
applied  
sciences

Article

A Network Parameter Database False Data Injection Correction
Physics-Based Model: A Machine Learning Synthetic
Measurement-Based Approach

Tierui Zou, Nader Aljohani, Keerthiraj Nagaraj, Sheng Zou, Cody Ruben, Arturo Bretas * , Alina Zare
and Janise McNair

����������
�������

Citation: Zou, T.; Aljohani, N.;

Nagaraj, K.; Zou, S.; Ruben, C.; Bretas,

A.; Zare, A.; McNair, J. A Network

Parameter Database False Data

Injection Correction Physics-Based

Model: A Machine Learning

Synthetic Measurement-Based

Approach. Appl. Sci. 2021, 11, 8074.

https://doi.org/10.3390/app11178074

Academic Editor: Yosoon Choi

Received: 29 July 2021

Accepted: 29 August 2021

Published: 31 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611-6200, USA;
tieruizou@ufl.edu (T.Z.); eng89nader@ufl.edu (N.A.); k.nagaraj@ufl.edu (K.N.); shengzou@ufl.edu (S.Z.);
cody.ruben@1898andco.com (C.R.); azare@ece.ufl.edu (A.Z.); mcnair@ece.ufl.edu (J.M.)
* Correspondence: arturo@ece.ufl.edu

Abstract: Concerning power systems, real-time monitoring of cyber–physical security, false data
injection attacks on wide-area measurements are of major concern. However, the database of the
network parameters is just as crucial to the state estimation process. Maintaining the accuracy of
the system model is the other part of the equation, since almost all applications in power systems
heavily depend on the state estimator outputs. While much effort has been given to measurements of
false data injection attacks, seldom reported work is found on the broad theme of false data injection
on the database of network parameters. State-of-the-art physics-based model solutions correct false
data injection on network parameter database considering only available wide-area measurements.
In addition, deterministic models are used for correction. In this paper, an overdetermined physics-
based parameter false data injection correction model is presented. The overdetermined model uses
a parameter database correction Jacobian matrix and a Taylor series expansion approximation. The
method further applies the concept of synthetic measurements, which refers to measurements that do
not exist in the real-life system. A machine learning linear regression-based model for measurement
prediction is integrated in the framework through deriving weights for synthetic measurements cre-
ation. Validation of the presented model is performed on the IEEE 118-bus system. Numerical results
show that the approximation error is lower than the state-of-the-art, while providing robustness to
the correction process. Easy-to-implement model on the classical weighted-least-squares solution,
highlights real-life implementation potential aspects.

Keywords: monitoring systems; false data injection; database of the network parameters; cyber–
physical security; parameter cyber-attack correction

1. Introduction

The use of machine learning techniques in power systems research has been an increas-
ing trend in recent years due to the transition to the Smart Grid (SG). As utility companies
move towards SG implementation, the new technology being used will provide more data
to be analyzed. This is a natural fit for the integration of machine learning techniques
into the power systems field. One area in particular that can take advantage of machine
learning is cyber-physical security of the SG. Besides all of the benefits that come with the
transition to the SG, the increasing reliance on communication, automation and information
technology systems adds vulnerability to cyber-security threats [1–7]. Cyber-attacks have
already been successfully executed with major consequences. In Ukraine, a cyber-attack led
to a major blackout that impacted 225,000 customers [8]. This draws a lot of awareness from
academic circle and industrial practitioners which fueled research in the cyber-security of
the power grid, including solutions based on machine learning techniques.
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When considering cyber-security of the SG monitoring systems, a critical process is the
state estimation (SE), which is the core real-time monitoring tool used by utility companies.
SE analyzes measurements from throughout the system to estimate the voltages of each bus.
The results of SE are then used in many applications, including bad data analysis, which
can be used to detect and identify a variety of different potential cyber-attacks on the SG.
However, most research only focuses on false data injection (FDI) attacks on measurements
used in SE. Further, research that involves machine learning so far focuses on either creating
more accurate SE results or aiding in the detection of measurement FDI attacks [9–16]. In
the authors’ previous works [17,18], hybrid data-driven and physics-based methods for
anomaly detection on the SG are developed, but they still only deal with measurement FDI
attacks. On the other hand, there is no real-time monitoring for these network parameters
which are used in SE process. The database of network parameters can be stealthily
attacked [19,20] or can be corrupted due to several reasons such as human entry error or
failure to update replaced equipment parameters etc. Therefore, inaccuracy in the database
information may lead system operators to blame errors in the SE results on measurements
accuracy. Hence, the quality of SE solution can be severely impacted due to these two main
sources: measurement or network parameter errors. In the literature though, the work on
addressing network parameter FDI is seldom covered as measurements, giving that both
sources of cyber-attacks can greatly impact the SE.

