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Abstract: Field investigation shows that most corrugations occur on the inner rail surface of curved
tracks with a radius of less than 700 m. In order to explore the formation mechanism of metro
corrugation, the relationship between wheel–rail stick–slip characteristics and rail corrugation is
studied by combining single wheelset curving and a rigid–flexible coupling model. The numerical
results illustrate that the lateral torsional stick–slip vibration of inner rail–inner wheel of the guiding
wheelset on the small radius curve eventually leads to the generation of inner rail corrugation, and
the lateral torsional stick–slip vibration of outer rail–outer wheel of the driven wheelset may also
occur, but the intensity is weak and the probability is low. The lateral torsional stick–slip vibration
of inner rail–inner wheel of the guiding wheelset on the large radius curve is also easy to cause
inner rail corrugation, but the degree of inner rail corrugation is lower than that on the small radius
curve; the outer rail on the large radius curve is still not easy to produce corrugation. The formation
mechanism of rail corrugation on the straight track is different from that on the curve track, which is
mainly related to the wheel–rail longitudinal torsional stick–slip vibration.

Keywords: metro; rail corrugation; curve passing; torsional stick–slip vibration; rigid-flexible
coupling model

1. Introduction

Rail corrugation is a kind of periodic wavy wear, which frequently occurs on the
running surface of a rail. Corrugation will not only excite the high-frequency dynamic load
of the wheel and rail, leading to the deterioration of vehicle and track components, but
also produces high-level noise and vibration, affecting the living environment of residents
along the line. Rail corrugation has always been one of the urgent problems to be solved in
the railway industry. If the corrugation phenomenon can be avoided without treatment,
it can save a lot of human and material resources [1–4]. For more than 100 years, railway
researchers have carried out a large number of experiments and simulation studies on rail
corrugation, and put forward many theories to explain it. Most of them attribute the causes
of rail corrugation to the resonance of the vehicle–track system (such as the resonance of
the wheel–rail dynamic force P2 [5–8], bending/torsion resonance of the wheelset [9–11],
the pinned–pinned resonance of track structure [12–14], etc.), or the unstable self-excited
vibration of wheel–rail system [15–18].

To date, rail corrugation is still an active research field. In 2009, based on the literature
investigation, Grassie [19] corrected rail corrugation to a frequency-fixed phenomenon
and divided rail corrugation into the following six types: roaring rails, rutting, other P2
resonance, heavy haul, light rail, and trackform-specific. Chen et al. [20–23] considered that
the friction self-excited vibration of wheel–rail system was the cause of rail corrugation
under the condition of creep force saturation, and systematically studied the influencing
parameters of rail corrugation. By analyzing the correlation between the passing frequency
of rail corrugation and the natural frequency of the track, Li et al. [24] concluded that the
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natural vibration characteristics of the track structure and vehicle passing speed were the
key reasons for the occurrence of rail corrugation. Wang et al. [9] studied the causes of
rail corrugation in the small radius curve section with Cologne egg fasteners using field
tests and numerical simulations; they found that the lateral vibration of the rail caused
by the lateral mode of the wheelset was one of the causes in this section. Based on the
vehicle–floating slab track coupling model, Zheng et al. [25] proposed the limit value of
rail corrugation of metro floating slab track from the aspects of vehicle operation safety,
stability, and vehicle-track dynamic interaction. Through field investigation, test, and
numerical analysis, Li et al. [26] found that the rail corrugation of Cologne egg fastener
track was related to the vertical bending vibration of the track structure, and the values
of fastener stiffness and damping had a great influence on the rail corrugation. Zhang
et al. [27] investigated the phenomenon of wavelength-fixed corrugation on the shear-type
damping fastener track, and the results indicated that the phenomenon is related to the
vertical dynamic responses of rail under the specific track form. Li et al. [28] established a
three-dimensional finite element model with dynamic friction rolling contact, analyzed the
system responses of track structure vibration mode, wheel–rail contact force, and rail wear,
and obtained that the longitudinal vibration mode of track structure may be the dominant
factor leading to the formation of short pitch corrugation.

