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Abstract: Rice is one of the most important routes for arsenic to enter the human food chain and
threatens more than half of the world’s population. In addition, arsenic-contaminated soils and waters
increase the concentration of this element in various tissues of rice plants. Thus, direct or indirect—
infecting livestock and poultry—increase diseases such as respiratory diseases, gastrointestinal tract,
liver, and cardiovascular diseases, cancer, and ultimately death in the long term. Therefore, finding
different ways to reduce the uptake and transfer of arsenic by rice would reduce the contamination
of rice plants with this dangerous element and improve animal and human nutrition and ultimately
disease and mortality. In this article, we aim to take a small step in improving sustainable life on
earth by referring to the various methods that researchers have taken to reduce rice contamination by
arsenic in recent years. Adding micronutrients and macronutrients as fertilizer for rice is one way to
improve this plant’s growth and health. In this study, by examining two types of macronutrients and
two types of micronutrients, their role in reducing arsenic toxicity and absorption was investigated.
Therefore, both calcium and phosphorus were selected from the macronutrients, and selenium and
silicon were selected from the micronutrients, whose roles in previous studies had been investigated.
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1. Introduction

Agriculture is currently facing the challenge of providing adequate food for a growing
population [1]. Rice is a staple food worldwide [2], and it provides two-thirds of the calories
needed for two billion people in Asia; while also being the primary protein source for those
people [3,4]. Different types of rice provide essential elements, vitamins, nutrients, and
fibre for the human body [5]. However, rice is one of the most widely consumed plants
globally and requires a constant water source through irrigation, and plants consume about
60% of the irrigation water. Soil texture affects the uptake and growth of plant nutrients
because it alters access to water in the soil [1,6,7]. One of the most important threats to
natural and human ecosystems is the pollution of water and soil resources by heavy metals
and metals, which causes fundamental changes in ecosystems while their entry into the
biological cycle can have devastating environmental effects [8,9]. Recently, contamination
of soils and groundwater with heavy metals has become a serious problem. They harm
crop production worldwide [10,11], and also, contaminated soil harms economic growth
and development due to the negative effects on agricultural products [12,13]. In the present
study, we attempted to learn more about arsenic, the harm it causes and the ways it
penetrates the rice plant as well as the effect of two micro and two macronutrients in
reducing the absorption and toxicity of arsenic as a way to increase the quality of rice
production and ultimately improve human health.
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1.1. Arsenic (As) and Rice

Arsenic is a carcinogenic metalloid, and humans are contaminated mainly through diet
and drinking water., increasing health problems [14]. The National Toxicology Program and
International Agency for Research on Cancer categorized arsenic as the first carcinogenic
agent [15,16]. There are various species of As in nature, and they are listed in Table 1.
More than other grains, rice accumulates arsenic in its tissues [17]. The kinds of As in
rice are mainly inorganic (iAs, including arsenate and arsenite), monomethylarsonic acid
(MMA), and dimethylarsinic acid (DMA) [18]. According to research, inorganic kinds of
As are more toxic than DMA and MMA [19], and under anaerobic situations, As (III) is the
prevailing type in soil solutions [20].

Table 1. The list of various species of arsenic.

Arsenic Compounds Acronyms Chemical Formula

Arsenate As (V) As(O−)3
Arsenite As (III) O=As(O−)3

Methylarsonate MMA CH3AsO(O−)2
Dimethylarsinate DMA (CH3)2AsO(O−)

Trimethylarsin oxide TMAO (CH3)3AsO
Tetramethylarsonium ion TETRA (CH3)4As+

Arsenobetain AB (CH3)3As+CH2COO−

Trimethylarsoniopropionate TMAP (CH3)3As+CH2CH2COO−

Arsenocholine AC (CH3)3As+CH2CH2O−

Dimethylarsinoylacetate DMAA (CH3)2(O)As+CH2COO−

Dimethylarsinoylpropionate DMAP (CH3)2(O)As+CH2CH2COO−

Nomenclature is as proposed by Francesconi and Kuehnelt [21].

