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Featured Application: This work describes the use of new methodology based on Gibbs homol-
ogy analysis for the identification of potential protein targets as well as their inhibitors for the
development of therapeutic options for various diseases. In the past, similar approaches have
been proposed and partially validated for various types of cancer. Here, we apply the method
that combines thermodynamic measures with protein–protein interaction network topology to
temporal lobe epilepsy. Our results identify a number of potential therapeutic targets.

Abstract: In this paper, we propose a bioinformatics-based method, which introduces thermodynamic
measures and topological characteristics aimed to identify potential drug targets for pharmaco-
resistant epileptic patients. We apply the Gibbs homology analysis to the protein–protein interaction
network characteristic of temporal lobe epilepsy. With the identification of key proteins involved
in the disease, particularly a number of ribosomal proteins, an assessment of their inhibitors is the
next logical step. The results of our work offer a direction for future development of prospective
therapeutic solutions for epilepsy patients, especially those who are not responding to the current
standard of care.

Keywords: epilepsy; systems biology; protein–protein interactions; CNS; Gibbs homology; drug
targets; anti-epileptic drugs

1. Introduction

It has been estimated that about 50 million people worldwide suffer from epilepsy [1].
In 2015, about 3.4 million people had active epilepsy in the U.S. alone [2]. Epilepsy is one
of the most common and most disabling neurological disorders, characterized by recurrent
unprovoked excessive brain activity [3]. The current understanding of the neurophysiolog-
ical mechanisms of epilepsy is largely based on extensive investigations of neuronal cells.
However, glial cells have also been demonstrated to play a fundamental role in triggering
seizures. Accurate diagnosis of epilepsy is challenging and therapeutic strategies span
a range from single, to multiple drug courses of administration, to respective neurosur-
gical procedures and dietary therapy. In spite of the fact that several dozen antiepileptic
drugs (AEDs) are available, there are still approximately 20–30% of patients who do not
respond satisfactorily to these AEDs [3]. To develop new, effective treatments, studies focus
on the development of the central nervous system (CNS) and neuronal activities in vivo
to understand the causes and mechanisms of the disease initiation and progression [4].
However, to find effective treatments for patients who are refractory to current AEDs, it is
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necessary to study each case more precisely and individually. Hippocampal biopsy tissue
of pharmaco-resistant Temporal Lobe Epileptic (TLE) patients is an extraordinarily useful
substrate to study molecular mechanisms related to structural and cellular abnormalities in
epilepsy. Several genes and signaling cascade alterations have already been reported in the
literature based on the TLE hippocampus analysis [5]. The availability of gene expression
profiling provides a detailed insight into the disease for each individual patient. Methods,
such as microarray and RNA sequencing, developed in the recent decade are used to obtain
genome-wide mRNA expression data. One of the advantages of using such methods is
that this type of investigation is biomarker driven. Especially with whole genome-wide
data, the comprehensive information on the status of each functioning unit, its interacting
complex and interaction pathways is suitable for analysis, which can reveal potentially
important molecular mechanisms and novel therapeutic targets. By investigating genome-
wide expression data, we can study the integrated results of all possible causative changes
for each patient. Thus, the results of such an analysis are considered to be precise and
biomarker-driven [6].

Epilepsy is a complex neuro-pathology that arises due to different etiologies, having
various localizations, often occurring in conjunction with other diseases. Irrespective of
what triggers the paroxysm, the electrical discharge during seizure is the common clini-
cal manifestation for all forms of epilepsy, suggesting an underlying common molecular
mechanism [7]. Although revealing the precise origin of epilepsy is still part of the ongoing
investigations, it was shown that the cause may vary from de novo genetic mutations [8] to
traumatic brain injury [9,10]. While gene mutations may naturally lead to altered down-
stream pathway behavior, brain injury was also shown to cause chronically altered gene
expression signatures of genes that were linked to epilepsy [9]. Recent studies revealed
some genetic causes of epilepsy, such as gene SCN1A mutations, which affect sodium chan-
nels [8] and tuberous sclerosis complex (TSC) mutations, which lead to the dysregulation of
the mechanistic target of rapamycin (mTOR) pathway [11], both of which lead to epileptic
conditions. Mechanisms of epileptogenesis consist of genetic and epigenetic alterations
occurring in both neuronal and astroglia cells [12]. Abnormal activity of astrocytes during
epileptic events has been extensively reported to play a major role due to their K+ buffering
role in the extracellular milieu [13].