Vibration is the macroscopic manifestation of the vehicle–track system. As rail corru-
gation occurs in the wheel–rail contact zone, it is closely related to the wear of rail material.
Therefore, it is more convincing to study the microscopic wheel–rail contact behaviors to
reveal the formation mechanism of rail corrugation. For metro lines, rail corrugation mostly
occurs in the small radius curve sections, and the corrugation of the inner rail is more
serious than that of outer rail [29,30]. Meantime, abnormal rail corrugation with a short
recurrence period also occurs in some large radius curves and straight sections [31–33].
Based on this, from the perspective of microscopic wheel–rail stick–slip properties, this
paper analyzes the generation mechanism of rail corrugation phenomenon commonly
occurring on the metro line, including curve and straight track sections. Firstly, according
to the field investigation, the occurrence situation of rail corrugation on Tianjin Metro Line 6
was analyzed. Then, by analyzing the curve passing form of a single wheelset, the cause of
rail corrugation was explained from the wheel–rail contact stick–slip theory. Finally, using
the method of multibody dynamics, the vehicle–track space rigid–flexible coupling model
was constructed to study the relationship between wheel–rail stick–slip characteristics
and rail corrugation, and the proposed wheel–rail contact stick–slip theory was verified.
Compared with the existing literature, the difference of this paper is that the cause of rail
corrugation on metro lines is explored from the microscopic level of wheel–rail stick–slip
behaviors, and the developed theory can well explain the rail corrugation phenomenon on
curves and straight lines.

2. Statistics of Measured Corrugation on Metro Lines

The measured line was located in the Tianjin Metro Line 6. The north section of the
line was opened to traffic in December 2016, and the south section was opened to traffic in
April 2018. The train adopts 6B marshaling, and the maximum design speed was 80 km/h.
The design situations of line and track are shown in Table 1.

By measuring in the Tianjin Metro Line 6, the corresponding corrugation state of the
line can be obtained, as shown in Table 2. It can be seen that most of the corrugations
occur on the track with a curve radius of less than 700 m. In addition, rail corrugation also
occurs in a 500 m long straight section. Furthermore, combined with the field investigation,
it is found that rail corrugation mainly occurs on the inner rail surface, and there is also
corrugation on some sections of the outer rail, but the occurrence range is relatively small.
The field pictures of rail corrugation are shown in Figure 1.
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Table 1. Line and track design situations.

Line Design Situation Track Design Situation

Line length 41 km, the north section is 19
km, the south section is 22 km. rail 60 kg/m, U75V.

Number of small
radius curves

R ≤ 450 m: 38;
R ≤ 350 m: 18. common track bed ZX-2 type fastener and long sleeper

track bed

Average number of small
radius curves per kilometer

R ≤ 450 m: 0.93/km;
R ≤ 350 m: 0.44/km.

moderate vibration
attenuation

Double layer nonlinear damping
fastener and long sleeper track bed

Minimum curve radius 300 m. advanced vibration
attenuation

Floating slab of damping pad and
floating slab of steel spring

- - special vibration
attenuation

Floating slab of liquid damping
steel spring

- - distribution of short
sleepers

Transition section of ditch on both
sides of floating slab, part of
cast-in-place floating slab section

Table 2. Field measurement results of Tianjin Metro Line 6.

Number Mileage Curve Radius (m) Superelevation (mm) Wave Depth
Amplitude (mm) Noise Level (dB)

1 DK25 + 000-
DK25 + 300 300 100 0.34 80

2 DK33 + 936.020-
DK34 + 560.542 400 80 0.38 85

3 DK35 + 630.028-
DK36 + 118.188 310 100 0.44 89

4 DK38 + 064.155-
DK38 + 366.756 700 50 0.28 76

5 DK25 + 440.123-
DK26 + 000 310 110 0.62 94

6 DK34 + 943.384-
DK35 + 573.906 400 70 0.60 93

7 DK36 + 237.331-
DK36 + 625.491 310 105 0.58 92

8 DK36 + 730-
DK37 + 230 straight line - 0.19 73

9 DK38 + 955.305-
DK39 + 577.906 600 55 0.31 77

For the convenience of comparison, the wave depth amplitudes of rail corrugation cor-
responding to tracks with different curve radii are plotted in Figure 2. It can be concluded
that 75% of rail corrugations occur in curve tracks with a radius less than 400 m, and the
wave depth amplitudes are relatively large. At the same time, it can be seen from Figure 2
that rail corrugations with amplitudes greater than 0.4 mm only exist on curve tracks with
radii of 300–400 m, which indicates that the rail corrugation will be more serious with
the decrease of curve radius. In order to explain the serious corrugation phenomenon of
small radius curves, the cause of rail corrugation was explored from the wheel–rail contact
stick–slip theory by analyzing the curve passing form of a single wheelset.
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Figure 1. Corrugation pictures on-site. (a) Short pitch corrugation on the inner rail. (b) Long wavelength corrugation on the
inner rail. (c) Side corrugation on the outer rail. (d) Rail corrugation on the straight line.

