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Abstract: Adoption of distributed stream processing (DSP) systems such as Apache Flink in real-
time big data processing is increasing. However, DSP programs are prone to be buggy, especially
when one programmer neglects some DSP features (e.g., source data reordering), which motivates
development of approaches for testing and verification. In this paper, we focus on the test data
generation problem for DSP programs. Currently, there is a lack of an approach that generates
test data for DSP programs with both high path coverage and covering different stream reordering
situations. We present a novel solution, SPOT (i.e., Stream Processing Program Test), to achieve these
two goals simultaneously. At first, SPOT generates a set of individual test data representing each path
of one DSP program through symbolic execution. Then, SPOT composes these independent data into
various time series data (a.k.a, stream) in diverse reordering. Finally, we can perform a test by feeding
the DSP program with these streams continuously. To automatically support symbolic analysis, we
also developed JPF-Flink, a JPF (i.e., Java Pathfinder) extension to coordinate the execution of Flink
programs. We present four case studies to illustrate that: (1) SPOT can support symbolic analysis for
the commonly used DSP operators; (2) test data generated by SPOT can more efficiently achieve high
JDU (i.e., Joint Dataflow and UDF) path coverage than two recent DSP testing approaches; (3) test
data generated by SPOT can more easily trigger software failure when comparing with those two
DSP testing approaches; and (4) the data randomly generated by those two test techniques are highly
skewed in terms of stream reordering, which is measured by the entropy metric. In comparison, it is
even for test data from SPOT.

Keywords: stream test; symbolic execution; time series data synthesis; reordering; entropy

1. Introduction

Recently, massive volumes of data have been generated rapidly by IoT devices, e-
commerce websites, mobile applications, et cetera. There are requirements to process these
data instantly as the value of data declines rapidly over time. DSP has caused quite a
buzz in the industry, as it has emerged as a new big data solution involving many critical
scenarios, including economics, finance, health [1], et cetera. It processes real-time data
within a short period (e.g., milliseconds or seconds) and instantly delivers results. For low
latency purposes, it handles stream data on the fly without costly storage [2].

Modern DSP systems offer programmers a simplified view and high-level abstrac-
tions [3] that hide the low-level primitives and distributed protocols. This developing
pattern makes distributed stream programming available for a much more comprehensive
range of users, as they are not required to have a deep understanding of the distributed
runtime and extensive experience to handle the underlying architecture. Instead, they
can build DSP programs (a.k.a, computing pipelines) by chaining different operators and
implementing self-customized logic in UDFs. This pipeline (logical execution model) will
be mapped into distributed instances (physical execution model) transparently by stream
processing runtime [4].
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Nevertheless, this program-building pattern will potentially bring in some imper-
ceptible defects [5]. The lack of QA (quality assurance) for software pipelines has been
a critical problem that impacts many areas, e.g., biomedical research [6]. DSP programs
will be buggy, especially when end users make some overly perfect assumptions. Data
reordering [7] is a notable feature that one programmer should consider when designing a
DSP program. In practice, one DSP program will usually run in an adversarial environment
where out-of-order stream data are predominant [8], which means stream data may arrive
in a nonchronological order concerning their physical time. Such orderlessness may happen
due to network issues such as network congestion [9] or time difference between quick
processing nodes and slow processing nodes during failure recovery [10]. In a real system,
enforcing a strong ordering in the upfront source side is neither practical nor efficient. It
is an intrinsic need for DSP programs to handle stream imperfections (delayed, missing,
and out-of-order data) [2] and produce correct results.

Test activities are essential for DSP programs’ quality assurance and to improve de-
pendability. The importance is fully emphasized in a recent empirical study [11]. Software
testing is a significant cost during the software development life cycle, and there exists
a strong demand to design an efficient test solution for the expense-reducing purpose.
Long-running systems, e.g., cloud systems, usually favor availability (no downtimes) over
correctness [12] after being deployed, which, in turn, requires a strict test before releasing
them into production.

As discussed in [13], the common industry practice to test big data programs is running
locally with randomly sampled data. An empirical study presented by Vianna et al. [11]
demonstrates that difficulties in generating test data are one of the most frequent problems
when designing DSP programs. In practice, test data for DSP programs mainly comes
from three sources [11], i.e., replaying historical data, mirroring real-time production data,
and generating synthetic data randomly. However, real data, including historical and
real-time production data, may be privacy-sensitive and hinder developers from accessing
conveniently. Taking the ultra-large-scale real data as the test data or randomly generating
synthetic data is inefficient as the significant skewness exists for real-world data, leading to
low coverage [13]. In this paper, we present two goals that one DSP test approach should
reach. One is to achieve high path coverage. The other one is to simulate streams in various
reordering situations.

Symbolic execution [14] is one of the most promising techniques used for generating
test cases automatically with high coverage guarantees, working as the foundation of many
popular testing tools: Java PathFinder [15] (JPF for short), CUTE [16], and jCUTE [17],
KLEE [18], et cetera. However, these solutions and tools are not directly appliable to DSP
programs because of the large scale of their frameworks [13]. To tackle this, there are some
symbolic execution-based test approaches specifically for big data programs [13,19,20].
These methods mainly include three steps: (1) make a logical abstraction for dataflow
operators, (2) conduct symbolic execution on the UDFs individually and get PCs (i.e., Path
Condition), (3) join individual PCs to synthesize the holistic PCs. Test data are generated
by solving these constraints with the assistance of SMT (i.e., satisfiability modulo theories)
solvers [21]. These generated data, however, are independent and without any temporal
constraint among them. To test a stateful DSP program, a series of time-dependent data
(a.k.a., stream) is always required to explore different system states.