Bad data processing is an important sub-routine function which mainly aims to de-
tect, identify and correct measurement errors in SE. Different from tampering the sensor
measurements, the database of network parameters is stored at a control center, and as
previously stated, are not monitored. These are ideal conditions for maliciously adver-
saries, which might attempt to modify the network parameters database with the intent
to change state estimation results. There are several methods developed to detect, iden-
tify and correct errors pertaining to network parameters. The aim in this work pertains
though to model parameter FDI correction in bad data processing. Regarding parameter
errors processing, in [21], the author uses an augmented state vector-based approach.
Similarly, refs. [2,22–26] all depend heavily on high measurement redundancy, since they
are based on the state vector augmentation approach. Considering stealthy parameter
FDI, this can easily lead to observability issues in the SE. Still, these approaches cannot
handle multiple simultaneous attacks. In previous works of the authors, parameter FDI
cyber-attack correction models have been presented [19,27,28]. However, these works con-
sider only either single-parameter attacks or multiple attacks of equal magnitude. With the
integration of machine learning in SG technologies, refs. [29] developed a parameter error
detection technique that uses both machine learning based multivariate linear regression
models and the Innovation-based SE [30]. However, the work proposed in [29] deals with
detection of the parameter FDI attack only and leaves parameter FDI correction modeling
for future work. Correction is a critical step in ensuring the SE produces reliable results for
future measurement sets.

In the authors’ previous work [31], a parameter FDI correction model is presented.
However, the limitations of [31] are twofold: (1) the assumption of the availability of a
measurement set at the FDI location, i.e., both real power flow and reactive power flow
measurements are available for parameter correction. (2) the method is deterministic,
i.e., the residual is zero, which means inaccuracy in the measurement set will lead to
an inaccurate correction of parameters. These limitations naturally inspired the authors
to develop a new, overdetermined correction model that doesn’t assume all of the real
measurements necessary are always available as well as accurate. In order to do this, an
additional measurement set is generated, called Synthetic Measurements (SM) in this paper,
to increase the redundancy level and enable a new SE towards parameter correction. The
linear regression prediction used in [29] was used to generate Synthetic Measurements
(SM) in a similar way as in [32]. Therefore, the contributions of this work are threefold:
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1. Creating synthetic measurements based on weights obtained from machine learning
linear regression prediction;

2. Developing an overdetermined physics-based model for parameter FDI correction;
3. Incorporating synthetic measurements in the parameter FDI correction model.

The remainder of this paper is organized as follows. Section 2 provides theoretical
background on state estimation with synthetic measurements, the machine learning (ML)
model for measurement prediction and the correction model for unbalanced parameter
FDI attacks. Section 3 presents the parameter FDI correction physics-based model. Test
results of a case study are shown in Section 4. Finally, Section 5 presents conclusions and
remarks of this work.