Figure 2. Amplitude distribution diagram of rail corrugation.

3. Theoretical Analysis on the Cause of Rail Corrugation

When the vehicle is running along the line, in order to avoid the frequent contact
between the wheel flange and the rail side and facilitate the vehicle to pass through the
curve, the outside distance between the left and right wheel flanges is less than the track
gauge, so the wheelset can make lateral displacement and yaw angle relative to the track.
Under conditions of different lateral displacements and yaw angles, the contact points
between the left and right wheels and rails have different positions, so the contact param-
eters between wheel and rail also change accordingly, that is, the geometric parameters
of wheel–rail contact are actually functions of lateral displacement and yaw angle of the
wheelset relative to the track. Assuming the wheel has LM wear-type tread and the rail
has standard CHN60 profile, when the center of the wheelset is consistent with the center
line of the track, the contact angles between the left and right wheels and rails are all δ0,
and the rolling circle radii of wheels are all r0. When the lateral displacement yw occurs to
the right of the wheelset, the diagram of the wheel–rail motion relationship is shown in
Figure 3, and the contact angles of the left and right wheels and rails are as follows:{

δL = δ0 − εyw
s

δR = δ0 +
εyw

s
(1)
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where, δL is the left wheel–rail contact angle; δR is the right wheel–rail contact angle; s
is the half of rolling circle span of left and right wheels; ε is the contact angle parameter,
representing the variation rate of the slope of contact surface with respect to the lateral
displacement of the wheelset, which can be expressed as follows:

ε =
s

(R− R′)

(
s + Rδ0

s− r0δ0

)
≈ s

(R− R′) (2)

where, R is the curvature radius of the wheel tread; R′ is the curvature radius of the rail
top surface.

Figure 3. Diagram of the wheel–rail motion relationship.

When the lateral displacement of the wheelset is yw, the distances between the
wheelset center line and the wheel–rail contact points are as follows:{

sL = s + ξyw
sR = s− ξyw

(3)

where, sL is the distance between the wheelset center line and the left wheel–rail contact
point; sR is the distance between the wheelset center line and the right wheel–rail contact
point; ξ is the variation rate of the distance between the wheelset center line and the
wheel–rail contact point with respect to the lateral displacement of the wheelset, which can
be expressed as follows:

ξ =
R

(R− R′)

(
s + R′δ0

s− r0δ0

)
≈ R

(R− R′) (4)

When the wheelset passes the circular curve line with a radian α and a radius RT , the
driving distances of the left and right wheels can be expressed as:{

D1L = α(RT − sL) = α(RT − s− ξyw)
D1R = α(RT + sR) = α(RT + s− ξyw)

(5)
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where, D1L is the driving distance of the left wheel; D1R is the driving distance of the right
wheel. Furthermore, the driving distance difference ∆D1 between the left and right wheels
is obtained as follows:

∆D1 = D1R − D1L = 2αs (6)

Because the wheelset can be approximately regarded as a rigid body, when the
wheelset rotates around its center line, the rotation speed of each part is the same, and the
larger the radius of the wheel rolling circle, the longer the running distance at the same
angle. The greater the radius difference between the left and right wheels of the same
wheelset, the greater the running distance difference between the left and right wheels.
When the wheelset lateral displacement is yw, the rolling circle radii of the left and right
wheels are: {

rL = r0 − λyw
rR = r0 + λyw

(7)

where, rL is the rolling circle radius of the left wheel; rR is the rolling circle radius of the
right wheel; λ is the equivalent slope, representing the variation rate of the rolling circle
radius difference of the left and right wheels on the lateral displacement of the wheelset,
and its expression is:

λ =
Rδ0

(R− R′)

(
s + R′δ0

s− r0δ0

)
≈ Rδ0

(R− R′) (8)

Assuming that when the wheelset passes through a circular curve with a radian α, the
rotation angle of wheelset around its center line is β, then the running distances of the left
and right wheels are obtained as follows:{

D2L = βrL = β(r0 − λyw)
D2R = βrR = β(r0 + λyw)

(9)

where, D2L is the running distance of the left wheel; D2R is the running distance of the
right wheel. Similarly, it can be further obtained that the running distance difference ∆D2
when the left and right wheels are rolling is:

∆D2 = D2R − D2L = 2βλyw (10)

Thus, it can be acquired that the driving distance difference ∆D between the left and right
wheels on the rails when the rolling circle radius difference of the wheels is considered is:

∆D = ∆D1 − ∆D2 = 2(αs− βλyw) (11)

When ∆D is greater than 0, it means that the running distance difference between
the left and right wheels is not enough to offset the driving distance difference between
the left and right wheels on the rails, so that the wheelset lateral displacement is further
expanded to make up for the driving distance difference between the left and right wheels.
When ∆D is equal to 0, it means that the running distance difference between the left and
right wheels is equal to the driving distance difference between the left and right wheels
on the rails, and the wheelset is in a pure rolling state. When ∆D is less than 0, it means
that the running distance difference between the left and right wheels exceeds the driving
distance difference between the left and right wheels on the rails, so that the wheelset
lateral displacement tends to decrease, so as to realize the steady rolling of the wheelset
through the curve.

Through the above analysis, it can be seen that when the wheelset passes through
the curve, the contact motion relationship between the inner and outer wheels (in order
to distinguish from the straight line, we used the inner and outer wheels instead of the
left and right wheels) and rails has been in a continuously changing process. When the
running distance difference between the inner and outer wheels is not equal to the driving
distance difference between the inner and outer wheels on rails, the inner and outer wheels
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will receive the lateral force at wheel–rail contact points, and the rails will receive the
reaction force at same positions. The existence of the above force creates the wheel and
rail bear torque. When the accumulated torque increases to a certain value, the adhesion
force of the wheel–rail interface is less than the torsional force generated by the torque
at the contact position, the torque will be suddenly be released, and the adhesion state
between the wheel tread and rail surface will change into a slip state, that is, the “stick–slip”
effect between wheel and rail. This process is completed in a very short moment, and it
starts over and over again, so as to realize the smooth passing of the wheelset through
the curve. As long as there is slip between wheel and rail, the torque on the wheel and
rail will be released rapidly, that is, as shown in the curves of b and c in Figure 4, the
torsional force (i.e., creep force) will drop to the dynamic friction force (the dynamic friction
force is less than the static friction force), at this time, the torsional force is less than the
static friction force. If the torque is released completely, the torsional force will return to
0, and the wheel–rail interface will become sticky again. So repeatedly, the wheel makes
a lateral torsional stick–slip vibration on the rail surface. When the wheel and rail stick
together, the wear of the rail surface is small, that is, the wave peak of the corrugation is
formed. When the wheel slips on the rail, the wear of the rail surface is large, that is, the
wave trough of the corrugation is formed. At present, the ATO (automatic train operation)
mode is basically adopted in the metro train operation, that is, the speed of a section is
constant. Therefore, the reciprocating operation of the train will aggravate the development
of wavelength-fixed wear. Over time, obvious wavy wear will form on the rail surface. For
the straight line, the wheel–rail torsional stick–slip vibration process also exists, but the
torsional vibration intensity is weak, the appearance probability is less, so the occurrence
possibility of rail corrugation on the straight line is low. Rail corrugation is also found
in the straight section during the field measurement, as shown in the eighth line section
in Table 2. Because the driving distance difference between left and right wheels on the
straight line is relatively small, the rail corrugation of the straight line may be related to
the wheel–rail longitudinal torsional stick–slip vibration. In this section, the formation
mechanism of rail corrugation is explained from the wheel–rail contact stick–slip theory. In
the following, the multibody dynamics method will be used to analyze the relationship
between the wheel–rail stick–slip characteristics and rail corrugation, and verify the above
formation mechanism of rail corrugation.

Figure 4. Relation diagram between creep force and creepage.