On the contrary, property-based testing (PBT), as proposed by Claessen and Hughes [22],
is a solution that generates input data following some specific properties. The PBT ap-
proaches consist of two ingredients, i.e., generators and formulae. The generators usually
produce data randomly, which to some extent will contain some reordering nonexplic-
itly. The formulae are the properties that define how the input and output of a program
should satisfy. If some input–output pairs do not satisfy the desired properties, a coun-
terexample revealing undesirable behavior is found [23]. There are many PBT tools for
general purposes, including QuickCheck [22] (for Haskell), JUnit-Quickcheck [24] (for
Java), et cetera. Although PBT is one of the popular methods in testing traditional software,
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limited work involving DSP programs exists. As far as we can find out, DiffStream [25]
and FlinkCheck [26] (which builds a bounded temporal logic based on [27]) are the most
relevant work. However, randomly generating input data is inefficient for DSP programs,
especially when many operators contain complex UDFs. That will result in a vast combina-
tion of different paths. Since each set of input test data is generated randomly, the test may
end up repeating many identical or similar test data, and different reordering situations are
difficult to cover fully. It requires an approach to guide the generator to produce a more
diverse test data set and guarantee a high coverage. These features are critical for many
software engineering practices, such as continuous integration, requiring quick feedback
in a rapid cycle [28].

In this paper, we present SPOT (i.e., Stream Processing Program Test), a comprehensive
test data generation solution for DSP programs to remedy the limitations. The objectives
of SPOT can be summarized as (1) achieve high path coverage (i.e., JDU path coverage in
our study) with minimum test suites and (2) synthesize sequences of test data in a various
temporal order. To realize these two objectives, SPOT tackles three crucial challenges. First,
SPOT mimics DSP operators (e.g., map) and other classes (e.g., StreamEnvironment) that
constitute the framework of one DSP program. With these mocking replacements, one DSP
program can be identified and analyzed by some third-party symbolic execution engines
(e.g., SPF, which is short for Symbolic Pathfinder). Second, SPOT monitors the program
execution at the instruction level and delegates the part that is symbolically analyzed
to a third-party symbolic execution engine. Third, we model the stream and measure
its ordering with entropy. Based on this, we present algorithms to generate all possible
reordering streams, and then take one stream for each reordering situation as potential
test data.

To evaluate SPOT, we take subject programs from previous work [25,26]. We also
build some programs based on the snippets and descriptions from some public websites
(e.g., GitHub, Flink official website, et cetera). We conduct four case studies to show: (1) its
applicable range (i.e., to what extent does it support to analyze the common operators);
(2) its efficiency when compared with the most recent two DSP testing techniques (i.e.,
DiffStream and FlinkCheck) in terms of JDU path coverage; and (3) efficiency in triggering
failure. Our case study also illustrates that the entropy of randomly generated data (i.e.,
degree of reordering) is highly skewed, while SPOT can generate various reordering
streams evenly.

In total, the main contributions of this work are:

• We realize the symbolic execution idea for DSP applications by mimicking DSP
APIs (i.e., application programming interfaces) and generate independent test data
corresponding to each path.

• We implement JPF-Flink, which coordinates the symbolic analysis specifically for
Flink programs.

• We present algorithms to compose time-series data covering different possible reorder-
ing situations.

• SPOT is an alternative solution to current DSP testing approaches. It integrates sym-
bolic execution and stream synthesizing. The former improves the random generator
in PBT methods, leading to high coverage test suites. The latter covers different
stream reordering situations that existing symbolic execution-based approaches have
not provided.

• We conduct four case studies to demonstrate SPOT’s efficiency and applicability.

The remainder of the paper is organized as follows. Section 2 contains DSP examples to
demonstrate motivations, a brief overview of DSP and Flink, metrics to measure reordering,
and a framework for how SPOT works. Symbolic analysis and JPF-Flink implementation
are introduced in Section 3. In Section 4, we describe how SPOT composes independent
test data into streams with various ordering. Four case studies are conducted in Section 5.
Related works about testing big data programs are presented in Section 6. We conclude
with a summary and discussion of future work in Section 7.
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2. Overview

In this section, we start with several running DSP examples to motivate SPOT. Next,
we introduce the background of programming in DSP systems, especially with the Flink
framework. Then, we introduce symbolic execution and reordering metrics. At last, we
briefly instroduce the architecture of SPOT.

2.1. Motivating Example

Suppose that Bob is a developer who will build several DSP programs to process
millions of data 24/7 continuously from numerous sensors that have been deployed
remotely. Alice works as a tester who designs test suites to find any data that may lead to
unexpected behaviors.

The first program is to convert temperature values from English to metric units. Bob
implements the conversion process with one map operator, and the main part of this
program is shown in Figure 1a. The conversion is implemented in the map operator (line
2). In Flink, the map operator is responsible for DataStream to DataStream transformation.
Specifically, it takes one stream data as input and then produces another stream data as
output. We can infer that this conversion is stateless and it will react to every stream data
individually, regardless of whether it arrives early or late. Even though this program is
reasonably plain, it represents a large class of DSP programs for which the order of input
data will not impact the final results.