Increased arsenic release from soil particles by rice occurs through competition with
soil mineral adsorption sites [22]. In anaerobic environments, arsenic motility and viability
are significantly increased [20]. Paddy fields are an excellent environment for increasing
arsenic bioavailability—the amount of arsenic absorption is such that it can enter the
rice and affect rice growth—because the rice plants are grown in flooded conditions [23].
Therefore, since arsenic has a high solubility in water, this element is the most critical pol-
lutant [24]. Arsenic contamination has become the reason for significant health difficulties
in humans and animals [25], and in India, China, Sri Lanka, Pakistan, Nepal, Bangladesh,
Chile, Mexico, and Argentina, pollution of drinking water sources with arsenic is now a
public health emergency [26]. In some mines in southern China’s Guangdong, the soil
is heavily polluted with arsenic and some other heavy metals, and according to some
studies, pollution in agricultural lands around these mines has reached 344.11 mg/kg,
which indicates an excessive concentration of arsenic (1 to 40 mg/kg) in the soil [27].

There are two main ways to absorb arsenic in rice: (1) As (V) as a chemical analogue
of phosphate is absorbed in rice roots by the phosphate transport protein system. (2) As
(III) is an analogue of silicic acid and can be absorbed via the roots of rice with the delivery
systems of silicic acid (Lsi1 and Lsi2) (Figure 1) [28,29]. As mentioned, there are two
main pathways for arsenic uptake by rice, so because we wanted to investigate the role of
microelements and macroelements in reducing toxicity and uptake of arsenic, we looked at
elements that have a common uptake pathway with arsenic. Among them, we examined
two macroelements (P, Ca) and two microelements (Si, Se) that effectively reduce the
toxicity and absorption of arsenic in rice.

Several methods are used to determine the bioavailability and concentration of ar-
senic in rice, including the in vitro digestion process to determine the bioavailability of
arsenic [31] and the Meharg and Jardine [32] method to determine the concentration of
arsenic in rice.
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1.2. Silicon (Si) and As

Si is an essential element in the soil and crust of the earth, and soil Si content makes
up 1 to 45% of soil’s dry weight, but only 0.1 to 0.6% is soluble [33,34]. Si is a motionless
element in plants, and rice is absorbed as ionized Si(OH)3O and silicic acid (H4SiO4). Si
content of rice’s dry weight can reach up to 10% [35,36], and rice is a stacked Si plant,
often used as a sample plant for Si uptake, transport, and accumulation [3]. According to
research, silicon is a practical and valuable element for plant growth, especially in various
stress conditions such as plant diseases, plant pests, drought, salinity [37], while one of the
significant effects of Si is in reducing the toxicity of metal by decreasing absorption and
transport of metals in plants. [38].

Studies have shown that rice roots absorb arsenite via two Si carriers, Lsi1 (the aquaporin
NIP2; 1) and Lsi2 (an efflux carrier) [39]. Lsi1 is an invasive transporter responsible for trans-
porting silicon and arsenic (III) from culture solutions to rice root cells [40]. As (III) is absorbed
within cells in Escherichia coli, the yeast (Saccharomyces cerevisiae) via aquaglyceroporins and
several aquaporin channels of plants are dependent on the Nodulin 26 subfamily, the same as
the intrinsic protein (NIP) is permeable to As (III) in the case of heterogeneity in yeast [41,42].
The Si rice carrier Lsi1 (OsNIP2; 1) is also penetrable to As (III) expressed in Xenopus laevis
and yeast oocytes [39]. The second silicon transporter (Lsi2) in rice roots transfers silicon
efflux from epidermal and endodermal cells to stele to load xylem, and this transporter also
mediates the efflux of As (III) [39,43].

However, adding Si to soil and water significantly decreases the concentration of
arsenic in rice. In addition, some studies have shown that Si can help increase methylation
in rice tissue and affect the concentration of different As types in rice [44]. Therefore,
adding silicon to the soil can reduce As uptake and accumulation in rice, and Si foliar
application may also be an alternative route to reduce arsenic accumulation in rice [22].

Different studies have been performed on the efficacy of Si in reducing the uptake
and transport of arsenic in rice. For instance, Seyfferth and Fendorf [44] detected that the



Appl. Sci. 2021, 11, 8090 4 of 16

concentration of As in the grain was significantly reduced by adding Si to the pore water. Si
application has also been reported to decrease concentrations of different types of arsenic
in stem, leaf, husk, and brown rice (Figure 2) [45].
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It has also been observed that Si usage significantly decreases the concentration of iAs,
while the DMA concentration increases in rice plant tissues [45]. It was found that silicic
acid can also dislocate arsenite, arsenate, and Dimethylarsinate from the surface of soil
particles, which increases the aggregate concentration of arsenic in the soil solution [47].
Hence, the effects of adding silicon to soil on arsenic bioavailability depend on the interac-
tions between As and Si in pore water, particles of soil, and the absorption of rice roots [48].
According to research, to control the adverse efficacy of silicon usage in paddy soil, Si foliar
usage can be a more impressive way to affect the arsenic accumulation rate in rice [22].