2. Background Information
2.1. State Estimation Augmented with Synthetic Measurements

State estimation aims at solving a set of non-linear algebraic differentiable equations
that have the following form [33]:

z = h(x) + e (1)

where z ∈ Rm is the measurement vector, x ∈ RN is the state variables vector,
h(x) : Rm → RN , (m > N) is a non-linear differentiable function that relates the states
to the measurements, e is the measurement error vector assumed with zero mean, standard
deviation σ and having Gaussian probability distribution, and N = 2n− 1 is the number
of unknown state variables. Hence, in the weighted least square state estimation (WLS SE),
the approach consists of solving the following minimization problem:

min
x

J(x) = [z− h(x)]TW[z− h(x)] , (2)

where W is a diagonal weight matrix composed by the inverse of the squared values of
measurement standard deviations (σ): W = diag([σ−2

1 , . . . , σ−2
m ]T). J(x) index is a norm in

the measurements vector space.
The measurement model in (1) relies on the characterises of the grid, i.e., connectivity

and system parameters. If corrupted data is used, then the obtained solution will be
physically incorrect, and could potentially mislead the operators who monitor the grid.

In the view of the minimization problem in (2), WLS SE considers minimizing the
error as described in (1), which assumes that the residual tends to follow a normal distribu-
tion. From the Central Limit Theorem [33], adding large number of independent random
variables that follow any distribution with bounded variance, their properly normalized
sum tends to approximate a normal distribution. Therefore, for detecting errors using
classical WLS, the hypothesis test solely relies on the distribution of χ2. If χ2 distribution
does not follow a normal distribution, then the hypotheses test will fail. In ordered to
have χ2 distribution to follow a normal distribution the measurement model degrees of
freedom needs to be increased. Increasing degree of freedom comes with the financial cost
of increasing the measurement set through additional meters.

Ideally, one would want to have a measurement reading in every bus and line section.
However, this is not realistic, considering the inherent financial cost. Instead, measurements
can be created artificially at locations where no real-life measurement or historical data
exist. These measurements, named synthetic measurements, were modeled in [32]. One
should not confuse synthetic measurements with pseudo measurements, which are created
considering available historical data [33]. The main idea of creating synthetic measurements
is to approximate the residual of the measurement model to a normal distribution. In
doing so, not only parameter FDI correction is enhanced, as will be presented, but also the
global redundancy level of the system increases, which enhances gross error detection and
identification [32].
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2.2. Linear Regression Prediction Model

Considering a prediction data-driven model selection, performance comparison
among several options were made, including linear and non-linear formulations. Test
results indicated that a linear regression model was sufficient to yield a great prediction
performance. In addition, it is a simpler model with less hyper parameters than other
formulations. Multiple linear regression models can be used to estimate SG measurements.
The justification for multiple linear regression use is that it is a simple model with few
parameters to train. It has been shown that the linear model can achieve satisfying pre-
diction performance on daily load data [29]. Historical measurement values are used as
input features to train these multiple linear regression models. During the training, ML
model takes historical data (measurement values from past ‘K’ days) as inputs and current
day measurements as the target. The training process returns model coefficients that can
be used to generate synthetic measurement values from historical measurements. These
coefficients estimated using the multiple linear regression model for properly scaled input
features also provide an easy way to understand the contribution of each input feature in
estimating the target.

Consider D equal to the number of measurement values, and the number of past days
used as input features for regression models be K. Thus, D linear regression models can be
trained, corresponding to D measurements. The corresponding measurements from K past
days are used as input features for the regression model.

yd = fi0
d + fi1

dxd1 + · · ·+ fiK
d xdK, (3)

where the dependent variable yd ∈ RD×1 is a vector that contains d-th measurement
values for the current day, the independent variable xdk ∈ RD×1 is a vector that contains
d-th measurement values from k-th past day, and fid ∈ R1×(K+1) is a vector that contains
fi0

d, fi1
d, . . . , fiK

d values.
The regression coefficient matrix fi ∈ RD×(K+1) contains (K+ 1) values (one for each of

the past K days and one intercept) for D multiple linear regression models. fi is estimated by
solving (3) using the Least Squares Fit method. Figure 1 illustrates recorded measurement
values and the measurement values prediction by the multiple linear regression models,
trained with past temporal data.
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Figure 1. An example for ML-predicted measurement vs. recorded measurement value

We create ’Weight matrix (Wml)’ based on values of regression model coefficients of
each measurement. Wml ∈ RD×D is used to weigh the measurements in state estimation
process and it is calculated from fi as:

Wi,j
ml =





K+1
K
∑

k=0
(fik

i−fii)2
, if i = j

0, if i 6= j.
(4)

where i, j = 1, 2, 3, . . . , D represents the measurement number and fii represents measure-
ment i average of K + 1 regression coefficients.