The second program gives out a warning whenever any two consecutive temperature
events occur beyond some certain threshold in a given interval, which is similar to the
request in [29]. In Figure 1b, Bob first uses keyBy operator to partition data streams
according to their keys (line 2). In this program, the keys are the IDs of each sensor. Then,
he adopts the countWindow (i.e., count-based window) operator so that the computing
is triggered whenever every two stream data with the same ID are ingested (line 3). He
implements the data processing algorithms with the apply operator (line 4). As we can infer,
the results of this program will be impacted by the order of input source data. For instance,
we have three streams denoted as S1, S2, and S3 (which can be infinite, but we only show
four data for each stream) as shown in Figure 2, among which S1 is ingested by DSP
systems in order, while the other two are not. We specify the threshold as 100 so that any
stream data beyond 100 (which are represented as red circles) will potentially trigger the
alarm. This program will emit an alarm after four data in S1 are processed, while there is
no alarm for the other two. We also notice that the degree of out-of-order for S2 and S3
differs, but they share the same results (i.e., no alarms).

The third program is to give out the highest temperature detected in a short period.
In Figure 1c, Bob first uses the keyBy operator to partition data streams according to their
keys (line 2) similar to the program above. Then, he groups stream data into a time window
(line 3). He calculates the highest temperature by applying max to the stream data in each
time window. The order of stream data will impact the results. For example, if the highest
temperature value arrives late after the window it belongs to, then an incorrect result may
occur. The results will not be influenced when the low-temperature values are out of order,
or the highest temperature is late but still in the required time window.

We can draw several conclusions from the above three programs. (1) Reordering
stream data may damage the correctness of DSP programs. (2) The degree of reordering
may lead to different effects. In other words, some DSP programs may be tolerant of some
kind of out-of-order, while some other programs will produce incorrect results as soon as a
bit disorder happens.

Alice, the tester, can easily design the test data if path coverage is the only target.
For programs (a) and (c), any non-null test data will achieve 100% path coverage. For pro-
gram (b), she can reach the same path coverage goal when the apply operator does not
contain any branches inside. However, when taking input data reordering into considera-
tion, she has to build multiple test data first and then composes them into streams with
some temporal orders to simulate different degrees of out-of-order.
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(a) Covert from English to metric units (b) Warn when events beyond a
threshold

(c) Give out the highest temperature (d) Join two streams

Figure 1. Motivating examples.

The order that data is 
ingested by DSP system

Ordered
Stream

Out-of-Order
Stream

137 15342

137153 97

97

42

137 15397 42

Figure 2. Three streams with the same data but in a different order.

The fourth program gives out a fire alarm when two streams representing the temper-
ature and smoking meet some conditions simultaneously. Bob splits each data to get the
temperature value for the temperature stream solely if the length of this individual data is
over 20 (line 2, 3), and filters out the temperature out of the range between 80 and 2000
(line 4, 5). For the smoke stream, Bob filters out the smoke whose concentration is less than
31 µg/m3 (line 8). Then, Bob joins these two streams (line 11), groups them with a window
operator (line 12), and then applies some custom implementation (line 13).

For the program in Figure 1d, an automatic testing solution requires nontrivial efforts
to achieve high path coverage. Alice first manually creates test data for this program.
However, it is time-consuming and heavy labor. The minimum number of required test
data is the product of the number of all possible branches of every operator (e.g., for the
program (d), the number of all possible branches for map is two (one represents the length
of data over 20, and another one represents less than 20)). Alternatively, Alice adopts the
random test data generation as many PBT solutions do. The cons are that the data from
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a random generator will be skewed in reordering and challenging to hit some specific
conditions. With a limited time budget, it may fail to generate test cases to execute some
complicated paths.

2.2. DSP and Apache Flink

DSP program. Typically, one DSP program consists of the combination of operators (high
order functions) and UDFs that are implemented under the constraints of operators. These
operators, together with UDFs, implement the program logic and are chained in tandem.
One typical DSP application is the composition of some DSP APIs and user-defined logic
within them from the developers’ view. DSP APIs, through which we can interact with DSP
operators, and user-defined logic are two blocks for one DSP application. Our study will
mimic the DSP APIs and transform them into DSP-free code so that a third-party symbolic
execution engine can analyze them as regular Java code.
Apache Flink. SPOT targets Apache Flink, called the 4G of Big Data. It is a real-time
framework for processing stream data in a high-performance, scalable, and accurate fashion.
The stream data is abstracted as DataStream in Flink, representing an infinite list of data
in some specific type. New streams are derived from the upstream data during the data
transformation with a transformation happening in the upstream operators, which are
high-order functions, together with UDFs working within. We targeted Flink as our subject
platform and developed a symbolic analysis tool called JPF-Flink, specifically for the
programs implemented with the Flink framework.
JDU path coverage. JDU (Joint Dataflow and UDF) path coverage is introduced by
Gulzar et al. [13], which consider the paths thoroughly along with the operators and
the internal paths in their UDFs. Their experimental results demonstrate that JDU path
coverage is directly related to improvement in fault detection.