4. Analysis of Wheel–Rail Stick–Slip Characteristics

By using the multibody dynamics method, the vehicle–track space rigid–flexible
coupling model was established, and the relationship between the wheel–rail stick–slip
characteristics and rail corrugation on different curvature radius lines was analyzed.
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4.1. Vehicle–Track Space Rigid–Flexible Coupling Model
4.1.1. Establishment of Model

The space rigid–flexible coupling model mainly includes vehicle (motor car) model,
track model, and wheel–rail contact models. The vehicle model is composed of body, bogies,
and wheelsets. The body and bogie are treated with rigidity, the wheelset is regarded as
a flexible body, and the wheel adopts an LM worn tread. The body, bogie, and wheelset
all consider six degrees of freedom, namely, longitudinal movement, lateral movement,
floating, rolling, nodding, and shaking, and the whole vehicle model has 42 degrees of
freedom. The body and bogies, as well as the bogies and wheelsets, were all connected by
spring-damping elements to simulate the secondary suspension and primary suspension,
and the stiffness and damping characteristics in six directions could be considered. The
rail type in the track model was CHN60, and the fastener was also simulated by spring-
damping elements, with stiffness and damping values in six directions. The under-rail
structure composition and line layout of the track were set according to the target line so as
to make the simulation results closer to reality. The general structural parameters of the
vehicle model and track model are referred to the literature [34,35].

The improved algorithm CONTACT was adopted for the wheel–rail contact. Based
on the Duvant–Lions variable principle, the friction rolling contact problem is transformed
into the variational inequality, thus, the minimum residual energy expressed by the product
of force and displacement on the contact patch is directly solved [36,37].

Based on the above vehicle model, track model, and wheel–rail contact model, the
vehicle–track space rigid–flexible coupling model was constructed, and the schematic
diagram is shown in Figure 5.

Figure 5. Diagram of vehicle–track space rigid–flexible coupling model.

4.1.2. Validation of Model

Using the measured data of rail vibration accelerations, this section verifies the effec-
tiveness of the vehicle–track space rigid–flexible coupling model. The measured interval
is located in the line Section 1. Firstly, the rail surface irregularity was measured by the
corrugation acquisition instrument, and then the measured rail surface irregularity was
added to the rail model for calculation. In the model, the vehicle speed was set as 55 km/h
according to the actual operation situation, and the rail measuring point was located on
the top surface of the inner rail bottom. The calculation and measurement results of rail
vibration accelerations at the measuring point section are shown in Figure 6. It can be seen
that the calculation and measurement results are in good agreement, which indicates that
the model is credible.
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Figure 6. Comparison of calculation and measurement results. (a) Rail longitudinal vibration
acceleration, (b) Rail lateral vibration acceleration. (c) Rail vertical vibration acceleration.
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4.2. Wheel–Rail Stick–Slip Characteristics of Small Radius Curve

Referring to the measured line Section 1, the line-type composition was set as (50 m
straight line + 100 m transition curve + 300 m circular curve + 100 m transition curve),
as shown in Figure 7. The circular curve radius was 300 m, the track superelevation was
100 mm, the track gauge widening was 5 mm, the wheel–rail static coefficient of friction
was 0.3, the rail surface had no initial irregularity, and the running speed of the vehicle on
the circular curve was 55 km/h. Based on the vehicle–track space rigid–flexible coupling
model, the wheel–rail longitudinal and lateral creep forces/creepages, wheel–rail normal
force, and other parameters can be obtained by calculation. Meantime, the wheel–rail
adhesion coefficient can be obtained by dividing the wheel–rail creep force by the normal
force, as shown in Equation (12). This section mainly analyzes the relationship between
the wheel–rail adhesion coefficient and creepage to study the cause of rail corrugation in a
small radius curve. {

µ1 = F1/p3
µ2 = F2/p3

(12)

where, µ1 and µ2 are the longitudinal and lateral adhesion coefficients; F1 and F2 are the
longitudinal and lateral creep forces; p3 is the normal force.

Figure 7. Schematic diagram of line-type composition.

As the vehicle passes through the curve, the movement form and stress condition of
the guiding wheelset and driven wheelset were different. Therefore, two wheelsets of the
front bogie of a single vehicle (namely, the guiding wheelset and the driven wheelset, a
total of four wheels) were selected for analysis, and the corresponding wheel–rail stick–slip
relationship curves are shown in Figures 8 and 9 (the red solid line denotes the fitting curve,
similar in the following sections).