Clinical diagnosis of epilepsy starts with an identification of the type of seizure and
proceeds with EEG and neuroimaging studies. Accurate diagnosis is pivotal for the adop-
tion of an appropriate therapy. Anti-epileptic drugs (AEDs) represent first-line treatment
for epilepsy and despite the availability of more than 20 such drugs, approximately 30% of
patients do not respond to this type of therapy [12]. Among all epilepsy types, temporal
lobe epilepsy (TLE) is the most common drug-resistant form of epilepsy in adults. Cur-
rent AEDs mainly act by directing transmembrane ion channel function or by promoting
γ-aminobutyric acid (GABA)-mediated inhibition to decrease the electrical activity of the
brain [3,14]. For instance, phenytoin and lacosamide inhibit sodium channel activation;
retigabine opens potassium channels; ethosuximide and lamotrigine block calcium chan-
nels; tiagabine inhibits GABA reuptake and phenobarbital and benzodiazepines enhance
GABA receptors [3]. The AEDs generally focus on stabilizing and elevating the threshold of
the CNS against hyperexcitability. On the other hand, the role of GABA neurotransmitters
and GABA receptors in inhibiting activity in the central nervous system [15], and the
role of glutamate neurotransmitters in aberrant hyperexcitability [16] have been shown to
represent possible mechanisms which can be explored in order to develop new treatments.
With extensive research focused on each of the above approaches, great progress has been
made in deciphering epilepsy’s pathophysiology at a molecular level. The better the un-
derstanding of the complex molecular mechanisms involved in the disease initiation and
progression, the more unrealistic it appears that a drug affecting a single neurotransmitter
receptor or an ion channel will be found to effectively treat epilepsy. Instead, combinations
of pharmacological agents designed for an individual patient with a known expression
profile should lead to better personalized clinical outcomes. In order to optimize such drug
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combinations, sophisticated quantitative analyses of protein–protein interaction networks
should be implemented involving the key biomarker proteins of interest and the results of
these analysis validated experimentally. In this paper we develop such a computational
modelling effort for epilepsy that is based on thermodynamic measures of protein–protein
network characterization, having previously provided a general approach [17] and also
applied it specifically to other diseases such as various types and stages of cancer [18–26].

2. Materials and Methods

The theoretical underpinnings for our understanding of the thermodynamics and
bioenergetics of brain development started by investigating the molecular biology of
human diseases from a systems and network biology perspective. These studies were de-
veloped over a several-year period [17–26]. Here, we only provide a brief summary of these
approaches. The transcriptome and other -omic (e.g., proteomic, genomic, metabolomic)
measures can represent the collective energetic state of a cell. By the use of the word “ener-
getic”, we mean it from a thermodynamics perspective where one uses thermodynamic
functions of state such as entropy, Gibbs free energy, enthalpy, and internal energy. In
particular, for open thermodynamic systems such as the human body Gibbs free energy
is a suitable thermodynamic function of state, which can be computed from the so-called
chemical potential for the statistical system such as a network of proteins expressed by a
living cell. There, a chemical potential can be found for all interacting molecules in a cell,
in particular, a chemical potential of all the proteins that interact with each other. This can
be imagined to represent a rugged landscape, not dissimilar to Waddington’s epigenetic
landscape [27,28]. We provide mathematical expressions for the Gibbs free energy of a
cellular protein–protein interaction network below.

To perform these calculations, we need input data and a method of calculating the
Gibbs free energy. The method we propose uses mRNA transcriptome data or RNA-
seq data as a surrogate for actual measurements of protein concentration values. This
assumption is largely valid since Kim et al. [29] and Wihelm et al. [30] have shown an
83% correlation between mass spectrometry proteomic information and transcriptomic
information for multiple tissue types. Further, Guo et al. [31] found a Spearman correlation
of 0.8 in comparing RNAseq and mRNA transcriptome from TCGA human cancer data [32].
Therefore, we have decided to use this highly correlated proxy for protein expression data
in our calculations.