Figure 1. An example for ML-predicted measurement vs. recorded measurement value.
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We create ‘Weight matrix (Wml)’ based on values of regression model coefficients of
each measurement. Wml ∈ RD×D is used to weigh the measurements in state estimation
process and it is calculated from fi as:

Wi,j
ml =





K+1
K
∑

k=0
(fik

i−fii)2
, if i = j

0, if i 6= j.
(4)

where i, j = 1, 2, 3, . . . , D represents the measurement number and fii represents measure-
ment i average of K + 1 regression coefficients.

As a greater number of days are used to create historical data, the reliance of the
model on any one day reduces and the model develops a capability to capture the general
measurement deviation patterns. This can improve the generalization ability of the model.
We assume that the current day measurements do not deviate from the historical trend by a
huge margin and the training data does not have any anomalies. The historical data could
be analyzed through bad detection techniques such as [18] for the presence of anomalies
and then only the data that does not contain bad data could be used for ML model training.

2.3. Unbalanced Parameter FDI Attack Correction Model

In (1), the possibility of errors in the parameter data is not considered. Instead, if one
considers z = h(x, p) + e, where p is the parameter in error, this function can be expanded
into a Taylor Series [19]:

zi = hi,0 +
∂hi(x, p)

∂p
4 p, (5)

where4p denotes the parameter error. From (5), the parameter error can be calculated to
be as follow:

4 p =
zi − hi,0

Hp,0
, (6)

where Hp,0 denotes the Jacobian of the parameter. All the quantities are known, so the
parameter error can be calculated by (6), which is called the relaxed model here, since
it considers the measurement without error. With this model, parameter error can be
corrected by using measurement value of reactive power flow corresponding to the line
where the parameter attack happened through iterations. However, system net parameter
values includes three components, which are series conductance g, series susceptance b and
shunt susceptance bsh. In the meantime, the weights of these three components are decided
by network parameter database, so one can only correct the parameter error through this
model when these components have the exactly same percentage attack, lets say, 10% on g,
10% on b, and 10% on bsh. Thus unbalanced FDI in parameter values are not considered
by this model, for example, 30% on g, 20% on b,and 10% on bsh. To address this issue, an
unbalanced correction model is presented as follows [31]:




∆gkm
∆bkm
∆bsh

km


 = τ−1

n




ZPk−m(loss)
− hn

Pk−m(loss)

ZPk−m − hn
Pk−m

ZQk−m − hn
Qk−m


, (7)

where the parameter correction Jacobian matrix τ is defined as:

τ =




|Ek − Em|2 0 0
V2

k −VkVmcosθkm −VkVmsinθkm 0
−VkVmsinθkm −V2

k + VkVmcosθkm −V2
k


. (8)

In (7), n denotes the iteration index; ZPk−m(loss)
, ZPk−m , ZQk−m are recorded measurement

values of real power loss, real power flow and reactive power flow for FDI attacked line
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from bus k to m; hn
Pk−m(loss)

, hn
Pk−m

, hn
Qk−m

denote the continuous nonlinear differentiable
function of above three quantities at nth iteration. In (8), parameter correction Jacobian
matrix τ uses the magnitude of the voltage drop |Ek − Em|2, voltage injection V and phase
difference θ for bus k and m to perform parameter correction. One can see from (7) and (8),
parameter errors of conductance ∆gkm, series susceptance ∆bkm and shunt susceptance
∆bsh

km are corrected by using 3 measurements. However, two issues may yield a failure
of this process: (1) There are incomplete measurements dataset needed by this model;
(2) conductance error ∆gkm can only be estimated from corresponding real power loss
measurement which is relatively small in Transmission Line (TL), so an incorrect estimated
∆gkm will cause a wrong estimation of series susceptance error ∆bkm and shunt susceptance
error ∆bsh

km. To address this issue, a synthetic measurement enhanced parameter correction
model is presented in this paper.