1.3. Phosphorus (P) and As

Phosphorus is a vital element required for growing plants, and plants absorb it mainly
as inorganic phosphate (Pi) [49]. Phosphorus plays an essential role in the biochemistry
and physiology of plants, and almost all phospholipids, nucleic acids, and ATPs contain P,
which is involved in regulating significant metabolic pathways and enzymatic reactions,
making phosphorus essential for the worldwide production of sustainable food [50,51].
Agricultural products consume 90% of the extracted non-renewable phosphate reserves
annually. As the population of the world increases and phosphate resources are depleted,
it is necessary to improve the phosphorus use efficiency (PUE) at the plant and farm-wide
scale [50,52]. Due to the high stabilization of phosphorus in the soil and its slow release to
the root surface, plants have different strategies to enable phosphorus accessibility from
the ground [53].

Arsenic and phosphorus are chemical analogues. However, some of the chemical
properties of P and As, including redox reactions, are distinct and cause the biochemical
behaviour of the two elements to be different. As mentioned, P is an essential plant growth
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element, while arsenic is toxic and prevents plant growth [54,55]. In the environment,
arsenic occurs as arsenate or arsenite (e.g., AsO4

−3 or AsO3
−3); in contrast, phosphorus

exists mainly as orthophosphate ions (PO4
−3). Phosphates usually have many physico-

chemical properties similar to arsenates, like symmetry, acid decomposition constants,
and ion size, but P is more susceptible to transport sites than As (V) [55–57]. In aqueous
conditions, As (V) and P (V) are present as arsenates (AsO4

−3) and phosphate (PO4
−3),

which are surrounded by four oxygen atoms in quadrilateral coordination. Arsenate and
phosphate are assumed as chemical analogues due to their being similar chemical species,
which can replace each other in chemical reactions. Biogeochemical reactions often are seen
as precipitation/dissolution, adsorption/excretion, and competitive/adsorption reactions
in plant and microbial systems [58–61].

Competitive processes of biogeochemical reaction between arsenate and phosphate
control the arsenic bioavailability in the environment. However, arsenic oxidation reactions
in the atmosphere produce various biogeochemical responses which do not occur for P.
For instance, in anaerobic conditions like rice paddies, arsenate is transformed to arsenite
because it is not absorbed as much as arsenate on soil particles (especially at low or neutral
pH), so, it is more mobile and soluble. Redox mobility creates arsenic distribution in
sediments and soils that decreases under fluctuations of oxidation, but P is not changed by
redox variation [62]. An experiment on disposal of arsenate showed after using phosphate
solutions, only 35% of the adsorbed arsenate was absorbed from goethite, which indicates
that the arsenate bonds were more substantial than the phosphate bonds on iron oxide.
The toxicity mechanism in organisms is maybe metabolic substitution of arsenate for
phosphate [63].

Under aerobic conditions, As (V) and phosphorus (Pi) due to similar chemical prop-
erties, stable quadrilateral oxidants form the oxidation state þ5. However, there is less
correlation between the behaviour of phosphate and arsenite under aqueous conditions
because phosphate is not an analogue of As (III), and arsenite transport is not affected
by phosphate [64,65]. However, arsenite oxidation to arsenate is distinct in the rice root
region [66]. Thus, the effect of phosphate on the behaviour of arsenite in the rhizosphere
cannot be completely ignored, and actual cognition of this feature is needed. Unlike hy-
droponics, P usage in the soil increases arsenic uptake by the plants because of arsenic
excretion [67].

Due to the essential role of phosphate in controlling the solubility of arsenic in the soil
and its uptake through plants, special attention to P in paddy fields should be given [68]; in
addition, the simultaneous usage of calcium and phosphorus forms the Ca-P-As complex
and reduces mobility in enriched soils, [69]. Because As and P interactions in the soil-plant
system are complicated, most studies have failed, while the variability competition between
P and As depends on substrate conditions and soil type [70–72].