Given a set of transcriptome data as representative of protein concentration values,
we overlay that on the graph of the human protein–protein interaction network from
BioGrid [33]. This means we assign to each protein representing a node of the network,
the scaled (between 0 and 1), transcriptome value (or RNAseq value). The edges in this
network correspond to protein–protein interactions and they define a unique topology
for a given protein–protein interaction network. As shown in our previous work [18–25],
each disease studied so far is characterized by a unique network topology. From the data
extracted for a given protein–protein interaction network, we compute the Gibbs free
energy of each protein–protein interaction using the relation:

Gi = ci ln
ci

∑j cj
, (1)

where ci is the “concentration” of the protein i, normalized, or rescaled, to be between 0 and
1. The sum in the denominator is taken over all protein neighbors (i.e., those that interact
with it) of i, and including i. Therefore, the denominator can be considered related to a
degree-entropy, although its functional form is much simplified since it does not include
logarithmic terms. Carrying out this mathematical operation essentially transforms the
“concentration” value assigned to each protein to a corresponding contribution to the Gibbs
free energy. Thus, we replace the scalar value of transcriptome to a scalar function the
Gibbs free energy. Thus, the equation represents the relationship between concentrations
of proteins and the corresponding Gibbs energy.
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The Gibbs free energy is a negative number, thus associated with each protein on
the network that is a negative potential energy well. When plotted in 3D space where
the vertical axis corresponds to the Gibbs free energy and the points in the horizontal
plane represent protein coordinates, this results in a rugged energy landscape shown
schematically in Figure 1. If we use what is called a topological filtration on this landscape,
we essentially move a filtration plane up from the deepest energy well. As the filtration
plane is moved up, larger-and-larger energetic subnetworks are captured. For convenience,
we stop the filtration at energy threshold 32 meaning 32 nodes in the energetic subnetwork
are retained. We call these subnetworks Gibbs-homology networks. This is not a magic
number. The threshold of 32 was selected for convenience in showing networks visually.
Incidentally, if we attempted to build a “network” by ranking the gene expression values,
we would find disconnected nodes and not a connected network.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 11 
 

the “concentration” value assigned to each protein to a corresponding contribution to the 
Gibbs free energy. Thus, we replace the scalar value of transcriptome to a scalar function 
the Gibbs free energy. Thus, the equation represents the relationship between concentra-
tions of proteins and the corresponding Gibbs energy.  

The Gibbs free energy is a negative number, thus associated with each protein on the 
network that is a negative potential energy well. When plotted in 3D space where the 
vertical axis corresponds to the Gibbs free energy and the points in the horizontal plane 
represent protein coordinates, this results in a rugged energy landscape shown schemati-
cally in Figure 1. If we use what is called a topological filtration on this landscape, we 
essentially move a filtration plane up from the deepest energy well. As the filtration plane 
is moved up, larger-and-larger energetic subnetworks are captured. For convenience, we 
stop the filtration at energy threshold 32 meaning 32 nodes in the energetic subnetwork 
are retained. We call these subnetworks Gibbs-homology networks. This is not a magic 
number. The threshold of 32 was selected for convenience in showing networks visually. 
Incidentally, if we attempted to build a “network” by ranking the gene expression values, 
we would find disconnected nodes and not a connected network. 

 
Figure 1. As the “filtration plane” moves up from the bottom, more-and-more nodes are captured in larger-and-larger 
energetic subnetworks shown on the right-hand side of the figure. 

We now compute the Betti centrality, a topological measure, on the 32-node energetic 
networks as described in detail by Benzekry et al. [20]. The concept is easily explained as 
follows. In networks, there are holes, or rings, of various sizes. In these energetic path-
ways, protein–protein interaction networks, the proteins form interaction rings. In 
densely connected, but not fully connected, networks the rings, or holes, may consist of 
triangles and larger rings of interaction. To find the Betti centrality we ask ourselves the 
following question. Which protein when removed from the network will change the over-
all total number of rings the most? The total number of rings is called the Betti number. 
Given a network G consisting of edges, e, and vertices, v, the Betti centrality is given by 

 	B(vi )= B(G)−B(G− {vi }). (2)

Hence, the difference between the total Betti number B(G) and the Betti number of 
the network after removing node i, gives the Betti centrality for node labeled i. We com-
pute this for all nodes in the threshold-32 energetic network. Often there will be two or 
more proteins in the network that have equivalent Betti centrality. We discuss this equiv-
alence and the Betti centrality with respect to the brain region data below in this manu-
script. 