3. Synthetic Measurement Enhanced Parameter Error Correction
3.1. Framework for Parameter FDI Correction

The parameter FDI correction framework is illustrated in Figure 2. Input data consists
of historical measurements of the system for the past days, recorded measurements from
meters, parameters data and system topology such as connectivity status. The Machine
Learning (ML) model process measurements from past days to predict measurements
of the current day. The resultant weights attained from ML model are considered in
stage—I WLS state estimation, which generates SM. Meanwhile, gross error analysis is
performed in stage—II WLS state estimation. In this stage, FDI detection and identification
is taken place [18,19]. Upon detecting and identifying parameter attacks in the network, a
parameter FDI correction model is solved. Once parameter correction performed, system
model is updated.

Figure 2. Framework for parameter FDI correction.

The process of creating SM is referred to as stage—I WLS in Figure 2. In this stage,
existing measurements (bus power injection, power flow and voltage measurements) are
weighted based on weights derived from ML models described in Section 2.2. Upon WLS
SE convergence, power flow estimates in lines with no real-life measurement recorded
are to be used as SM. The idea here is to increase, artificially, local measurement redun-
dancy, with linear independent information, providing thus the necessary condition for
the development of an overdetermined database of network parameters FDI cyber attack
correction model. Hence, for every line section, there will be power flow measurement
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reading from both ends of the lines. These SM in addition to existing scan of measurements
are processed in the FDI correction model, described in Section 3.2.

3.2. Overdetermined Parameter FDI Correction Model

Consider the conjugate of the complex power flow [33]:

S∗k−m = E∗k Ik−m

= yk−mVke−jθk (Vkejθk −Vmejθm) + jbsh
kmV2

k .
(9)

The expressions for real and reactive power flows can be obtained by identifying the
corresponding coefficients of the real and the imaginary parts of (9):

Pk−m = V2
k gkm −VkVmgkmcosθkm

−VkVmbkmsinθkm,
(10)

Qk−m = −V2
k (bkm + bsh

km) + VkVmbkmcosθkm

−VkVmgkmsinθkm.
(11)

Through equation (10), one can derive the real power loss of a line:

Pk−m(loss) = Pk−m + Pm−k

= gkm(V2
k + V2

m − 2VkVmcosθkm)

= gkm|Ek − Em|2,

(12)

Through equation (11), one can derive the reactive power loss of a line:

Qk−m(loss) = Qk−m + Qm−k

= −bsh
km(V

2
k + V2

m)

− bkm(V2
k + V2

m − 2VkVmcosθkm)

= −bsh
km(V

2
k + V2

m)− bkm|Ek − Em|2.

(13)

Equations (10)–(13) provide a model which correlates the real power flow losses,
reactive power losses, real power flow, and reactive power flow with system net parameters,
as (14) and (15). It is important to note that in this framework, all six of the measurements
in (14) are always used in the correction process, but they may not all be real measurements.
Any measurements that are not available through a sensor are calculated as SM as described
earlier. For example, if the Pk−m, and Qk−m are the only true measurements, Pm−k, and
Qm−k will be SM. Pk−m(loss) will be calculated by Pk−m and Pm−k, Qk−m(loss) will be obtained
by Qk−m and Qm−k.