2.3. Reordering Metric

Reorder density (RD) [30,31] is a representative metric to measure the out-of-order,
which is defined as the discrete density of the fractions of displaced packages. Let the set
of reordering events with displacement equal to k being denoted as S[k], and the actual
order of the events is expressed as in Equation (1):

S[k] = {r(m, dm)|dm = k} (1)

where m is the index in the ordered sequence and dm is the discrepancy in reordered sequence.
The actual index to one package m is given as (m + dm). The observation dm 6= 0

represents that the package does not arrive at the position it should be, i.e., we can say that
the package is out of order. The package arrives late when dm > 0, and early when dm < 0.
Let |S[k]| denote the cardinality of the set. Then, it is defined as normalized with respect to
the total number of received packages N, shown as in Equation (2):

RD[k] =
|S[k]|

N
(2)

A threshold Dt can be set, where a too early or too late package beyond this value will
be dropped; thus, −Dt 6 k 6 Dt. Derived from the RD metric, entropy [32] is defined as a
scalar metric to measure the overall out-of-order characteristics of one sequence. Entropy
of a discrete of probabilities is defined as the negative sum of the probability multiplying
by the logarithm of the probability [33]. On the top of RD metric, their corresponding
entropy (Er) is expressed as in Equation (3):

Er = −∑ RD[i]× ln RD[i] (3)
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By considering the threshold Dt, the entropy can be calculated as in Equation (4):

Er = −
i=Dt

∑
i=−Dt

RD[i]× lnRD[i] (4)

2.4. Solution Architecture

In this section, we give an overview of SPOT. The architecture is shown in Figure 3.
In summary, one DSP program is first symbolically analyzed and a set of timeless data are
produced. Then, SPOT takes these symbolic execution results (which are mutually indepen-
dent data) as seeds, extends them with temporal relations, and composes them into various
streams in different reordering situations. Each data in one stream are interdependent with
each other and follows some temporal order.

Symbolic 
Analysis (§4)

Target DSP 
Program

JPF-DSP

Time-Series 
Stream 

Synthesize (§5)
Test Stream 

Data

Timeless 
Data

Test Data with 
Temporal 

Information

Figure 3. The framework for the comprehensive test solution.

3. Symbolic Analysis Approach

In this section, we present how symbolic execution analyzes the DSP program, gets
PCs, and generates test data for further analysis. We enhance the off-the-shelf tool, namely
JPF [34], and its extension SPF [15,35] for symbolic analysis, to tailor the symbolic execution
analysis for DSP programs. Symbolic execution [14] is a popular solution to generate test
data by solving all PCs, where PC is a Boolean expression over the symbolic inputs and
included in the execution state [36].

We adopt SPF as the underlying symbolic analysis tool. However, it is hard to apply
to DSP programs directly. Unlike plain programs, the DSP programs consist of operators
and UDFs where the former are implemented in a large-scale framework, and the latter
are built under the constraints of the semantics of their corresponding operators. Existing
symbolic execution tools, including SPF, are unlikely to scale to the large-scale framework
code (e.g., the notorious state space explosion problems [37]). One solution is to create a
framework model that can be executed symbolically [38]. This paper presents an approach
to mock up the general operators sharing among current popular DSP frameworks and
instantiate them specifically for Apache Flink.

Apart from the large-scale framework, the relational dependency between upstream
and downstream operators will also bring challenges, as we should take care of the symbolic
expressions passing from upstream operators. In this paper, SPOT will maintain the
symbolic expressions, passing them from upstream operators to downstream operators.

Our symbolic analysis approach is shown in Figure 4.
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Target DSP 
Program

DSP 
Libraries

Mocked
DSP 

Libraries

Mimic 
classes

JPF-DSP

Execute instruction 
by instruction

Detect Operators

DSP-free Java 
Program Generate Symbolic 

Expression

Detect UDFs

Symbolic 
Expression from 

Upstream 
Operators

Path Constraints

Symbolic Analysis

Run on

Solve Constraint 
Stream Data 

corresponding to 
each JDU path

Figure 4. Approach overview of symbolic analysis.

3.1. DSP Model Classes Mocking Up

We manually create a DSP framework model that mimics classes in this framework
to apply SPF in analyzing DSP programs. We mimic DSP libraries by mocking up some
representative operators and other relevant classes. It eliminates the external dependencies
by replacing various DSP methods predefined in its framework to prevent third-party
symbolic tools from getting stuck reporting unrecognized methods. It shares the same
interfaces and the classes to be used in one DSP program, but is implemented much simpler
and more abstract so that there is no need to modify the DSP program and transparent
to testers.

We use a list Lk = [e0, e1, . . . , ek−1] to simulate the stream data. Unlike the real stream
data, which may be infinite, our simulated list is bounded in length k (the default is 1) that
is enough in simulating most DSP behaviors.

Classes that are invoked in DSP programs but irrelevant to analysis are simplified to
empty. Classes referring to stream process environment initialization and starting jobs are
such instances.

We mimic the DataStream and its core data structure as a generic ArrayList, not
specified as specific data types. We also mimic the KeyedStream, which extends DataStream
but contains one additional generic property, i.e., key.

We have not considered time-related operators (e.g., Window, WindowReduce, et
cetera) because they denote the process in the time domain, and the temporal relation will
be handled afterward when we synthesize the data set into time-related series, as we will
talk about in Section V.

The standard operators commonly provided by DSP systems [4,39,40] include map, filter,
et cetera. We summarize the common operators https://ci.apache.org/projects/flink/flink-
docs-master/api/java/org/apache/flink/streaming/api/datastream/DataStream.html, ac-
cessed on 28 July 2021, shown in Table 1. When implementing in SPOT, we check the
correctness of our DSP library mimic solution through manual code review.

https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/streaming/api/datastream/DataStream.html
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/streaming/api/datastream/DataStream.html
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Table 1. The representative operators in most DSP systems.