Figure 1. As the “filtration plane” moves up from the bottom, more-and-more nodes are captured in larger-and-larger
energetic subnetworks shown on the right-hand side of the figure.

We now compute the Betti centrality, a topological measure, on the 32-node energetic
networks as described in detail by Benzekry et al. [20]. The concept is easily explained
as follows. In networks, there are holes, or rings, of various sizes. In these energetic
pathways, protein–protein interaction networks, the proteins form interaction rings. In
densely connected, but not fully connected, networks the rings, or holes, may consist of
triangles and larger rings of interaction. To find the Betti centrality we ask ourselves the
following question. Which protein when removed from the network will change the overall
total number of rings the most? The total number of rings is called the Betti number. Given
a network G consisting of edges, e, and vertices, v, the Betti centrality is given by

B(vi) = B(G)− B(G− {vi}). (2)

Hence, the difference between the total Betti number B(G) and the Betti number of the
network after removing node i, gives the Betti centrality for node labeled i. We compute
this for all nodes in the threshold-32 energetic network. Often there will be two or more
proteins in the network that have equivalent Betti centrality. We discuss this equivalence
and the Betti centrality with respect to the brain region data below in this manuscript.
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3. Data Sources

Patient information for TLE is available in ref. [34] using Dataset GSE63808. Note that
the data from GSE63808 only include epilepsy patients and did not include healthy controls.
Obviously, it would be unethical to collect temporal lobe tissue form healthy people.

Computing the Betti centrality for energy threshold 32, we find eleven proteins as
the most energetically significant overall. These are ranked in the Pareto chart shown
in Figure 2. (Note that Pareto ranking is a common statistical method for displaying
differences in data. A Pareto diagram is a simple bar chart that ranks related measures in
decreasing order of occurrence, Pareto ranking is based on the principle of non-dominated
sorting also called Pareto dominance, which can clearly be seen in the present case). Since
there can be one or two (sometimes three) Betti centrality nodes with equivalent energies,
the number of centrality nodes in the Pareto chart adds up to greater than 131 (which is the
total number of patients whose data have been accessed in this study).
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Figure 2. Genes having the most impact on dropping Gibbs homology network complexity (threshold = 32), with counts
corresponding to the number of patients having the particular gene as target.

4. Results

By using the Pareto ranking, the most important node in the network is found to be
CD81. (See Figure S1 for Pareto ranking of control patients.) A Gibbs Homology network at
threshold 32 in which CD81 has the highest Betti centrality is shown in Figure 3 (highlighted
in yellow) and the nearest-neighbor nodes with smaller, though important Gibbs energies,
are shown highlighted in green.



Appl. Sci. 2021, 11, 8059 6 of 11

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 11 
 

cell layers: DGCL, CA1pyr, and CA3pyr [40,41]. In addition, the gene coding for the CD81 
protein was recognized as a tumor-suppressor gene [42]. 

The second most frequent protein in the Pareto ranking of Betti centrality nodes is 
HSP90AA1 (heat shock protein 90 alpha family class A member 1). It is a stress induced 
isoform of the molecular chaperone Hsp90. In human, the gene has ubiquitous expression 
in brain and testis and 25 other tissues [43]. The expression of HSP90AA1 is known to be 
elevated when cellular stress is present, including in leukemia, several types of cancer, T 
cell under certain stimulation, and individuals suffering from chronic obstructive pulmo-
nary disease (COPD) [44]. In rats, it was found that HSP90 protein levels in piriform cortex 
decreased after status epilepticus. The degradation was related to neuronal vulnerability 
to status epilepticus insult [45]. 

 
Figure 3. CD81 (yellow) and its nearest neighbors in the PPI network labeled in green. 

The third most frequent protein, excluding ribosomal proteins, according to the Pa-
reto ranking of Betti centrality nodes is EEF1A1 (eukaryotic translation elongation factor 
1, alpha 1). It plays an important role in the cellular translation process. Although EEF1A1 
was not associated with neurological diseases, its isoform EEF1A2 was identified to be 
related. The two proteins are 92% similar in their amino acid sequences but exhibit non-
overlapping expression patterns [46]. The difference in functions that the two isoforms 
perform might be due to post-translational modifications [47]. In wild-type mice, expres-
sion of A2 takes over from A1 starting at 21 days after birth; at the same time, a deletion 
or biallelic mutation of EEF1A2 gene was found responsible for the early-onset neurolog-
ical abnormalities and early death in mice [48,49]. In human patients, EEF1A2 missense 
mutation was associated to early-onset epilepsy, severe intellectual disabilities and spe-
cific subtle facial dysmorphic features [50–52].  

