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Abstract: We present a traffic light detection and recognition approach for traffic lights that utilizes
convolutional neural networks. We also introduce a technique for identifying arrow signal lights in
multiple urban traffic environments. For detection, we use map data and two different focal length
cameras for traffic light detection at various distances. For recognition, we propose a new algorithm
that combines object detection and classification to recognize the light state classes of traffic lights.
Furthermore, we use a unified network by sharing features to decrease computation time. The results
reveal that the proposed approach enables high-performance traffic light detection and recognition.

Keywords: autonomous vehicle; computer vision; traffic light recognition; convolutional neural networks

1. Introduction

Advanced driver assistance systems currently installed in vehicles, such as autonomous
driving vehicles, have achieved favorable results. These systems greatly reduce the ne-
cessity of driver control in locations with invariable landscapes, such as highways and
enclosed parks. They are also capable of planning routes and navigating vehicles to desti-
nations while helping them to avoid obstacles. However, for self-driving technology to be
more widely applicable, additional landscapes (e.g., city streets) must be incorporated into
these systems. Specifically, self-driving technology must be able to detect traffic conditions
and determine whether to continue driving or stop according to traffic signals. Traffic
light detection techniques are typically categorized into two classes. One class involves the
detection of traffic lights and communicating with neighboring vehicles through vehicle-
to-infrastructure (V2I) communications [1]. The second class involves the detection of
traffic light positions and states by using vehicles’ sensors. The first class is usually more
expensive to implement than the second class.

Traffic light recognition methods that use vehicle onboard sensors have been ex-
tensively studied [2]. In several methods, advanced image processing techniques are
primarily applied to the sequence images captured by in-vehicle cameras. Learning-
based methods have become increasingly popular because of their excellent classification
performance [3–5]. However, detection accuracy remains unsatisfactory due to the pres-
ence of multiple disturbance factors in outdoor environments, such as incomplete light
shapes, dark light states, and partial occlusion. These issues are troublesome to overcome
with computer vision and image processing techniques. However, the research on con-
volutional neural networks (CNN) for traffic light detection [6,7] has contributed to the
development of learning-based methods with effective feature extraction for classification.

Conventional image-based traffic light detection methods can misjudge traffic situ-
ations when background features that resemble traffic lights are detected. Traffic light
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detection requires high accuracy because it affects subsequent vehicle control decisions.
Accordingly, map-based detection methods have been proposed as a supplement to image-
based detection methods, where the aim is to reduce misjudgment and enhance accuracy.

In this paper, we propose a traffic light recognition approach for traffic lights using
deep neural networks. Our approach focuses on the detection of arrow signal lights. For
traffic light detection, we use map data to facilitate detection by restricting the region
of interest (ROI). We use two cameras with different focal lengths to capture nearby and
faraway scenes. For recognition, we propose a technique that combines object detection and
classification. In addition, we propose a unified network by sharing features to decrease
training and computation. The results demonstrate the effectiveness of the proposed
method in detecting traffic lights.

The contributions of the proposed approach are as follows: (i) using map information
and two various focal length cameras for traffic light detection at different distances, (ii)
proposing a technique that combines object detection and classification to solve the issue of
multiple light state classes, and (iii) integrating the network for detecting traffic lights to a
unified network by sharing feature maps for efficiency.

2. Related Works

Conventional image-based techniques for detecting traffic lights mostly utilized
computer vision algorithms [8]. Captured images were first transformed into multiple
color spaces. Features were then extracted for detection. In machine learning-based ap-
proaches [9], image features such as the histogram of oriented gradients or Harr-like
operators were used for support vector machine (SVM) or adaptive boosting (AdaBoost)
classification techniques. Fregin et al. [10] presented a traffic light detection method that
integrates the depth information obtained using a stereo camera. Müller et al. [11] pre-
sented a dual-camera system that uses multiple focal length settings to expand the extent
for detecting traffic lights. They used a camera with long focal length for faraway traffic
light detection and a camera with a wide-angle lens for nearby traffic light detection.

