24).

CWT coefficients for Italy (days 1-502)

CWT coefficients for Italy after removing 2nd wave (days 1-502)
50 F 1 T

1200

1000 45 |

100 200 300

Time b, days

400 500 200 300

Time b, days

(a) Italy, scalogram, days 1-502 (b) Italy, without the 2nd wave, days 1-502

45 %108 Approximating function for Italy
al
35
4
3l
8
S
S 25
]
2
§ 2f
€
T
5 15
2
A observed values
function (x)
0.5
0 . . . . .
0 100 200 300 400 500 600
Days

(c) Approximating function

Figure 3. Scalograms and the approximating multilogistic function (24) for Italy.
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3.3. Poland

We analyzed data over a period of 488 days from 15 March 2020 (n = 1) to 15 July
2021 (n = 488). The multilogistic approximating function has the following form

Flx) = 27659 30,235 1,118,196 237,375
T+exp(—2)  1T+exp(—5190) " 1+exp(—3527) ' 14 exp(—2320)
1,398,841

(25)

1+exp(—557%)’

with the error RMSE = 13,433. Figure 4 shows scalograms with CWT coefficients and the
approximating function (25).

CWT coefficients for Poland (days 1-488) CWT coefficients for Poland after removing 3rd wave (days 1-488)

Scales a
N N w w B B ul
o (51 o o o o o
o

N
3

=
o

-200

o

-400 -400

50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
Time b, days Time b, days
(a) Poland, scalogram, days 1-488 (b) Poland, without the 3rd wave, days 1-488

CWT coefficients for Poland (days 1-200) %108 Approximating function for Poland

a
o

N
4

251

w w N
o a o

Scales a
N
o

N
o
Total number of cases
=
&
T

=
o

observed values
function f(x)

=
S)

05
20
5
o T
50 100 150 200 0 50 100 150 200 250 300 350 400 450 500
Time b, days Days
(c) Poland, days 1-200 (d) Approximating function

Figure 4. Scalograms and the approximating multilogistic function (25) for Poland.

3.4. The United Kingdom

For the UK we analyze the period of 491 days from 12 March 2020 (n = 1) to 15 July
2021 (n = 491). Figure 5 shows scalograms with CWT coefficients.
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CWT coefficients for the UK (days 1-491) CWT coefficients for the UK after removing 3rd wave (days 1-491)
- 2000 50 F T T T T T = 800
4T 600
1500
40 +
400
35
1000
« s 30F 200
3 3
2 500 L5 o
O O
(%] (7]
20 1
0 -200
15
-500 10 F -400
57 -600
-1000 BN, L
50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
Time b, days Time b, days
(a) UK, scalogram, days 1-491 (b) UK, without the 3rd wave, days 1-491
CWT coefficients for the UK after removing 3rd wave (days 360-491) ; %108 Approximating function for the UK
50 T T T T
600
45
6L
40 400
35 A
200 §
 30] 5 a4t
$ 0 9]
L (=
20 200 s
o
151 Eaol 7
observed values
1k 1
5r 600
L . . . . . . o . . . . .
360 380 400 420 440 460 480 0 100 200 300 400 500 600
Time b, days Days
(c) UK, without the 3rd wave, days 360-491 (d) Approximating function

Figure 5. Scalograms and the approximating multilogistic function (26) for the UK.

In this case, unlike in previous countries, a new, developing logistic wave is visible on
the right in the Figure 5b,c. On July 16 (day 492), this wave has not yet reached its inflection
point, as shown by the second differences, which are all positive (Table 2).

Table 2. A part of the working table for the UK.

Day, n Yn A%y,
482 4,896,238 913
483 4,923,476 636
484 4,951,350 1288
485 4,980,512 1054
486 5,010,728 1069
487 5,042,013 1100
488 5,074,398 1125
489 5,107,908 1446
490 5,142,864 2363
491 5,180,183 2295

492 5,219,797
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With the CWT analysis alone, it would be difficult to determine the parameters of
this wave. However, in order to do it we can use the results of Section 2.1. Assuming
that the second differences reach their maximum on July 14 (day 490), i.e,, it is the zero
(t7 = 490) of the third derivative of the last wave, we can estimate its saturation level.
Subtracting from y499 = 5,142,864 the saturation levels of all previous four waves, we get
about 700,000 cases. Thus, the saturation level of the last wave can be estimated as i,y =
700,000/0.211 = 3,300,000. Moreover, assuming that the parameter a is similar to that
which was for the other waves, say a = 16, by (9) we have b = fy = t; + 1.319 x 16 ~ 511.
After the optimization we get the following approximating function

flx) = 296,755 + 1,492,663 + 212,6051 + 519,365
l+exp( 49) 1+exp( xX— 238) l+exp( xX— 304) 1+exp( xX— 355)
3,267,991
26
1+exp(—%5 510) (26)

with the error RMSE = 12,174. Figure 5 shows also the approximating function (26).