Operators Name Transformation Transformation Semantics How to Mock Up

ine Filter DataStream
→ DataStream

Evaluate each data with one
Boolean function, and retain
the data when the function
returns true

Invoke the UDF and feed it with the first element
in Lk as its parameter. The output result of UDF
is a binary Boolean value, and the Filter operator returns
the first element of Lk when the UDF result is true

Map DataStream
→ DataStream

Take one data as input and
produce another one data after
conducting transformation

Invoke the UDF that takes the first element in Lk
as input, returns a result value, and stores it in one ArrayList.
The output results of Map is a new DataStream that is
initialized with the result ArrayList

ine FlatMap DataStream
→ DataStream

Take one element and produce
zero, one, or more data

Feed the first element of Lk into the UDF, and store
its corresponding returned values in one ArrayList.
The ArrayList may contain zero, one, or more data,
and is used to initialize a new DataStream. This new
DataStream is the output of FlatMap

KeyBy DataStream
→ KeyedStream

Partition a stream into different
partitions, and the data with the
same key are assigned into the
same partition

Invoke the UDF to get some specific value as key and
the rest of the data as value. The result of KeyBy is a new
KeyedStream that initializes the key and value that we get above

ine Reduce KeyedStream
→ DataStream

A rolling process to combine
current data with the last
data and produce a new value

If there is only one data in the KeyedStream, we use this
value to initialize a new DataStream as output. Otherwise,
we use the first and the second value to form a new ArrayList.
Then, we generate a new DataStream initialized with this ArrayList.
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3.2. Maintaining Symbolic Expression

Symbolic expressions are a symbolic store that associates program variables with
expressions over concrete and/or symbolic values [14].

A DSP program can be expressed as a DAG (i.e., directed acyclic graph) where the
nodes are operators, and the edges represent the input–output relationships of operators.
The symbolic analysis happens from the first operator to the end operator along the DAG.
During the symbolic analysis process, the input parameters of each operator will be ex-
pressed as symbolic expressions, and the output results can also be expressed symbolically
according to the semantic constraints of operators and UDFs.

On top of how the symbolic expressions pass from input to output within one operator,
we will also consider the mechanism about symbolic expression passing from upstream
operators to downstream operators. During the symbolic analysis, we will ensure that the
output symbolic expressions of upstream operators are passed into the adjacent down-
stream operators.

The symbolic expressions before analyzing one operator’s body are generated based
on its upstream operators and its parameter, shown in Algorithm 1.

Algorithm 1: Generating symbolic expression before analyzing one operator.
Input: {σ1, σ2, ...σN} where σi is the symbolic expression from the i-th upstream

operator
Output: Symbolic expression σcurrent for this operator Oi

init σcurrent ← NULL ;
for i← 1 to N do

σcurrent ← σcurrent ∪ σi;
end
if σcurrent = NULL then

σcurrent ← SPF(Oi) {SPF is the symbolic execution engine that takes the
parameters in the i-th operator as input. We can get the symbolic expressions
from its results } ;

end

The symbolic analyzing engine (e.g., SPF in our study) will maintain these symbolic
expressions during symbolic executing along the operator body, and generate PCs once
branches are met. The PCs are also maintained automatically by the symbolic analyzing
engines. After finishing executing all programs, we can get all PCs, from which we can
infer how the input data looks like if we want to reach some program path. By solving
all these PCs and generating representative samples, we can have test data to cover all
JDU paths.

3.3. Implementing JPF-Flink

To be concrete, we choose Apache Flink as our subject DSP platform. Thus the JPF-
DSP in Figure 3 is named JPF-Flink more specifically. JPF-Flink is a JPF extension built
on jpf-core, providing symbolic analysis for Flink programs by interacting with SPF. It
interprets the byte codes of one Flink program in a customized way. Once the byte codes
relating to one Flink operator or its internal UDFs are detected, they will be redirected out
of the standard byte code execution flow, and JPF-Flink will make necessary preparations
for symbolic analysis and then delegate the symbolic execution to SPF. To make JPF-Flink
work, we implement the main components as follows.

FlinkSymbolicInstructionFactory. It extends the SymbolicInstructionFactory from SPF
and is used to intercept the calls to invokevirtual byte code, which is one of the Java
standard instructions and invokes instance method. We implement our Flink operator de-
tection logic by overriding the invokevirtual method. This class is responsible for detecting
whether the current instruction is relevant to Flink operators. Once instructions about Flink
operators are detected, this class will emit a customized INVOKEVIRTUAL instruction.
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INVOKEVIRTUAL. We customize the new instruction execution flow by overriding the
execute method in INVOKEVIRTUAL class from SPF. Once the new INVOKEVIRTUAL
executes, that is to say, the execute method is invoked, we will compound several symbolic
configuration clauses as the form “symbolic.method=” to specify the methods and their
parameters to be executed symbolically.
FlinkOPListener. It extends the PropertyListenerAdapter https://github.com/javapathfinder/
jpf-core/wiki/Listeners, accessed on 28 July 2021 from jpf-core. The FlinkOPListener monitors
all VM- and Search-related events from JPF, and takes actions correspondingly. We override
methods like instructionExecuted (every executing instruction will invoke this method),
methodExited (the instruction that finishes running one operator will invoke it), et cetera.
Once some interesting instructions are detected, this class will respond by calling the
corresponding methods in OPSequenceCoordinator.
OPSequenceCoordinator. It is the real workhorse that takes solid actions after FlinkO-
PListener receives interested events after executing instructions. For instance, once one
instruction (detected in FlinkOPListener) corresponds to some Flink operator is detected,
we then set up processing strategies (e.g., symbolic expression generation, et cetera) corre-
sponding to this operator.
FlinkValidator. It is used to determine whether one instruction corresponds to Flink
operators or UDFs. The Flink operators that we will analyze are prespecified in one global
ArrayList. Then, we can check by extracting the method’s name from instructions and
searching this global ArrayList. UDFs are determined by analyzing their parent operators.