TUBA1A (Tubulin Alpha 1a) is one of the components that make up the cytoskeleton. 
In particular, together with beta tubulin, it forms a stable tubulin heterodimer that is a 
building block of microtubules. Microtubules play key roles in mitosis of dividing cells 
where they form mitotic spindles. In non-dividing cells such as neurons, microtubules 
form parallel bundles in axons and dendrites providing pathways for axoplasmic 

Figure 3. CD81 (yellow) and its nearest neighbors in the PPI network labeled in green.

Importantly, CD81 is a transmembrane protein that has tissue specific expression
in various tissues including: tonsil, cerebral cortex, lymph node, smooth muscle, and
reproductive tissues [35]. Shown in mice, CD81 regulates neuron-induced astrocytic
differentiation [36]. Three alleles of the mice CD81 in seven genetic backgrounds were
associated to abnormal brain development, hematopoietic system, and/or immune cells
development and behavior [37]. In CD81-null mice, astrocyte and microglia cell numbers
were upregulated, which lead to a 30% increase in brain size [38]. However, in human
patients, deficiency of CD81 proteins was only associated to defected B cells [39]. As
shown in mice and rats, expression of CD81 gene was up-regulated after seizure in three
hippocampal cell layers: DGCL, CA1pyr, and CA3pyr [40,41]. In addition, the gene coding
for the CD81 protein was recognized as a tumor-suppressor gene [42].

The second most frequent protein in the Pareto ranking of Betti centrality nodes is
HSP90AA1 (heat shock protein 90 alpha family class A member 1). It is a stress induced
isoform of the molecular chaperone Hsp90. In human, the gene has ubiquitous expression
in brain and testis and 25 other tissues [43]. The expression of HSP90AA1 is known to be
elevated when cellular stress is present, including in leukemia, several types of cancer, T cell
under certain stimulation, and individuals suffering from chronic obstructive pulmonary
disease (COPD) [44]. In rats, it was found that HSP90 protein levels in piriform cortex
decreased after status epilepticus. The degradation was related to neuronal vulnerability
to status epilepticus insult [45].

The third most frequent protein, excluding ribosomal proteins, according to the Pareto
ranking of Betti centrality nodes is EEF1A1 (eukaryotic translation elongation factor 1,
alpha 1). It plays an important role in the cellular translation process. Although EEF1A1
was not associated with neurological diseases, its isoform EEF1A2 was identified to be
related. The two proteins are 92% similar in their amino acid sequences but exhibit non-
overlapping expression patterns [46]. The difference in functions that the two isoforms
perform might be due to post-translational modifications [47]. In wild-type mice, expres-
sion of A2 takes over from A1 starting at 21 days after birth; at the same time, a deletion or
biallelic mutation of EEF1A2 gene was found responsible for the early-onset neurological
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abnormalities and early death in mice [48,49]. In human patients, EEF1A2 missense mu-
tation was associated to early-onset epilepsy, severe intellectual disabilities and specific
subtle facial dysmorphic features [50–52].

TUBA1A (Tubulin Alpha 1a) is one of the components that make up the cytoskeleton.
In particular, together with beta tubulin, it forms a stable tubulin heterodimer that is a
building block of microtubules. Microtubules play key roles in mitosis of dividing cells
where they form mitotic spindles. In non-dividing cells such as neurons, microtubules
form parallel bundles in axons and dendrites providing pathways for axoplasmic transport.
Tubulin’s gene is overexpressed in the brain’s spinal cord and other tissues [53]. In human
patients, mutations of this gene are expressed over a wide spectrum of phenotypes includ-
ing lissencephaly, microcephaly, and early-onset epileptic seizures caused by defective
neuronal migration [54,55]. Beta tubulin isotypes, TUBB2A, TUBB3, and TUBB4B have all
been found over-expressed in post-traumatic brain injury patients and it has been therefore
suggested that these tubulins along with CD44 may be appropriate targets for treatment [9],
especially since there are numerous tubulin-binding pharmacological agents available [56].
However, virtually all of the approved and investigational tubulin-binding agents interact
with beta and not alpha tubulin. We should point out that the Lipponen et al. study [9]
was on rats and the data are available from GSE80174.