τup




gkm
bkm
bsh

km


 =




Pk−m(loss)
Qk−m(loss)

Pk−m
Pm−k
Qk−m
Qm−k




, (14)
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where τup is defined as:

τup =




|Ek − Em|2 0 0
0 −|Ek − Em|2 −(V2

k + V2
m)

V2
k −VkVmcosθkm −VkVmsinθkm 0

V2
m −VkVmcosθkm VkVmsinθkm 0
−VkVmsinθkm −V2

k + VkVmcosθkm −V2
k

VkVmsinθkm −V2
m + VkVmcosθkm −V2

m




. (15)

By linearizing (14) through a Taylor series, considering a Newton-Raphson method at
nth iteration:

τupn




∆gkm
∆bkm
∆bsh

km


 = A, (16)

where A is the residual of the set of measurements associated with the correction of line
parameters as follows:

A =




ZPk−m(loss)
− hn

Pk−m(loss)

ZQk−m(loss)
− hn

Qk−m(loss)

ZPk−m − hn
Pk−m

ZPm−k − hn
Pm−k

ZQk−m − hn
Qk−m

ZQm−k − hn
Qm−k




. (17)

The expression in (15) shows that augmenting τup and the measurements set, will
change the model in (8) into an overdetermined system of nonlinear algebraic equations.
Model (16) can be solved considering the minimization problem:

min
∆gkm ,∆bkm ,∆bsh

km

[τup




∆gkm
∆bkm
∆bsh

km


− A]TWp[τup




∆gkm
∆bkm
∆bsh

km


− A]. (18)

One finds the classical WLS SE solution for (18) is:



∆gkm
∆bkm
∆bsh

km


 = (τT

upWpτup)−1τT
upWp A, (19)

where Wp is the weight matrix for parameter correction, σr in each element denotes one
standard deviation of corresponding residue at each iteration:

Wp = diag([ 1
σ2

rPk−m(loss)

, 1
σ2

rQk−m(loss)

, . . . , 1
σ2

rQm−k

]). (20)

4. Case Study

The presented model is validated using the IEEE 118-bus system. Topology and
parameters of the IEEE 118-bus system are found in [34]. With the aid of MATPOWER [35],
a measurement set is obtained, which consists of 712 measurement leading to a global
redundancy level (GRL) 3.029. A Gaussian noise with zero mean and known variance is
added to the measurement set. In addition, a measurement dataset corresponding to eight
consecutive days each of which one contains 21,600 samples based on a common daily load
profile that contains temporal information of a power system’s changing state is generated
and fed to machine learning models for measurements prediction and measurements’
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weight. It is worth noting that different noise levels were used for generating multiple
datasets. Real line power flows, reactive line power flows, bus power injections, and voltage
magnitudes are included in each measurement set. The implementation and evaluation of
the machine learning algorithm was executed using python libraries such as NumPy [36],
SciPy [37], Matplotlib [38] and Scikit-learn [39]. The first 50% of the samples in each day
are used to train multiple linear regression models.

In the following, two different parameter FDI attack scenarios are presented. In each
scenario, attack detection is flagged if the objective function J(x) is above threshold value
C = χ2

p,do f . Identification is performed by building a descending list of CMEN (based
on their absolute values) [19]. In the correction step, the presented model in Section 2.1
is solved.

4.1. Parameter Attack Scenario I

In scenario I, an unbalanced parameter FDI attack is injected to the series and shunt
parameter of the line 23–32 (−18% on parameter g, 12% on parameter b, −6% on parameter
bsh) on the IEEE 118-bus system.