Several techniques that compute the positions of traffic lights using deep neural
networks have been extensively studied. Weber et al. [6,12] proposed the DeepTLR
and HDTLR techniques, which use CNN for traffic light detection and classification.
Sermanet et al. [13] proposed an approach for object detection, recognition, and localiza-
tion. They introduced a multi-scale method with a sliding window. It can be efficiently
performed in a CNN. Recently, several networks for object detection have been utilized
for detecting traffic lights. For example, Behrendt et al. [14] presented an approach that
uses the You Only Look Once (YOLO) framework [15] to detect traffic lights. Traffic lights
sometimes appeared as small elements in images, and a common solution to this problem
was to decrease the stride of a neural network for feature preservation. Müller and Diet-
mayer [16] used the single-shot multi-box detector method [17] and focused on small traffic
light detection. Bach et al. [18] presented a unified traffic light recognition system that can
perform state classification (circle, straight, left, right) by using a faster region-based CNN
(Faster R-CNN) structure [19].

Recent methods for traffic light recognition can be divided into two classes. Methods
in the first class detect a traffic light, cut the region of the traffic light, and deliver the traffic
light information to a classifier for light state recognition [14]. Methods in the second class
simultaneously detect a traffic light’s position and recognize its light state [16,18]. When
the location of an object is forecasted with a high confidence and a bounding box, an extra
branch is utilized for the light state prediction. Other than the recognition of basic circular
lights, a traffic light recognition system must typically recognize multiple types of arrow
lights used in multiple countries. However, few studies have explored this issue [12,18].
A two-stage technique is generally used, first classifying light colors and then classifying
arrow types.

One disadvantage of image-based methods for detecting traffic lights is the false
positives due to the presence of similar background features. To reduce incorrect detection,
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a simple solution is to limit the ROI in an image when searching a traffic light. The
location of the traffic light can also provide more information that improves the accuracy
of detection. In this case, the aim is to ameliorate image-based methods. The traffic light
detection method based on maps operates on the basis that traffic lights are placed at
steady positions under normal circumstances. Global positioning system (GPS) and light
detection and ranging (LiDAR) are commonly used to establish high-definition (HD) maps
and annotate traffic light positions on a vehicle’s route [20,21]. When a vehicle is moving,
map and localization information are utilized to compute the location where a traffic light
will appear in a slight region. Furthermore, this information can be used to verify the
presence of the next traffic light.

3. Approach

Figure 1 presents the flowchart illustrating the proposed approach. For the input
image, we used map information to crop the image and obtain an approximate traffic light
position. Subsequently, we introduced a traffic light detection and recognition approach
for traffic lights that is based on deep neural networks. Finally, we output the traffic light
positions and light signal types.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 12 
 

types of arrow lights used in multiple countries. However, few studies have explored this 
issue [12,18]. A two-stage technique is generally used, first classifying light colors and 
then classifying arrow types. 

One disadvantage of image-based methods for detecting traffic lights is the false pos-
itives due to the presence of similar background features. To reduce incorrect detection, a 
simple solution is to limit the ROI in an image when searching a traffic light. The location 
of the traffic light can also provide more information that improves the accuracy of detec-
tion. In this case, the aim is to ameliorate image-based methods. The traffic light detection 
method based on maps operates on the basis that traffic lights are placed at steady posi-
tions under normal circumstances. Global positioning system (GPS) and light detection 
and ranging (LiDAR) are commonly used to establish high-definition (HD) maps and an-
notate traffic light positions on a vehicle’s route [20,21]. When a vehicle is moving, map 
and localization information are utilized to compute the location where a traffic light will 
appear in a slight region. Furthermore, this information can be used to verify the presence 
of the next traffic light. 

3. Approach 
Figure 1 presents the flowchart illustrating the proposed approach. For the input im-

age, we used map information to crop the image and obtain an approximate traffic light 
position. Subsequently, we introduced a traffic light detection and recognition approach 
for traffic lights that is based on deep neural networks. Finally, we output the traffic light 
positions and light signal types. 