The much higher application of P may help compete for arsenic uptake in plants. In
contrast, increasing the concentration of arsenic with increasing P in the soil solution may
also increase arsenic toxicity because of As excretion in the soil solution. On the other
hand, excessive P usage for the plants may also enhance the environmental risks [73]. For
example, triple superphosphate (TSP) is vital among the phosphorus fertilizers, and the
raw material of TSP, phosphate rock, may contain arsenic and release arsenic from solid
soils into the soil solution [65].

At similar concentrations of P and As, arsenic is more available for uptake by the
plants because of the smaller size of arsenic, and the charge of P ions binds to the soil with a
higher intensity than As (V) [64,74]. In addition, P competes with As (V) over time because
of the lower soil uptake of P, and according to the stock charge hypothesis, ligand exchange
theory, and Steindorf–Rehbon–Shintoch equation, Pi is more likely to be replaced by As (V)
in soil [64,75].

Soil properties, soil texture, soil mineralogy, and environmental factors may have a
significant impact on soil availability, mobility, and interaction of As-Pi [76], and uptake
through plants, including mineral components, the presence of anions (e.g., microbial
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activity, organic matter (OM), redox potential, citrate, phosphate, pH, phytates/phytic acid,
and in particular, iron oxide and Al oxide/hydroxides) [77,78]. Amid these factors, pH
and goethite firmly control the behaviour of P and As. Iron and magnesium-rich minerals
such as phronesis smectites, nontronite, goethite, bronchitis, and pyrolusite absorb more
As (V) than Pi when prepared in molar ratio. However, Pi absorbs more than As (V) in
non-crystalline allergens containing allophane, boehmite, gibbsite, and clay sections (e.g.,
vermiculite, illite, and kaolinite) [79,80]. Goethite’s high levels in the soil can decrease P and
As uptake by plants. Adding Fe and P to high arsenic soils using a sequential combination
method can reduce arsenic toxicity to plant roots by providing a food source [81,82].

In the presence of sandy soils and sandy loams, with P, due to the low uptake of As
(V) ions, they are displaced from the surface of the sand and increase the uptake of arsenic
by plants, and as a result, this reduces plant growth. However, arsenic absorption and
toxicity are reduced in sandy loam, silty loam, and clay loam soils [83–85]. High supply P
can severely change arsenic solubility and mobility in alkaline or anion-fixing soils [80].
The adsorption and desorption of Pi and As (V) have similar properties and follow the
Langmuir and Freundlich equations in high pH (calcareous purple), neutral, and low pH
(acid) soils, but because of mobility and dissolution, and non-reactivity of P at low pH are
not always interdependent—the main difference between the two models is that Langmuir
assumes that ions are adsorbed as a monolayer on the surface, and maximum adsorption
occurs when the surface is completely covered, while Freundlich assumes heterogeneous
surfaces with which it has different affinities that have multi-layered adsorption [74,86,87].
Therefore, phosphate fertilizers, the concentration of As, and soil properties in the soil
solution are the most critical factors that control the absorption of arsenic by rice in soils
contaminated with As [73] (Table 2).

Competition for Fe plaque or adsorption sites in the soil between PO4 and As (V)
via the ligand exchange mechanism increases arsenic bioavailability and solubility in
the rhizosphere [88]. Fe plaque plays an essential role in regulating arsenic uptake in
rice tissues, and other Fe plaque formation leads to arsenic sequestration at the root
surface, leading to decreased arsenic uptake in brown rice [23]. It was observed that the
arsenic amount in Fe plaque decreased with increasing concentration of PO4, although
increasing arsenic mobility after the addition of PO4 was also reported in several other
studies [72,89,90]. It was also reported that sufficient phosphorus leads to several Fe
plaque formations in rice roots, while the lack of phosphorus in the solution increases the
plaque formation in the roots. Phosphorus low concentrations in the tissues of plants can
help increase oxygen transport in rice roots and stimulate the formation of Fe plaque in
the roots [91]. Deformation of arsenic species occurs in Fe plaque as the root surface is
regulated by microbial processes and the rhizosphere’s redox environment, in which As
(V) is reduced to As (III) by the arsC gene while by the aioA gene, As (III) is oxidized to
As (V). Therefore, it is necessary to boost the Fe plaque formation on the rice root surface,
which increases the rice’s resistance to arsenic accumulation [92].