4. Time Series Stream Synthesis

Generating independent test data through symbolic execution is not enough to test
DSP programs because they do not take temporal features into account, as the test data
from symbolic execution represents only the “what” that we will compute in a dataflow
model [41]. Temporal features of stream data are equally critical because the behavior of
SUT (i.e., Software Under Test ) is decided by the value of the input and the sequence
of test data set in some specific order. In this paper, we will consider not only the values
of test data (i.e., the “what” part of stream data) but also the temporal orders and time
intervals between them (i.e., the “when” part of stream data).

Some anomalies may happen in real stream processing scenarios, but we do not
consider them this time. Such anomaly includes data loss, tampering, and duplication.
In this paper, we only consider the out-of-order and the lag of the stream. In other words,
we will build the test stream basing on the data sequence without losses, duplication,
or value variation.

4.1. Modeling Stream

To synthesize a time series of stream data, we need to generate timestamps and assign
a timestamp to every timeless data that we have obtained in the symbolic execution phase.
To describe the process in a formal way, we need to introduce some terminology.

Definition 1. Stream data. Stream datum e is of a nested data type that mainly consists of the data
value v and a timestamp t, i.e., the stream datum is a tuple represented as e = (v, t).

In this definition, we regard one stream datum e as a compound datum composed
of spatial and temporal data. Here, we refer to v as the spatial datum, as it represents
how some specific JDU paths will be covered when running with this value. The temporal
datum t is more straightforward, which is the physical time when the stream datum is
generated (e.g., datum generated by remote sensors in IoT systems).

Definition 2. Stream. A stream s is a sequence of stream data in a logical order: s = 〈e0, e1 , ..., en〉,
where the length of s can be finite or infinite.

https://github.com/javapathfinder/jpf-core/wiki/Listeners
https://github.com/javapathfinder/jpf-core/wiki/Listeners
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Definition 3. Logical order in stream data. We use⇐ to represent the logical order of two stream
data, which decides the order of these two data to be ingested by DSP programs.

For instance, we write x ⇐ y to denote that during the test process, stream data y
should be fed into the SUTs after stream data x. This logical order is independent of the
potential order basing on the timestamps in stream data. When conducting the test, we feed
the SUT with the data from the time series stream one by one, following the logical order.

Definition 4. Out-of-order stream data. We define two stream data x and y out-of-order as x ⇐ y,
but y.t < x.t where x.t and y.t represent timestamps of these two stream data individually.

The logical order of two data will not always be compliant with order based on times-
tamps. Many metrics have been presented to measure the reordering, including reordering
buffer occupancy density, reordering extent, and n-reordering, et cetera. Piratla et al. [42]
have conducted a comparative analysis about these metrics.

Definition 5. Orderness of a bounded stream. We define the orderness of a bounded stream
s = 〈e0, e1 , ..., en〉 following the similar notions of RD and entropy. We regard the stream in
increasing order with regard to timestamp as the original order, and calculate entropy as the
indicator to measure the degree of reordering for other out-of-order streams.

For the bounded stream s = 〈e0, e1 , ..., en〉, which follows a logical order e0 ⇐ e1 ⇐
...⇐ en, we can sort according to their timestamp from the earliest to the latest, getting the
results s′ = 〈d0, d1 , ..., dn〉 where d0.t 6 d1.t 6 ...dn.t and {e0, e1, ..., en} = {d0, d1, ..., dn}.
The sorted stream works as the baseline and indexed the data from 0 to n. In our study,
we assume that no duplicate data exist. For any datum, we can get its displacement by
comparing its indices between s and s′. After getting the displacement of all stream data,
we can then calculate the RD and further the entropy. In our study, we adopt entropy to
guide our test process.

For unbounded streams, we can split them based on a certain length of time (time
window) or some number of data (count window) and measure the out-of-order degree for
these stream fragments.

Figure 5 shows two streams, each of which is composed of six stream data. Stream data
on the right side are ingested before the ones on the left, and the right data are processed
prior to the left data in logical order. The top of Figure 5 represents a reordering stream
where the stream data B and D are late, and the bottom corresponds to its ordered version.
We can calculate the entropy of the reordering stream to be 1.56.
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Figure 5. Graphic examples for Definitions 4 and 5.

4.2. Synthesizing Stream Data

This subsection proposes an approach to synthesize time series streams by assigning
temporal relationships to each of the timeless data that we have collected after sym-
bolic analysis.



Appl. Sci. 2021, 11, 8057 13 of 26

The synthesis approach works in an iterative process, shown in Figure 6. It mainly
consists of the following steps:

(1) By repeatedly solving the contrarians from the symbolic analysis phase, we contin-
uously obtain various stream data. We select k different data by sampling, and we
will set k larger than the number of paths so that all paths will be covered. The stream
data set is expressed as {ei|i = 0, ..., k− 1}. Initially, we arrange them in a randomly
logical order s = [e0, e1, ..., ek−1] where e0 ⇐ e1 ⇐ ...⇐ ek−1.

(2) We create a time window in L length and sample timestamps within this time window.
The time window length can be set as the minimum length among all time windows
in the DSP program under test. We randomly sample k timestamps between the
beginning (inclusive) of the time window and the end (exclusive) of the time window
with uniform distribution.

(3) The sampled timestamps are sorted in ascending order and assigned to each data in
s individually according to their logical order. For this stream, the logical order is
obedient to the order of timestamps such that it is regarded as the baseline stream that
other out-of-order streams will compare with.