 
Figure 1. Flowchart of the proposed approach. 

3.1. Preprocessing Based on Map Information 
Conventional image-based traffic light detection methods can misjudge traffic situa-

tions due to features in the background that appear similar to traffic lights. Traffic light 
detection requires a high level of accuracy because it affects subsequent decisions on ve-
hicle control. Accordingly, we propose a map-based detection approach, not to replace 
image-based detection methods but to supplement them, with the aim of reducing mis-
judgment and thus enhancing accuracy. 

In our approach, we integrated a HD map for detecting and recognizing traffic lights. 
We utilized a pre-constructed HD map with annotated traffic lights, including ID, posi-
tion, and vertical and horizontal angle information. The position between traffic lights and 
a vehicle can be obtained using the HD map and the LiDAR data when the vehicle is 

Figure 1. Flowchart of the proposed approach.

3.1. Preprocessing Based on Map Information

Conventional image-based traffic light detection methods can misjudge traffic situa-
tions due to features in the background that appear similar to traffic lights. Traffic light
detection requires a high level of accuracy because it affects subsequent decisions on vehicle
control. Accordingly, we propose a map-based detection approach, not to replace image-
based detection methods but to supplement them, with the aim of reducing misjudgment
and thus enhancing accuracy.

In our approach, we integrated a HD map for detecting and recognizing traffic lights.
We utilized a pre-constructed HD map with annotated traffic lights, including ID, position,
and vertical and horizontal angle information. The position between traffic lights and a
vehicle can be obtained using the HD map and the LiDAR data when the vehicle is moving.
This information is used to crop an image to obtain an approximate position of a traffic
light. Due to the nature of the registration of images and LiDAR data, the traffic lights
cannot be correctly identified. Then, the segmented ROI is delivered to neural networks
for precisely detecting locations and recognizing light states. Figure 2 shows the results of
traffic light detection that uses a combination of image and LiDAR data.
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3.2. Traffic Light Detection and Recognition

Computation cost is a concern in traffic light detection. YOLOv3 [22] balances between
accuracy and processing speed. Therefore, we integrated YOLOv3 into our approach for
traffic light detection. The network framework of YOLOv3 can be divided into three parts.
Figure 3 shows the network structure of YOLOv3. First, Darknet-53 is used to extract
feature maps from the input images. Next, the feature pyramid network (FPN) integrates
low-level and high-level features to produce feature maps of three scales. Finally, the
prediction layer predicts objects of varying sizes in the feature maps. Figure 4 shows the
input and output of the detection network.
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For traffic light recognition, we introduced a new technique combining object detection
and classification. We used YOLOv3-tiny [22] to detect and classify light states. Having a
framework similar to that of YOLOv3, YOLOv3-tiny also comprises three parts, with the
main difference being the feature-extraction network. Specifically, YOLOv3-tiny has fewer
convolution layers and pooling layers, and its FPN produces feature maps of only two
scales, in which the prediction layer predicts objects of different sizes. The smaller number
of convolution layers contributes to its higher speed but reduces its accuracy.

In the proposed approach, there are four classes of light states: RedCircle, YellowCircle,
GreenCircle, and Arrow. The light states of Arrow are then further classified into the
LeftArrow, StraightArrow, and RightArrow classes using LeNet [23]. For example, when
a light state of Red–Left–Right is established, YOLOv3-tiny detects one RedCircle and
two Arrows. Moreover, the two Arrows will be recognized as LeftArrow and RightArrow
classes by LeNet. Then, we can obtain the final traffic light state by merging the results
obtained from the two networks.

3.3. Unified Network

Three networks were employed in our approach, namely YOLOv3 in the first stage,
YOLOv3-tiny, and LeNet in the second stage. If the networks are trained separately, the
resultant weights can only be used to optimize the results for each stage. If they can share
feature maps in one unified network, better results could be achieved from end-to-end
training. Moreover, the training speed and inference would also increase.