In this case, the parameters of line 23–32 are attacked. The first process of the frame-
work is FDI detection. Results are presented in Table 1. One can see that the objective
function J(x) is 1246.587, which is higher than threshold value (C = χ2 = 775.1861), thus
a cyber attack is detected. For identification, a descending list of CMEN is built. From
the resultant list, the largest absolute value of CMEN which is 8.4156 is related to reactive
power injection for bus 23. In addition, one can see that the CMEN value of corresponding
reactive power flow Q32–23, real power flow P23–32 and reactive power injection Q32 are
also above the threshold value (β = 3). This situation is characterized as a parameter
attack on line 23–32 [19]. For parameter correction, the process described in Section 2.1 is
implemented. The results are shown in Table 2. In the state of the art parameter correction
model [31] (also presented in (7)), one can clearly see that the model requires at least three
different real-life measurements: two real power flow Pkm, Pmk and one reactive power flow
measurement Qkm. However, there is no guarantee that the required measurements will
exist. For example, in the current testing measurement configuration, only 1 real power
flow P23–32 measurement and 1 reactive power flow Q32–23 measurement are assumed to
exist. Therefore, the correction model in (7) is unable to process the expecting correction
due to the unavailability of the power flow measurement P32–23. To resolve this issue, in the
presented framework, synthetic measurements are considered only for unavailable mea-
surements. These synthetic measurements are generated by running WLS SE using weights
obtained from machine learning linear regression prediction. For this task, no gross error
detection analytics is performed. In this case, 358 SMs are generated (adding 358 SM yields
a GRL increase from 3.029 to 4.55). Then, two synthetic measurements P32–23 and Q23–32
are obtained and augmented from SM dataset. Parameter correction is processed by using
2 existing measurements and two synthetic measurements in the presented parameter FDI
correction model (18). Results of such correction are presented in Figure 3. As one can see,
the parameter correction process converges at 26th iteration while approximation errors for
g23–32, b23–32, bsh

23–32 are (0.525%), (0.183%), (0.340%) respectively, which are all lower than
state of the art model in [31]. After parameter correction is obtained, a new state estimation
process is performed in which objective function J(x) is found to be 684.5437, which is
lower than threshold value C. Hence, no FDI attack is detected.
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Table 1. Processing cyber-attacks.

Processing Measurement Cyber-Attack Step 1

J (x) = 1246.587 > C = 775.1861 Attack Detected!

CMEN Descending List

Measurement I I CMEN

Q23 0.0395 −8.4156
Q32–23 3.9464 6.9948
Q23–25 0.1380 5.9432
P23–32 0.3557 5.5826
Q24 0.4774 −4.4724
Q32 3.9464 3.9948

Table 2. Corrected Parameters using the updated parameter correction Jacobian matrix τup.

Parameter Correction

Parameter Database Erroneous Presented Correction
(Approximation Error)

State-of-the-Art Correction
(Approximation Error) [31]

g23–32 2.2169 1.8179 2.2285 (0.525%) 2.2385 (0.974%)
b23–32 −8.0635 −9.0311 −8.0782 (0.183%) −8.0854 (0.271%)
bsh

23–32 0.0587 0.0551 0.0586(0.170%) 0.0589(0.340%)

Figure 3. Correction for line 23–32 using presented model (18).

4.2. Parameter Attack Scenario II

1. A measurement cyber-attack of magnitude 5 σ is added to reactive power flow from
bus 31 to bus 17 (Q31–17).

2. An unbalanced parameter FDI attack is injected to the series and shunt parameter of
the line 47–69 (13% on parameter g, −7% on parameter b, 8% on parameter bsh).

In this scenario, the attack is detected and the result is shown in Table 3, where the
objective function is higher than the C value for this scenario (C = χ2 = 775.1861). For
identification step, a descending list of CMEN is built and shown in the same table. The
largest CMEN values (absolute values) are associated with reactive power injection Q47,
real power injection P47, real power flow P69–47 and reactive power flow Q69–47. This
scenario characterizes a parameter cyber-attack on line 47–69 [19]. After identification, the
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net system parameter are corrected using the presented model in (18). Still, only flow P69–47
and Q69–47 are provided in current measurements configuration. The lack of missing the
real power flow measurement P47–69 limits the possibility of performing state of the art
model in (7), since incomplete information prevent this model to calculate real power loss
mentioned in (7). However, with synthetic measurement Q47–69 and P47–69 provided, one
will be able to use presented overdetermined model in (18) to perform parameter correction.
Correction converges after 16 iterations , and corrected values and comparable results
are presented in Table 4. System net parameters g47–69, b47–69, bsh

47–69 have approximation
error (0.499%), (0.241%) and (0.092%) after convergence. After correction, a new state
estimation is performed, objective function value 837.6015 is obtained which is still higher
than threshold C in Table 5. As seen, the only CMEN value (absolute value) above the
threshold is the reactive power flow Q31–17. Therefore, the measurement Q31–17 is in error.
The correction of measurements as shown in the flowchart is performed using their CNE
values. The corrected measurement is shown in Table 6. After re-running the state estimator,
the χ2 is smaller than C, thus no further FDI attack detected.