Different studies have shown that the essential factor in reducing the absorption of
As (V) through the supply of Pi is the competitive absorption of rice roots. In addition,
researchers have reported that enhancing the concentration of phosphorus in the nutrient
solution reduces the uptake of As (V) through the plant [85,93]. Research has also shown
that using high phosphate concentrations in culture solution decreases arsenic-induced
damage in rice plants while increasing the amount of As (V) increases the As concentration
in roots, leaves, shoots, and seeds. If As concentration decreases with increasing phospho-
rus [94], the plant’s arsenic toxicity may therefore depend more on the ratio of As/P than
the total concentration of As. A study in China also described a link between phosphorus
and arsenic, and by changing the status of P in the shoots, accumulation of arsenic in rice
grains could be reduced [95]. One study found that rice with higher internal phosphorus
showed lower toxicity of As (V); therefore, expanding the application of external phospho-
rus helps decrease the absorption of arsenic and reduce As (V) toxicity symptoms. Two
factors control PO4 efficacy on mobility and its uptake of arsenic in rice: (1) Competition
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between uptake of arsenic and phosphorus in rice roots, and (2) the essential phosphorus
role in arsenic transfer from roots to shoots [73].

Table 2. Freundlich, Langmuir, and Redlich–Peterson Equations.

Equation Isotherm Equation #

qe =K f C 1
n Freundlich nonlinear (1)

log (qe) = log K f +
1
n logC Freundlich linear (2)

Ce
qe

= 1
qm

Ce +
1

Kaqm
Langmuir linear 1 (3)

1
qe

= ( 1
Kaqm

)
qe
Ce

Langmuir linear 2 (4)

qe = qm − ( 1
Ka
)

qe
Ce

Langmuir linear 3 (5)

qe
Ce

= Ka qm − Ka qe Langmuir linear 4 (6)

qe =
Q0 KL Ce
1 + KL Ce Langmuir nonlinear

(7)

RL = 1
1 + KL C0

(8)

qe = Kr Ce

1 + ar Cβ
e

Redlich-Peterson nonlinear (9)

log (Kr
Ce
qe

− 1) = β log (C8) + in (αr) Redlich-Peterson linear (10)

Nomenclature is as proposed by Singh [96].

Both arsenate and phosphate enter the plants through phosphate carriers [97], and
in plants, high-affinity transporters of P (Phts/PTs) play an essential role in obtaining
phosphorus from the soil. [98]. These P transducers are divided into four subfamilies:
Pht1, Pht2, Pht3, and Pht4 [99]. Thirteen Pht1 genes were identified in the genome of
rice [100], and between Pht1 genes, OsPht1; 1, 1; 2, 1; 4, 1; 6, 1; 8, 1; 9, and 1; 10 causes the
absorption and transfer of phosphorus in rice [101]. OsPT1 is structurally expressed in rice
plants for uptake and transport of P under P sufficient conditions [102], and recently it was
observed that the performance of OsPht1; 4 recently facilitated uptake and mobility of P in
rice [103]. The expression of OsPht1; 6 is involved in the uptake of P under P deficiency
conditions in rice roots [104], and likewise, OsPht1; 8 under P-sufficient, and P-deficiency
conditions is expressed and regulated in roots [105]. OsPht1; 1, Os Pht1; 4, and OsPht1; are
involved in the absorption and transport of As (V), and their expression changes arsenic
accumulation in rice [49], and eventually PTs overexpression causes P uptake, although it
may also increase uptake of As by rice (Figure 1) [106,107].

1.4. Selenium (Se) and As

Selenium is widely spread in the earth’s crust and is mainly related to sulphide
minerals [108]. Until 1957, Se was known as a toxic element [109], and after that, the positive
effect of selenium on human and animal health was discovered [110]; however, no evidence
shows that Se is an essential element for plants [111]. Nevertheless, selenium has a vital
effect on thyroid hormone metabolism, cellular metabolism, antioxidant functions, immune
responses, and other minerals’ uptake and accumulation regulation in humans [112].
Moreover, Se deficiency is related to health disorders, including reduced fertility, oxidative
stress, accelerated aging, decreased immune function, and cancer risk increment [113].