In Table 3 (Added in proof), we compare the 10-day forecast with actual data. The
last two columns show the forecast error, both absolute and relative. It can be seen that
the function f(n) predicts the trend quite well for a short period. However, it seems more
important that the discussed method can be used for early warning of the appearance of
new waves. This is in line with Hu et al. [28] comments on the use of wavelet analysis to
study the development of infectious diseases.

Table 3. Forecasting for the UK.

Day, n Date Yn f(n) lyn — fF(m)|  |yn — f(n)|/yn
493 2021-07-17  5262,604 5,273,915 11,311 0.00214
494 2021-07-18 5,307,763 5,313,502 5739 0.00108
495 2021-07-19 5,353,760 5,354,247 487 0.00009
496 2021-07-20 5401212 5,396,120 5092 0.00094
497 2021-07-21 5448935 5,439,082 9853 0.00180
498 2021-07-22 5495427 5,483,091 12,336 0.00224
499 2021-07-23 5,539,655 5,528,095 11,560 0.00208
500 2021-07-24 5,580,660 5,574,038 6622 0.00118
501 2021-07-25 5,618,963 5,620,858 1895 0.00033
502 2021-07-26 5,655,018 5,668,486 13,468 0.00238

3.5. The United States
In the case of the US, we analyzed the data over a period of 490 days from 13 March

2020 (n = 1) to 15 July 2021 (n = 490). The multilogistic approximating function has the
following form

) LA aTrre | 25ms% 99,663
T+exp(=*72)  THexp(—*52)  1+exp(— ")  1+exp(—*3H)
3,648,578 1,228,591

1+exp( xX— 400) 1+exp( xX— 499)

27)

with the error RMSE = 59,106.
The scalograms with CWT coefficients and the approximating function (27) are shown
in Figure 6.
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Figure 6. Scalograms and approximating multilogistic function (27) for the US.

3.6. The World

In the case of the whole world, we analyzed the data over a period of 530 days from
2 February 2020 (n = 1) to 15 July 2021 (n = 530). The multilogistic approximating function
has the following form

f(x) 2,951,000 n 30,199, 966 n 42,251,210 n 37,503,735
1+ exp(—= 83) 1+ exp(—%5 188) 1+ exp(—%5 293) 14 exp(—%5 348)
67,293,529 27,772,754

28
1+exp(——x‘2‘i51) 1+ exp(—%5 541) @8)

with the error RMSE = 248,525.
The scalograms with CWT coefficients and the approximating function (28) are shown
in Figure 7.
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Figure 7. Scalograms and the approximating multilogistic function for the world.

4. Discussion

The article deals with the application of the logistic function to the description of
phenomena that follow many overlapping sigmoidal trends. We used some properties of
the zeros of successive derivatives of the logistic function, in particular their relation to the
saturation level.

By using the Eulerian numbers, we defined logistic wavelets of any order and exam-
ined their properties, checking for them the general admissibility condition for wavelets.
We have added a second order logistic wavelet to the Matlab’s Wavelet Toolbox. Then
we performed a wavelet analysis of the time series, whose terms are the second differ-
ences of the smoothed total number of individuals infected with the COVID-19 virus
in several countries. As a result, we obtained the continuous wavelet transform (CWT)
scalograms, from which we could read the distribution of successive logistic waves, and
their parameters. Note that the three-dimensional CWT scalograms allow the simultaneous
identification of all three parameters of consecutive logistic waves. This has been described
in detail using the example of Germany Section 3.1. Other approximation methods do
not provide such possibilities. We then optimized the parameters (mainly the saturation
levels) minimizing the RMSE error. We have shown in the examples that the multilogistic
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function, obtained in this way, well approximates the total number of infections. The theory
and procedure can be applied to model the total number of infections in any country or
a region.

We limited ourselves to identifying the largest logistic waves visible on the scalograms.
There are also visible smaller waves, which we have omitted, because they do not contribute
much to the explanation of the phenomenon. These could be considered in addition and
then the RMSE error would probably be smaller.

The CWT analysis described above makes it possible to estimate the parameters of
the logistic waves that have already terminated. In the case of an ongoing, new wave,
what we have seen on the example of the UK Section 3.4, we should determine its level
of development. In practice, it can be done by determining whether the logistic wave has
already reached the inflection point (zero of the second derivative, 50% of the saturation
level), which corresponds to a change in the sign in the series of second differences (A%y,).
If the inflection point has not yet been reached, we can try to determine whether the wave
has reached the previously located zero of the third derivative. This corresponds to a
maximum in a series of second differences (this point is about 21% of the saturation level).

It may be considered in a further work, whether the CWT analysis, based on the use of
only the positive part of the second-order logistic wavelet, would be helpful in determining
the parameters of ongoing waves.

In our further work, we intend to use, in a similar way, the logistic wavelets of higher
order (see Section 2.3). Moreover, using appropriate special numbers we are going to define
analogous wavelets for the Gompertz function (see some initial calculations [29,30]) or for
some generalizations of the logistic function (for preliminary theorems see [31]).
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