It can be seen from Figure 8 that with the increase of the lateral creepage, the lateral
adhesion coefficient of the inner rail–inner wheel of the guiding wheelset first decreased
and then increased, and a negative slope phenomenon appeared in the wheel–rail stick–slip
curve, that is, with the increase of the lateral velocity difference between the inner wheel
and inner rail, the lateral adhesion coefficient of the wheel–rail interface decreased, which
illustrates that the lateral relative slip between the inner wheel and inner rail occurred.
The alternation of wheel–rail lateral adhesion and slip states leads to the wheel–rail lateral
torsional stick–slip vibration, and the alternation of the two states is cyclic, so as to achieve
the smooth passage of the vehicle through the curve. When the inner wheel and inner rail
stick together, the rail wear is small; when the inner wheel slips on the inner rail, the rail
wear is large, so with the increase of the number of vehicles running, the inner rail surface
eventually forms a wavy wear. The longitudinal adhesion coefficient of the inner rail–inner
wheel and the longitudinal and lateral adhesion coefficients of the outer rail–outer wheel
are all positively correlated with the corresponding creepages, and there is no negative
slope phenomenon, indicating that there will be no microscopic slip at the corresponding
wheel–rail interface, so it is not easy to produce rail corrugation.
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Figure 8. Wheel–rail stick–slip relation curves of guiding wheelset of small radius curve. (a) Longitudinal stick–slip curve
of the outer wheel-outer rail, (b) Lateral stick–slip curve of the outer wheel-outer rail, (c) Longitudinal stick–slip curve of
the inner wheel-inner rail, (d) Lateral stick–slip curve of the inner wheel-inner rail.

According to Figure 9, it can be found that the lateral stick–slip curve of the outer rail–
outer wheel of the driven wheelset had a negative slope, and the other wheel–rail stick–slip
curves had no obvious negative slope phenomenon, which shows that the outer rail–outer
wheel of the driven wheelset will also produce lateral torsional stick–slip vibration, which
causes the outer rail to form corrugation. However, the adhesion coefficient of 0.069
required for the lateral torsional stick–slip vibration of the outer rail–outer wheel of the
driven wheelset was much greater than the adhesion coefficient of 0.0084 required for
the lateral torsional stick–slip vibration of inner rail–inner wheel of the guiding wheelset.
Therefore, the lateral torsional stick–slip vibration intensity of the outer rail–outer wheel of
the driven wheelset is relatively weak, that is, the outer rail corrugation of a small radius
curve is relatively slight or not easy to occur. If the rail surface irregularity is considered,
the strong lateral torsional stick–slip vibration may happen between the outer rail and outer
wheel of the driven wheelset, which may lead to obvious corrugation on the outer rail.

The above analysis shows that on the small radius curve, the lateral torsional stick–slip
vibration of inner rail–inner wheel of the guiding wheelset leads to the generation of the
inner rail corrugation, and the lateral torsional stick–slip vibration of outer rail–outer wheel
of the driven wheelset may also occur, but the intensity is weak and the probability is low.
Therefore, the inner rail corrugation on the small radius curve is more serious, and the outer
rail corrugation is less or does not exist, which is consistent with the field measurement.
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Figure 9. Wheel–rail stick–slip relation curves of the driven wheelset of small radius curve. (a) Longitudinal stick–slip
curve of the outer wheel-outer rail, (b) Lateral stick–slip curve of the outer wheel-outer rail, (c) Longitudinal stick–slip
curve of the inner wheel-inner rail, (d) Lateral stick–slip curve of the inner wheel-inner rail.

4.3. Wheel–Rail Stick–Slip Characteristics of Large Radius Curve

This section focuses on the wheel–rail stick–slip characteristics of a large radius
curve. Referring to the measured line Section 4, the line-type composition is the same as
Section 4.1, the circle curve radius was set as 700 m, the track superelevation was 50 mm,
the track gauge was 1435 mm, the wheel–rail static coefficient of friction was 0.3, the rail
surface was free of initial irregularity, and the running speed of vehicle on the circular
curve was 64 km/h. By model calculation, the corresponding wheel–rail stick–slip curves
could be obtained, as shown in Figures 10 and 11.

Figure 10. Cont.
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Figure 10. Wheel–rail stick–slip relation curves of guiding wheelset of large radius curve. (a) Longitudinal stick–slip curve
of the outer wheel-outer rail, (b) Lateral stick–slip curve of the outer wheel-outer rail, (c) Longitudinal stick–slip curve of
the inner wheel-inner rail, (d) Lateral stick–slip curve of the inner wheel-inner rail.