Selenium is specifically present as seleno-L-cysteine in a multitude of selenopro-
teins [114]. These proteins are crucial in repairing oxidized residues and modulating
oxidative stress through natural biological oxidant detoxification [115,116]. It has been
appraised that between five hundred million and one billion of the world’s population
suffer from Se deficiency, but on the other hand, selenium is toxic in high concentrations, so
the line between the toxicity of Se to humans and Se-deficiency is critical [113]. Plants are
the primary source of Se for people worldwide [105], and recently, selenium fertilizers have
been used to enhance Se in plant’s edible parts [117]. Selenium comes in two forms: organic
and inorganic (Table 3). Soils contain inorganic selenite and selenate that accumulate in
plants and are converted to organic forms [118]. The optimal dose of Se in plants has not
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been determined, and selenium is thought to be suitable for plants that can accumulate it
in high concentrations [119]. Selenium incites the growth of plants at low doses via dry
matter yield addition, particularly in sulphur deficiency [120]. Also, low levels of selenium
neutralize the harmful efficacies of many environmental stresses. Research has shown that
low Se concentrations in plants act as antioxidants, but selenium brings oxidative damage
to plant tissues in excessive doses [117,121]. However, Se can positively affect appropriate
properties, like enhancing growth, increasing antioxidant activities capacity, increasing
starch accumulation, reducing lipid peroxidation, and oxygen reactive species [122]. There-
fore, Se increases essential elements, nutritional value, grain yield, and resistance to the
stress of metals [123]. Several reports have shown that the external supply of Se has a
positive efficacy on toleration to abiotic stress and plant growth [124].

Previous studies have reported that Se (IV) is transported to plant roots via phosphate
and silicon transporters [123], and Se (VI) is transported to plant roots via sulphate trans-
porters and may be inhibited by phosphate [125]. Rice is the primary source of selenium in
the human diet, and although rice essentially requires selenium, the molecular mechanism
of Se uptake is not yet well understood. Research shows that selenite is adsorbed via silicon
Lsi1 (OsNIP2; 1), a silicon attack carrier in rice. Lsi1 defects lead to a significant reduction
in the concentration of Se in shoots when using selenite. However, there was no difference
in Se concentration between wild-type rice and Lsi1 mutant rice line when treated with
selenite (Figure 1) [113].

Se is a known antagonist for arsenic toxicity, and Se is believed to detoxify arsenic
plants [116]. Researchers have analysed Se efficacy application on arsenic uptake, transcript
dynamics, antagonistic between arsenic and selenium in rice varieties, and antioxidant
responses [126]. In the periodic table, As and Se are close to each other and play the same
role in prokaryotic plant metabolic functions [127], and it should be noted that As and Se
are usually paired in biochemical cycles [128]. Furthermore, studies have shown that Se
and As are predominantly inorganic in paddy soils, while trace amounts of organic forms
are also present because of microbial biological transmission [129].

Researchers have suggested that silicon transmitters may drive competition between
As (III) and Se (IV) adsorption [113]; while As (V) and Se (IV) compete for the phos-
phate uptake system, arsenic (V) in general may inhibit selenium (VI) transport in vessel
element [130,131]. Researchers have also shown that Se reduces As toxicity in rice via re-
duction of arsenic accumulation, by reducing oxidative stress through nutrient status, and
increasing antioxidant efficiency [132]. A study was performed to consider the interaction
between selenium and arsenic, which showed that adding As via irrigation water signifi-
cantly decreased rice straw, grain yield, and roots. However, selenium assisted in reducing
the detrimental efficacy of As and offset the decrease in performance due to the arsenic
toxicity, while the impact of selenium was more significant on the dry yield at higher doses.
The observations also showed that Se application might reduce the accumulation and toxi-
city in the rice crop [133]. A similar study also showed that selenium application showed
a significant reduction in fluorescent nitric oxide (NO) intensity, H2O2 content, arsenic
accumulation, reactive oxygen species (ROS), and superoxide radical (O2

−) associated with
cell death, indicating a protective role of Se in rice as a possible ROS igniter [134].