To further evaluate the robustness of presented model, different measurement noise
levels are simulated. A combined parameter error metric is presented to illustrate the total

parameter error after correction, while ep =

∥∥∥∥
[gkm ; bkm ; bsh

km ]−[gkm(base); bkm(base); bsh
km(base)]

[gkm(base); bkm(base); bsh
km(base)]

∥∥∥∥
2
. ep

represents the weighted norm of the sum of all parameter errors. A 100 Monte-Carlo
simulation is performed and average value is presented. Figure 4 shows a comparison
between state-of-the-art solution presented in (7) and proposed model (18). One can see in
Figure 5 that the error increases with noise level when using state-of-the-art solution model.
However, the proposed model under different noise level provides error below 0.07.

To further illustrate the robustness of proposed solution under different noise level,
comparison result is presented in Figure 6. In Figure 6, the highest error ep of line 47–69
reaches 0.5 after system convergence when the noise level increase to 1 standard deviation
using state-of-the-art solution (7), while using presented model (18) all values of ep, under
different noise level, are lower than 0.06.

Figure 4. Correction for line 47–69 using presented model (18).
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Table 3. Processing Cyber-attacks.

Processing Measurement Cyber-Attack Step 1

J(x) = 1133.8323 > C = 775.1861 Attack Detected!

CMEN Descending List

Measurement I I CMEN

Q47 1.9344 15.6324
P47 0.2513 9.2054

P69–47 4.8151 −7.8438
Q69–47 6.0617 −7.6539

P46 0.3380 6.2045
Q31–17 2.8898 5.6933
P45–46 6.6911 4.2257

Table 4. Corrected parameters using the updated parameter correction Jacobian matrix τup.

Parameter Correction

Parameter Database Erroneous Presented Correction
(Approximation Error)

State-of-the-art Correction
(Approximation Error) [31]

g47–69 1.0012 1.1314 1.0062 (0.499%) 1.0088 (0.759%)
b47–69 −3.2955 −3.0648 −3.2876 (0.241%) −3.2826 (0.361%)
bsh

47–69 0.0355 0.0383 0.035532(0.092%) 0.0357(0.563%)

Table 5. Processing Cyber-attacks.

Processing Measurement Cyber-Attack Step 1

J(x) = 837.6015 > C = 775.1861 Attack Detected!

CMEN Descending List

Measurement I I CMEN CNE

Q31–17 2.8541 5.2318 5.2044

Table 6. Corrected measurement using the CNE.

Measurement Correction

Measurement Database Erroneous Correction Using CNE
(Approximation Error) [30]

Q31–17 −0.1754 −0.1643 −0.1761 (0.399%)
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Figure 5. Correction for line 23–32.

Figure 6. Correction for line 47–69.
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5. Conclusions

In this paper, a physics-based model for malicious parameter FDI cyber-attacks correc-
tion is presented. An FDI framework is further presented to detect, identify and correct FDI
attacks on measurements and database of the network parameters. The main foundation of
the proposed framework relies on creating synthetic measurements that are derived based
on weights obtained from linear regression measurement prediction. Synthetic measure-
ments, in addition to recorded measurements, are used in an overdetermined parameter
correction model to estimate and correct network parameters. Simulation results show
that the presented framework is able to obtain parameter approximation error less than 1%
under different noise level from 0 to 1% standard deviation, which outperforms state of
the art solution. In addition to the robustness of the presented model, the framework can
be easily integrated, without hard-to-design parameters, to the classical WLS SE software,
which highlights potential aspects for real-life implementation.
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