In a unified network, the three subnets share feature maps and, thus, the inputs and
frameworks of the second and third subnets change. Shared feature maps replace images
as the input. Feature extraction is removed from the subnets, and only their prediction
function is retained. First, the third-layer feature maps of YOLOv3 that are generated
through the FPN are extracted, and these maps are then cropped to retain the areas with
traffic lights that are indicated by the YOLOv3 detection results. These areas are then
converted to a fixed size through interpolation and adopted as the input feature maps for
YOLOv3-tiny. After the inputs are subjected to the convolutional layer and FPN, YOLOv3-
tiny then predicts the positions of traffic lights in feature maps of varying scales. At this
point, the unified network has predicted the positions of traffic lights and their respective
signals. The remaining task for the network is to judge and predict whether a traffic light
has arrow lights. If a traffic light has arrow lights, the network must predict the arrow
light type. Similar to the previous procedure, the second-layer feature maps produced
by YOLOv3-tiny through the FPN are extracted and cropped to retain the areas of arrow
lights as indicated by the detection results of YOLOv3-tiny. These areas are then converted
to a fixed size and used as the input feature maps for LeNet. After the maps undergo
convolution, global average pooling, and softmax layer processing, the network is able
to predict arrow light types. Therefore, the unified network can recognize the position of
traffic lights, the position of light signals on these traffic lights, and light signal types on
the input images. Figure 5 illustrates the unified network architecture.
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The loss function is calculated by summing the losses from YOLOv3′s traffic light
prediction, YOLOv3-tiny’s light signal detection, and LeNet’s arrow light recognition. By
summing the losses of the three subnets, we modified the unified network to account for
the overall loss of all performed tasks. The loss functions of YOLOv3-tiny and YOLOv3
remain unchanged, but cross entropy loss is applied for LeNet. Moreover, our detection
network is based around segmented images. Hence, our training images are segmented
for simulating LiDAR processing (see Figure 6 as an illustration). Each image of traffic
lights is segmented thrice. Then, the traffic light positions are randomly placed in the
segmented image. The dataset includes six primary classes: Green, Yellow, Red, Straight,
StraightRight, and Close. We performed data augmentation by rotating the arrow light
images to generate more training data. Figure 7 shows an example of data augmentation.
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4. Results

We conducted several experiments on images from our dataset and the LISA dataset [2].
The proposed approach was run on a computer with 3.60 GHz Core™ i7-7700 CPU and
8 GB of memory. The used graphics card was an NVDIA GeForce GTX 1070Ti.

4.1. Dataset

Scenarios where our approach was to be applied pose two technical challenges. First,
currently available public datasets contained vertically arranged traffic lights, which dif-
fered from the horizontally arranged traffic lights. Second, although arrow signals appeared
frequently on Taiwan’s roads, most studies only used classifiers to recognize circle lights.
The establishment of a self-collecting dataset can solve these problems. Furthermore, the
lack of arrow light images perplexed the training process of the network.

Several commonly used datasets can be obtained for detecting and recognizing traffic
lights. However, they each used different formats and were therefore unsuitable for net-
work training involving traffic lights in Taiwan. Therefore, we worked with the Industrial
Technology Research Institute (ITRI). We collected a dataset for evaluation and training,
and the dataset comprises data on two routes. The first was the route from Hsinchu
High-Speed Railway Station to the ITRI campus, and the second was the route from Chiayi
High-Speed Railway Station to National Chung Cheng University. The first and second
routes, respectively, spanned 16 and 39 km and took 40 and 50 min to record. Two cameras
having different focal lengths (3.5 and 12 mm) were placed below the rearview mirror of a
vehicle for acquiring images. The image sequences were captured at 36 fps. The resolution
of the captured image was a size of 2048 × 1536. Additionally, LiDAR data were recorded
using a Velodyne Ultra Puck VLP-32C and used to segment approximate regions of traffic
lights. The first and second routes were recorded thrice and once, respectively. We sampled
five frames per second for processing and labeling the positions of traffic lights and the
classes of light states. The labeled images contained 26,868 images and 29,963 traffic lights.
Only the traffic lights with obvious light states were labeled and 14 classes of light state
combinations were established.