Besides, research has suggested a positive role for Se in increasing the enzymatic
activity of thiol metabolism, which induces a pattern of differential accumulation of sulphur-
related genes and improves arsenic toxicity through selenium completion, including a
stable balance of sulphur-containing compounds and nutrients. Furthermore, nutrient
levels are positively dependent on the differential expression pattern of genes related to
NPK involved in nutrient availability and metabolism [134,136]. Overall, some studies
are providing new insights into the role of Se in different rice genotypes under arsenic
stress via changes in thiol-related genes and nutrient transport. Of course, the researchers’
new view is that Se may affect arsenic transfer to the stem, but it does not affect its uptake
process [134,137].
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Table 3. The list of different species of selenium.

Selenium Compounds Acronyms Chemical Formula

Inorganic species
Selenate Se(VI) H2SeO4◦, HseO4

−, SeO4
2−

Selenite Se(IV) H2SeO3
◦, HseO3

−, SeO3
2−, SeO2

Elemental Selenium Se(◦) Se◦

Selenide Se(-II) H2Se
Organic species

Dimethyl selenide DMSe (CH3)2Se
Dimethyldiselenide DMDSe (CH3)2Se2

Dimethylseleniumsulfide (CH3)2SeS
Dimethylseleniumdisulfide (CH3)2SeS2

Selenodi-glutathione GSSeSG
Selenocysteine SeC HSeCH2CHNH2COOH

Selenomethionine SeM CH3Se(CH2)2CHNH2–COOH
Trimethylselenonium (CH3)3Se−

Selenocyanate SeCN−

Selenoproteins
Nomenclature is as proposed by El-Ramady, Domokos-Szabolcsy [135].

1.5. Calcium (Ca) and As

Ca is not only a necessary nutrient for plants [138], but it plays significant roles as in
preventing leakage of solutes from the cytoplasm and regulating enzymatic and hormonal
activity in plants [139,140]. Multiple kinds of research have also demonstrated that Ca2+

increases the amplification of cell walls and that sufficient levels of Ca2+ in the external
environment are required to maintain cell membrane selection and integrity [138].

Ca is involved in metabolic processes of absorption of other nutrients and challenges
other positively charged ions like Mg2+, K+, Na+; therefore, excessive use of these positively
charged ions reduces Ca uptake by plants [141]. Studies have shown that high levels of Ca2+

can change the increase and removal of sodium (Na) in plant roots, which are subjected
to the stress of NaCl [139]. In addition, roots with high levels of Ca2+ often retain their
concentration of K+, while roots with low Ca2+often cannot [142,143].

Ca participates in signalling various physiological and biochemical processes as a
secondary messenger that mediates some cell and plant growth perspectives and responds
to the different stresses [144,145]. Because in stress signalling, Ca2+ is ubiquitous, it can
be an essential node for cross-route discussion. Most of the stresses gain concentrations
of cytosolic free Ca [146,147]. Four leading calcium-bound proteins families are known in
plants: including calcium-dependent protein kinases (CDPK), calmodulin, calmodulin-like
proteins, and calcineurin-like proteins B [148,149].

Recently, multitude studies have demonstrated which exogenous Ca reduces stresses
in the environment, including the stress of toxic metals, by reducing metal uptake [138,150]
and some studies have shown that the use of calcium peroxide (CaO2) helps reduce arsenic
toxicity and mobility in soil and eliminates arsenic from water [151,152]. Nevertheless,
data are limited about the effects of CaO2 on arsenic accumulation and toxicity in crops
grown in As-contaminated soils. Various studies have shown that CaO2 can effectively
reduce arsenic uptake by plants by reducing As mobility in the soil, but the mechanism
of applying CaO2 on the dynamics of As in flooded soil and arsenic uptake through
rice is as yet unknown [153,154]. Nevertheless, creating aerobic conditions by water
management like drainage is an excellent way to decrease As accumulation in rice grains.
However, drainage operations are complex in some locations with a long rainy season
and poorly drained soils. In this regard, oxygen-releasing compounds (ORC) can be an
alternative to maintain aerobic conditions even in paddy soils [155,156]. CaO2 is an ORC
and added to water generates hydrogen peroxide (H2O2) and oxygen (O2). Due to the,
chemical properties of CaO2 it has been used as an oxidant to increase organic pollutant
degradation like glyphosate, toluene, and polycyclic aromatic hydrocarbons in polluted
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soil and water [157,158]. The research related to the effects of CaO2 on the accumulation of
As in rice plants showed that in the growth in As-contaminated paddy soils, As distribution
and concentration in the pore water of all soils tested decreased using CaO2. In brown
rice, treatment of low-level arsenic in soil and CaO2 increased grain yield and reduced
inorganic arsenic concentration; however, in soils enriched with arsenic, the proposed
CaO2 application method is not practical [156].