Figure 11. Wheel–rail stick–slip relation curves of the driven wheelset of large radius curve. (a) Longitudinal stick–slip
curve of the outer wheel-outer rail, (b) Lateral stick–slip curve of the outer wheel-outer rail, (c) Longitudinal stick–slip
curve of the inner wheel-inner rail, (d) Lateral stick–slip curve of the inner wheel-inner rail.
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As can be seen from Figure 10, similar to the case of the small radius curve, on the large
radius curve track, the lateral stick–slip characteristic curve of the inner rail–inner wheel
of the guiding wheelset also appears as a negative slope phenomenon, which indicates
that the lateral relative slip of the inner rail–inner wheel occurs, resulting in the lateral
torsional stick–slip vibration, and it is easy to induce the formation of corrugation on the
inner rail surface. However, compared with the adhesion coefficient of 0.0084 required
for the lateral torsional stick–slip vibration of the inner rail–inner wheel of the guiding
wheelset on the small radius curve, the adhesion coefficient of 0.044 required for the lateral
torsional stick–slip vibration of the inner rail–inner wheel of the guiding wheelset on
the large radius curve is higher, thus the vibration intensity is weak and the occurrence
probability is relatively low. There is no obvious negative slope in the other wheel–rail
stick–slip characteristic curves, which illustrates that it will not produce corresponding
torsional stick–slip vibration and has little influence on the formation of rail corrugation.

It can be seen from Figure 11 that the lateral stick–slip characteristic curves of the
outer rail–outer wheel and inner rail–inner wheel of the driven wheelset have some
negative slope sections, and the negative slope range corresponding to the lateral stick–slip
characteristic curve of the outer rail–outer wheel is more than that of the inner rail–inner
wheel, which indicates that the lateral torsional stick–slip vibration of the driven wheelset
has a certain influence on the formation of inner and outer rail corrugations. However,
because the adhesion coefficients of the outer rail–outer wheel and inner rail–inner wheel
of the driven wheelset are higher, which are 0.066 and 0.052, respectively, the vibration
intensity is weak and the occurrence probability is low. Meanwhile, it should be noted
that compared with the adhesion coefficient of 0.069 required for the lateral torsional
stick–slip vibration of the outer rail–outer wheel of the driven wheelset on the small radius
curve, the adhesion coefficient of 0.066 that is required for the lateral torsional stick–slip
vibration of the outer rail–outer wheel of the driven wheelset on the large radius curve is
slightly smaller, which shows that with the increase of the curve radius, the intensity of the
lateral torsional stick–slip vibration of the outer rail–outer wheel of the driven wheelset
is enhanced, but the corresponding adhesion coefficient is still large, so the outer rail is
not easy to produce corrugation when the rail surface is smooth. In addition, compared
with the inner rail–inner wheel of the driven wheelset on the small radius curve, the
inner rail–inner wheel of the driven wheelset on the large radius curve has a slight lateral
torsional stick–slip vibration, which shows that with the increase of the curve radius, the
contact stick–slip behaviors of inner rail–inner wheel of the driven wheelset have a certain
effect on the formation of inner rail corrugation, but this effect is much smaller than that of
the inner rail–inner wheel of the guiding wheelset. The wheel–rail longitudinal adhesion
coefficient of the driven wheelset is positively correlated with the longitudinal creepage, so
the longitudinal adhesion characteristics have little influence on the formation of the inner
and outer rail corrugations.

It can be seen from the above that the lateral torsional stick–slip vibration of the inner
rail–inner wheel of the guiding wheelset is easy to lead to the generation of inner rail
corrugation on the curve track with a large radius, but the degree of inner rail corrugation
decreases compared with that on the curve track with a small radius. Corrugation is still
not easy to be formed on the outer rail of large radius curve, but if the rail surface is not
smooth, it may cause the appearance of the outer rail corrugation.

4.4. Wheel–Rail Stick–Slip Characteristics of Straight Line

Referring to the actual line No. 8, the length of the straight line was set as 500 m, the track
gauge was 1435 mm, the wheel–rail static coefficient of friction was 0.3, the initial irregularity
was not considered on the rail surface, and the vehicle running speed was 70 km/h. The
vehicle–track coupling model was used for calculation, and the corresponding wheel–rail
stick–slip characteristic curves were obtained, as shown in Figures 12 and 13.
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Figure 12. Wheel–rail stick–slip relation curves of the guiding wheelset of straight line. (a) Wheel–rail longitudinal stick–slip
curve, (b) Wheel–rail lateral stick–slip curve.

Figure 13. Wheel–rail stick–slip relation curves of the driven wheelset of straight line. (a) Wheel–rail longitudinal stick–slip
curve, (b) Wheel–rail lateral stick–slip curve.