In the LISA dataset, traffic lights were arranged vertically (see Figure 8 as an illus-
tration). The traffic lights in Taiwan were arranged horizontally, as depicted in Figure 9.
Additionally, the light states were distinct. In the LISA dataset, only a single light can be
shown at a time in the traffic lights, whereas traffic scenarios in Taiwan can involve multiple
combinations of traffic lights with multiple arrow light types. Our dataset contained mostly
data on circular lights and several arrow lights. With respect to ROI size of traffic lights,
the LISA dataset mainly contained traffic light regions in the range of 15 to 30 pixels. In our
dataset, the images captured with a 3.5 mm lens camera consisted of traffic light regions in
the ranges of 10 to 20 pixels, and the images obtained with a 12 mm lens camera consisted
of traffic light regions in the ranges of 15 to 50 pixels.
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4.2. Evaluation

The mean average precision (mAP) score was used to evaluate the object detection
results. The daytime images in the LISA dataset were utilized for training and testing to
compare our approach with previous methods, as indicated in Table 1. The intersection
over union (IoU) was set as 0.5. From the results, conventional detectors did not perform
well because there were complicated scenes. In Table 1, the results reported in row 1
(color detector), row 2 (spot detector), and row 3 (aggregate channel features detector, ACF
detector) were extracted from Jensen et al. [2], and those reported in row 4 (Faster R-CNN),
row 5 (spot light detection), row 6 (modified ACF detector), and row 7 (multi-detector)
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were extracted from Li et al. [24]. The low accuracy of Faster R-CNN can primarily be
attributed to the small regions of traffic lights, which were hard to detect after performing
convolution layer-by-layer [24]. The proposed approach (results shown in the last row,
Table 1) outperformed the other methods for both circular lights and arrow lights.

Table 1. LISA daytime dataset test results (mAP).

Method Stop StopLeft Go GoLeft Warning WarningLeft All

Color detector - - - - - - 0.04
Spot detector - - - - - - 0.0004
ACF detector - - - - - - 0.36
Faster R-CNN 0.14 0.01 0.19 0.001 - - 0.09

SLD 0.08 - 0.10 - - - 0.09
Modified ACF detector 0.63 0.13 0.40 0.37 - - 0.38

Multi-detector 0.72 0.28 0.52 0.40 - - 0.48
Our approach 0.70 0.40 0.88 0.71 0.52 0.24 0.66

Table 2 presents the accuracy and computation speed results of multiple network
structures when they were applied to our dataset. Four network structures (including
one with data augmentation) were compared. The first network structure used YOLOv3
to detect the traffic lights and AlexNet [25] to classify light states. The second network
structure used the combined YOLOv3 + YOLOv3-tiny + LeNet approach. However, in this
case, the three networks operated as independent networks. The unified network structure
integrated these three subnets. These networks were trained and tested with the same
dataset. Table 2 shows that the proposed methods achieved higher mAPs than that of the
YOLOv3 + AlexNet network structure but required more computation costs. Relative to the
first two networks, the one using LeNet for arrow light classification had a higher mAP but
required more computation costs. As seen from Table 2, the two versions of the proposed
unified network (the second-rightmost and rightmost columns in Table 2) had higher
mAPs than the YOLOv3 + YOLOv3-tiny + LeNet network structure did. Furthermore,
their computation speed was quicker because of sharing feature maps.

Table 2. Results obtained using our dataset.