Another study on the efficacy of exogenous calcium (CaCl2) on antioxidant and glyox-
alase systems of rice seedlings grown under As stress showed that CaCl2 in combination
with different levels of As significantly decreased As accumulation and plant growth
restoration in rice plants. Ca application on arsenic exposed rice seedlings decreased the
production of ROS. However, it enhanced activities of ascorbate content (ASA), dehy-
droascorbate reductase (DHAR), glyoxalase I (Gly I), glyoxalase II (Gly II), monohydric
ascorbate reductase (MDHAR), superoxide (SOD), catalase (CAT), and glutathione peroxi-
dase (GPX) compared with seedlings that were only exposed to As [159]. Thus, both Ca2+

and ROS signalling positively correlated under environmental stress [138,160].
Various studies have shown that the combination of calcium with other elements

and compounds significantly affects the levels of arsenic contamination in rice plants.
For example, a study showed that the interaction between calcium (Ca2+) and melatonin
(Mel) effectively increased the endurance of metal toxicity, although the physiological and
biochemical mechanisms of that are still unclear [161]. Under arsenic toxicity conditions,
Ca2+ and Mel applications synergistically suppressed the cell death characteristics of
the plant (nucleation density and nucleus fragmentation) in stomatal protective cells,
ROS formation, and DNA damage in protective roots, leaves, and cells. In addition, the
results showed that the use of Mel with Ca2+ increased the resistance to arsenic toxicity
by increasing the enzymes involved in the antioxidant system, the regulation of plasma
membrane activity of plasma H+-ATPase, and the ascorbate–glutathione pathway [138,160].

In another experiment, the CF compound including 90% calcium sulphate (CaSO4)
and 10% ferric oxide (Fe2O3), significantly decreased the arsenic concentration in soil
solution and rice grains [162]. Other experiments on a Ca-based magnetic biochar (Ca-
MBC), made by pyrolysis of a mixture of rice straw, iron oxide (Fe2O3), and calcium
carbonate (CaCO3), showed that Ca-MBC at the optimum pH (pH 5) was absorbed As
(III) (15–33%) in contaminated water and soil significantly and reduced As contamination
within 12 h and generally reduced rice As-contamination [163].

2. Conclusions

The present study investigated the bioavailability, bio-pollution, uptake, accumulation,
and toxicity of arsenic in rice and the cost-effective fertilizers that can reduce the uptake
and transport of arsenic in rice. Among the inorganic species As, as As (III) is more toxic
than As (V). Studies have shown that significant amounts of As can be transmitted to rice
shoots and grains depending on the genotype and soil conditions. Arsenite and methylated
organic species enter rice using the Si and P transport routes. The use of Si in rice fields
reduces the concentration of arsenite in rice. Although the use of Si by removing it from
soil particles can increase the bioavailability of As, due to the common pathway of these
two elements, when Si is added to the culture medium, the competition between them
increases and thus reduces the As uptake by the rice. Phosphorus is the chemical analogue
of arsenic, and it can control As soil motility and As uptake in rice through competing for
soil particle uptake sites, by competition between PO4 and As for uptake, and the opposing
effect of PO4 on root-to-shoot As transfer.

Se (IV) is transported to plant roots via phosphate and silicon transporters, and Se (VI) is
transported to plant roots via sulphate transporters, and then competes with arsenic through
the known routes. However, the exact mechanisms of uptake, transport, and competition
with As are not fully understood, and more detailed studies are needed to understand these
mechanisms. Ca participates in signalling various physiological and biochemical processes as
a secondary messenger that mediates several cell and plant growth prospects and responds
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to various stresses. This can be an excellent alternative to decrease As toxicity; however, the
effect of Ca on rice resistance to arsenic requires further research.

The use of fertilizers for plant nutrition can be a way to reduce various environmental
stresses in rice plants. The present study provides an overview of the effect of two microele-
ments and two macro-elements on the uptake and toxicity of arsenic, and as mentioned,
further studies are needed to identify the exact uptake pathways of these elements as well
as to increase their effect on arsenic toxicity in rice.
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