(4) We begin to generate all possible new reordered streams by altering the order of the
baseline stream s with Algorithm 2 (the algorithm works as an iterative process).

(5) We choose one of the new streams, then calculate the RD and entropy for this new
stream. If this entropy value is never achieved before, we then choose this stream
as one of our potential test suits. Meanwhile, we need to update their timestamps
basing on the number of test suites we have already got. Algorithm 3 describes how
the timestamps update, and its purpose is to combine all selected streams into one
large stream without overlap.

(6) We then pick another generated new reordered stream to achieve a new entropy objective.

Sampling k different data

Symbolic Analysis 
Results

Randomly assign timestamps to 
k data and form a initial stream  

k: num of test data
L: window size

Calculate all possible 
entropy set E_Set for k data

E_Set == NULL?
E_Set

Exit

Alter the order to get 
new stream S   

Randomly generate k 
timestamps in L-length window   

Calculate entropy of 
new stream S

Remove the new 
entropy from E_Set

Y

N

Figure 6. The iterative process to generate streams.
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Algorithm 2: Alter the order of stream and get all possible reordering situations.
Input: List<Tuple2<T, Integer>> streamList, the baseline stream
Output: List<List<Tuple2<T, Integer>>> resultList which stores all possible

reordering stream

init List<Tuple2<T, Integer>> numsList← new ArrayList() ;
foreach e in streamList do

numsList.add(e) ;
end
permute(resultList, numsList, 0) {After execution, resultList will contain all

reordering results} ;

Function permute(List<List<Tuple2<T, Integer>>> resultList, List<Tuple2<T,
Integer>> numsList, int num)

if num = numsList.size()− 1 then
resultList.add(new ArrayList(numsList)) ;

end
for i← num to numsList.size()− 1 do

Collections.swap(numsList, num, i) ;
permute(resultList, numsList, num + 1) ;
Collections.swap(numsList, i, num) ;

end

Algorithm 3: Update timestamps in one test stream.

Input: s = [(v0, t0), (v1, t1), ..., (vk−1, tk−1)], n, L {s is the stream in some specific
order; n indicates this stream is the n-th stream we will produce; L is the
length of time-window}

Output: s
′
=
[(

v0, t
′
0

)
,
(

v1, t
′
1

)
, ...,

(
vk−1, t

′
k−1

)]
{s
′

is the final stream we produce
as test data}

init ∆← n ∗ L ;
for i← 0 to k− 1 do

t
′
i ← ti + ∆ ;

end

The core of Algorithm 2 is the permute function, which works in a recursive procedure.
We have not provided theoretical proof. Instead, we verify its correctness by testing
during our developing phase. We design different streams with various lengths from 1
to 5 and feed these streams as input to conduct unit tests. We manually check the results
and have observed that the algorithm works as expected.

5. Case Studies

Our experimental evaluation is a quantitative appraisal of the effectiveness and ef-
ficiency of SPOT. To be concrete, we choose Apache Flink [4] as the target DSP platform
because of its popularity [43]. We evaluate the effectiveness and efficiency of SPOT through
various sets of subject DSP programs, and compare SPOT against two most recent alter-
native testing methods, i.e., DiffStream [25] and FlinkCheck [26]. We compare them in
terms of three aspects: (1) path coverage—JDU path coverage, which works as the metric
to measure how good the testing is; (2) efficiency to triggering failure; (3) and stream
reordering coverage. The goal of our evaluation is to answer these questions:

(1) To what extent is SPOT applicable to DSP programs?
(2) How efficient can SPOT achieve in terms of coverage?
(3) How efficiently does SPOT perform in triggering failure?
(4) How many reordering situations can be covered with existing methods?
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Experimental Environment. We leverage Flink’s MiniCluster https://ci.apache.org/projects/
flink/flink-docs-master/api/java/org/apache/flink/runtime/minicluster/MiniCluster.html,
accessed on 28 July 2021 to execute subject programs on a single machine with AMD Ryzen
9 3900X 12-Core Processor and 32 GB of RAM, running 64Bit Ubuntu 20.04 LTS. Regarding
the software, we used jdk-1.8.0. Apache Flink version 1.9.2 works as the DSP platform.

Our first case study (Section A) is to illustrate how SPOT applies to DSP operators.
The second case study (Section B) is used to qualitatively compare the JDU path coverage
between SPOT and the recent two PBT-based testing approaches, i.e., DiffStream and
FlinkCheck. In the third case study (Section C), we demonstrate that test data generated
by SPOT is more efficient in triggering software failure compared with DiffStream and
FlinkCheck. The fourth case study (Section D) describes how random data are skewed in
reordering situations.

5.1. How SPOT Applicable to Operators

SPOT supports a variety of operators prevalently in DSP programs. This is especially
critical in symbolic execution, as any unrecognized operator will obstruct the analysis by
one symbolic engine. The first case study is to show that SPOT can support the symbolic
analysis for some common operators.

Subject Programs. We build subject programs based on the examples from the Flink
website [44], each corresponding to at least one specific operator. The main part of the
source code (we have omitted other irrelevant code to save space) is shown in Figure 7.

(a) map (b) flatMap

(c) filter (d) reduce

(e) keyBy

Figure 7. Snippets of Subject Programs.