Method YOLOv3 +
AlexNet

YOLOv3 +
YOLOv3-tiny + LeNet

Unified
Network

Unified
Network

Data augmentation - - - X
mAP 0.36 0.55 0.57 0.67

Speed (ms) 31 52 40 40

Images captured with varying distances contained traffic lights with varying sizes of
ROIs. This appeared to affect the results of traffic light detection and recognition. In the
proposed approach, 3.5 and 12 mm lens cameras were used for capturing images. Table 3
shows the mAP for varying ROI sizes of traffic lights (height measured in pixels), the size
of traffic lights at varying distances, and the mAP for varying distances. The traffic light
images captured by the 12 mm lens camera were bigger than those taken by the 3.5 mm
lens camera. The images with bigger traffic lights provided better results for detection. The
detection results for the images captured by the 12 mm lens camera were better than those
for the images captured by the 3.5 mm lens camera for different distances. Nevertheless,
we used the 3.5 mm lens camera for near scenes. At the distance of 0 to 15 m, traffic light
images could only be taken by the 3.5 mm lens camera because of the cameras’ field of
view (see Figure 10 as an illustration).
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Table 3. Relationship between mAP, traffic light size (height in pixels), and traffic light distance.

Traffic Light Size 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50 50–55 55–60 60–65 65–70

mAP 0.33 0.48 0.82 0.80 0.76 0.75 0.69 0.74 0.77 0.63 0.69 0.69 0.55 0.62

Distance 0–15 15–30 30–45 45–60 60–75 75–90 90–100

Traffic light size
(3.5 mm) 62 20 15 9 7 6 5

Traffic light size
(12 mm) - 43 39 29 21 15 15

Distance 0–15 15–30 30–45 45–60 60–75 75–90 90–100

mAP (3.5 mm) 0.38 0.62 0.57 0.47 0.46 0.37 0.32

mAP (12 mm) - 0.79 0.68 0.69 0.70 0.63 0.51
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The proposed approach contained three phases, namely traffic light detection, initial
light state classification, and arrow type recognition. Table 4 shows the mAPs for each
network phase. The mAPs of initial light state classification and arrow type recognition
were computed based on the results of traffic light detection computed by the previous
subnet. Table 4 depicts that larger errors primarily occurred in the second subnet. Addi-
tionally, the mAP of the Green class was the lowest because the arrow light and green light
appeared similar from faraway. Table 5 displays the mAPs for all classes. The classes with
more training images had higher mAPs. However, data augmentation did not improve the
accuracy for the classes with insufficient samples.

Table 4. mAP of each network phase.

Detection State Type

Class Traffic Light Red Yellow Green Arrow Left Straight Right
mAP 0.97 0.93 0.90 0.64 0.91 0.87 0.98 0.97

Table 5. mAP for each class.

Class Close Red Yellow Green Left Straight Right

mAP 0.43 0.78 0.79 0.76 No data 0.55 No data

Class Red
Left

Red
Right

Straight
Left

Straight
Right

Left
Right

Red
Left

Right

Straight
Left Right

mAP 0.55 0.45 0.64 0.87 0.84 No data 0.69

Finally, several detection results of the unified network are shown in Figure 11. The
results show that our approach can obtain the desired performance.
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5. Conclusions

We have presented a traffic light detection and recognition approach for traffic lights
that is based on a convolutional neural network. For traffic light detection, two cameras
were used with different focal lengths to capture nearby and faraway scenes. The map
information was utilized to facilitate traffic light detection by restricting the ROI. For traffic
light recognition, we proposed a technique that combines object detection and classification
to solve the issue of multiple light state classes in many urban traffic scenes. Additionally, a
unified network was proposed by sharing features to reduce training and computation costs.
The experiments performed using the LISA dataset and our dataset have demonstrated
that the proposed approach performed better than the previous methods.

The proposed approach, despite its ability to detect and recognize traffic lights, did
not achieve 100% accuracy, indicating room for improvement. For traffic light detection
and recognition, a low tolerance for error is required because the safety of passengers and
others is at stake. The proposed approach may be improved by future research through
improvement of the detection method and the dataset used.
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