Because the vehicle runs at a constant speed on the straight track, the traction force of
the vehicle was constant, which was equal to the running resistance of the vehicle, and the
motion state of the vehicle was also constant, therefore, the variation ranges of the wheel–
rail creepages and adhesion coefficients were very small, as shown in Figures 12 and 13.
The wheel–rail longitudinal stick–slip curves of the guiding wheelset and the driven
wheelset on the straight line had similar shapes, but the ends of the two curves were
different. The amplitudes of wheel–rail lateral stick–slip curves were consistent, but the
variation range of wheel–rail lateral creepage of the driven wheelset was relatively large.
With the increase of lateral creepage, the wheel–rail lateral adhesion coefficient remained
unchanged, indicating that there was no wheel–rail torsional stick–slip vibration in the
lateral direction. With the increase of longitudinal creepage, the wheel–rail longitudinal
adhesion coefficient decreased first and then increased, that is, the wheel–rail longitudinal
stick–slip curve had a negative slope phenomenon. However, the variation range of
longitudinal creepage corresponding to the wheel–rail longitudinal stick–slip curve was
very small, about 0.0000075, thus, the intensity of the wheel–rail longitudinal torsional stick–
slip vibration was weak and it was not easy to form rail corrugation. If the traction behavior
of the vehicle changes suddenly and the surface state of the straight rail is bad, the variation
range of longitudinal creepage may be expanded, the wheel–rail longitudinal torsional
stick–slip vibration will be intensified, and then rail corrugation will be generated, which
may be the formation mechanism of rail corrugation on the measured straight section.
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Through the analysis of the wheel–rail stick–slip characteristics on the straight line, it
is found that the formation mechanism of rail corrugation on the straight line is different
from that on the curve line. The formation of rail corrugation on the straight line is mainly
related to the wheel–rail longitudinal torsional stick–slip vibration, while the formation
of rail corrugation on the curve line is mainly related to the wheel–rail lateral torsional
stick–slip vibration. This conclusion can well explain the corrugation situation on the
measured line, and also verify the cause theory of rail corrugation described in Section 3.

5. Conclusions

Based on the actual measurement on-site, the occurrence situation of rail corrugation was
investigated first. Then, the formation mechanism of rail corrugation was explained from the
theory of the wheel–rail contact stick–slip by analyzing the curve passing form of a single
wheelset. Finally, the vehicle-track space rigid-flexible coupling model is used to study the
relationship between the wheel–rail stick–slip characteristics and rail corrugation, and the
wheel–rail contact stick–slip theory was verified. The following conclusions can be drawn:

(1) The results of field investigation show that most of the rail corrugations occur on
the inner rail surface of curve tracks with a radius less than 700 m, and the smaller the
curve radius is, the more serious the rail corrugation is.

(2) The analysis of the curve passing form of single wheelset shows that the wheel–
rail lateral torsional stick–slip vibration is the main reason for the corrugation on the
curve track, while the corrugation on the straight track may be related to the wheel–rail
longitudinal torsional stick–slip vibration.

(3) Based on the vehicle–track space rigid–flexible coupling model, the wheel–rail
stick–slip characteristics on tracks with different curve radii were studied. On the small
radius curve track, the lateral torsional stick–slip vibration of the inner rail–inner wheel
of the guiding wheelset induces the generation of inner rail corrugation, and the lateral
torsional stick–slip vibration of outer rail–outer wheel of the driven wheelset may also
occur, but the intensity is weak and the probability is low. Therefore, on the small radius
curve, the inner rail is worn seriously, while the outer rail is worn slightly or not. On the
large radius curve track, the lateral torsional stick–slip vibration of inner rail–inner wheel
of the guiding wheelset is also easy to cause the inner rail corrugation, but the degree of
the inner rail corrugation is decreased compared with that on the small radius curve track.
Corrugation is still not easy to be formed on the outer rail of a large radius curve, but if
the rail surface is not smooth, it may cause the appearance of the outer rail corrugation.
The formation mechanism of rail corrugation on the straight line is different from that on
the curve line, which is mainly related to the wheel–rail longitudinal torsional stick–slip
vibration. If the traction behavior of the vehicle changes suddenly [38] and the surface
condition of the straight rail is not good [39], the wheel–rail longitudinal torsional stick–slip
vibration may be aggravated, which may further lead to rail corrugation.

(4) The conclusions of this paper can well explain the rail corrugation phenomenon
on the curve and straight tracks, and also verify the theory of rail corrugation caused by
wheel–rail contact stick–slip characteristics.
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