Ribosomal Proteins

The following analysis of ribosomal proteins is by no means exhaustive. First, we
note that in the entire population of 130 patients, we found 34 ribosomal proteins in the
Gibbs-homology networks at energy threshold 35. Of those 34 proteins, 10 were found
in the literature to be related in some way to epilepsy, seizures, synaptic transmission,
voltage-gated channels, and/or cytoskeleton. These 10 are RPS1, RPS4, RPS10, RPS11,
RPS15, RPS27, RPL10A, RPL18, RPL32 [57]. Marrone et al. [58] discussed RPL32 in regard
to seizures and aberrant cellular homeostasis. RPS6 is involved in co-expression of cyclin
D1 in hemimegalencephaly [59] and is a key player in the mTOR signaling pathway and a
contributor to epilepsy [60]. RPS6 is also implicated in X-chromosome brain diseases, as
is RPS4, RPS1, RPL10 [61]. Notably, RPL6 is involved in a molecular pathway has been
linked to temporal lobe epilepsy in childhood [62].

5. Discussion

Several studies based on the analysis of microarrays of epileptic tissue (human and
animal models) reported both transcriptional and epigenetic alterations. In particular,
the altered molecular pathways result in a variety of modifications in voltage-gated and
receptor gated ion channels that lead to a perturbation of dendritic excitability [12]. Neuro-
proteomic studies on epilepsy revealed a significant contribution of proteins involved in
energy metabolism, oxidative stress, inflammation, and excitatory imbalance [63]. Here,
we report the results of our systems-biology based investigation, which analyzed the
Gibbs Homology network for protein–protein interaction epilepsy data at threshold 32.
The results of our investigations show that proteins with the highest Betti centrality are
mainly transmembrane proteins, heat shock proteins, as well as neuronal elongation and
cytoskeleton component proteins (alpha and beta tubulin isotypes). Importantly, by using
the Pareto ranking, we also found significant ribosomal protein overexpression involving
a number of these proteins. In the Supplementary Material, an additional analysis is
provided showing similar results for a control group of 55 subjects.

Pires et al. [64] examining the proteome of brain samples from epilepsy found an
overexpression of ribosomal proteins indicating an increased translational machinery. In-
creased ribosomal activity from microglia has been linked to neurological inflammatory
conditions [65]. Gliosis as inflammatory responses, is frequently found in epilepsy patients
and animal models. Moreover, the main histopathological features of TLE are hippocam-
pal neuronal cell loss and gliosis with extensive synaptic rearrangement (‘mossy fiber’
innervation). The question if inflammation is the effect or the cause of seizure has been
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potentially answered in a mice model. The genetic deletion of Beta1-integrin leads to the
development of astrogliosis that lead to spontaneous seizures [66]. Changes in glial cell
phenotype have also been shown in specimens from patients with pharmaco-resistant
temporal lobe epilepsy. Interestingly, astroglia molecular abnormalities have been revealed
with the altered expression, localization, and function of the K+ and water channels [67].
These findings suggest that astroglia cells play a pivotal role in epilepsy and should be
considered as promising targets for new therapeutic strategies.

This study identified a number of proteins that appear to play major roles in epilepsy
and can, therefore, become attractive targets for pharmacological inhibition. The main
proteins of interest are ribosomal proteins RPS1, RPS4, RPS10, RPS11, RPS15, RPS27, and
RPL10A, RPL18, and RPL32. Unfortunately, only two of these protein structures have been
solved and can be found in the Protein Data Bank (https://www.rcsb.org/ accessed on 30
August 2021), namely, RPS15 (PDB id: 1G1X) and RPL18 (PDB id: 1ILY). To the best of our
knowledge, there are no known specific and selective inhibitors of the above-listed protein.
However, there exist broad inhibitors of ribosomal activity, such as antibiotic molecules
hygromyacin B, tetracycline, and pactamycin [68]. Future pharmacological development
of specific inhibitors of the identified ribosomal proteins of interest could lead to important
advances in this field.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11178059/s1. Figure S1: Target identification results for a control group of 55 patients.
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