We analyze each of these subject programs with JPF-Flink individually, and obtain the
analyzing results, including PCs, sampled test data corresponding to each PC, et cetera.
One example is the result for the filter program, i.e., the program (c) in Figure 7. It is shown
in Figure 8 (some unimportant information has been omitted and marked as the ellipsis).
As the result shows, we can get three PCs representing each JDU path. We can also obtain
three solid data after solving these PCs. If necessary, more data can be derived by solving
PCs continuously. In addition to symbolic execution, we can also adjust SPOT to concolic
analysis by setting the parameters in the method from sym to conc (e.g., we can build a new
clause “. . . FilterTest.lambda$0(conc)” to notify the SPF to conduct concolic analysis).

After analyzing all the subject programs individually with JPF-Flink, we manually
check the PCs obtained, and confirm that they have covered all possible JDU paths.

https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/runtime/minicluster/MiniCluster.html
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/runtime/minicluster/MiniCluster.html
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Filter operator and
its UDF are called
symbolically

First Path Condition

Second Path Condition

Third Path Condition

Test data satisfying each
PC respectively

Figure 8. Symbolic analysis results for filter program.

The symbolic analysis is the most source-code involved part among our SPOT solution.
The series data synthesizing part, however, is much more general. In other words, it is
not strictly relying on the semantics of the source code. For this reason, we will not
conduct experiences about how to synthesize stream for each operator here. Instead,
the synthesizing methods will be covered in the following case studies.

In summary, SPOT can support the symbolic analysis for the five common operators,
and generate representative data as test data. Meanwhile, SPOT can also support concolic
analysis for these operators after some tiny modifications.

5.2. How JDU Path Coverage Can Be Achieved

The second case study illustrates how SPOT behaviors in terms of coverage compared
with PBT-based approaches, among which DiffStream and FlinkCheck are the most rep-
resentative solutions for testing DSP programs. We take the HarassMap program as the
first subject program that is introduced in [26]. It involves verifying the incidents about
sexual harassment incidents from witnesses or victims and giving out the danger level to
further create a map showing harassment hot spots. The incidents are streamed incident
object by incident object, with each containing a zone ID (integer value) and a danger value
(double value). As for the second subject program, we extend the SpeedRadar from a
GitHub project [45], which detects overspeed incidents.

Intuitively, SPOT will perform better than PBT-based approaches in terms of path
coverage, as SPOT integrates symbolic execution, which will go through as many program
paths as possible even under resource constraints, and generate representative data cor-
responding to each path. In this study, we adopt the JDU path coverage as the metric to
measure the coverage of DPS programs. For HarassMap and SpeedRadar, we will compare
the minimum test data required to reach 100% JDU path coverage when the test data are
generated by SPOT and existing PBT-based approaches individually.

DiffStream and FlinkCheck are the only two PBT solutions directly for DSP programs
to the best of our knowledge. Generators in both of these two solutions are generating ran-
dom values as input data. Therefore, we generate test data for HarassMap and SpeedRadar
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using the Junit-Quickcheck [24], which works the same as the generation in DiffStream
and FlinkCheck. To avoid divergence of generation data in PBT, we constrain the ranges
of values specified in [26,45]. We execute the process of data generation and coverage
analysis seven times, and computed the trimmed mean value by removing the maximum
and the minimum number of test data required. The results are shown in Table 2.

We have observed that SPOT can achieve 100% JDU path coverage with fewer test
data than PBT methods ( 2X to 65X less). This gap can be further widened if no data ranges
are constrained when randomly generating data, as this means to sample data in a larger
data space.

In summary, we have shown that SPOT has a clear benefit in generating test data than
the random strategy in PBT solutions.

Table 2. The minimum test data required to cover 100% JDU path coverage.

# of Test Data by SPOT # of Test Data by PBT Difference

HarassMap 4 8.8 2.2X

SpeedRadar 8 526.8 ∼65X

5.3. How Efficient in Triggering Failure

The main goal of our third case study is to show that test data generated by SPOT is
more efficient in triggering program failure compared with FlinkCheck and DiffStream.
Program failure is one of the incorrect software behavior that necessarily means the ex-
istence of some defects. High-quality test data usually can trigger a failure faster than
low-quality test data. This subsection adopts the minimum number of test data required to
trigger failures as a metric to measure test data quality.

We reproduced the experimental results of DiffStream and FlinkCheck in our exper-
iment environment. Those two approaches commonly consist of two main ingredients:
generators producing random values as test data and properties defining how the cor-
rect behavior looks. We replaced the random strategy of generators with our generation
approaches in SPOT and reused the same properties.

In particular, we adopted the safety property for the HarassMap program from the
Flinkcheck paper, and “output data preserving some order” as the property for the Taxi-
Distance program from the DiffStream paper. The safety (i.e., something incorrect never
happens) property states that given a stream of incidents with danger values greater than
1, then “Safe” results should never be returned. The “output data preserving some order”
property defines the orderness of results from a parallel version and a sequential version
should match equality for some deterministic DSP programs. In other words, the orderness
of TaxiDistance’s results should match regardless of whether it is running sequentially or
in parallel.

We conducted the experiment ten times and recorded the number of test cases ex-
ecuted before any failure was triggered. For HarassMap on FlinkCheck, we obtained
the results shown in Figure 9a. To avoid the effects of random window sizes, we set the
window size to a fixed value (i.e., four in this experiment) during our experiment. We can
see from the results that to trigger the first failure, the number of executed test data varies
from 2 to 21, and the mean value is 7, which means test data from FlinkCheck can trigger
the failure with 7 test data on average. As a comparison, SPOT will always trigger the
failure in the first window, which contains four distinct values corresponding to different
paths, and the four data are processed following the increasing order of timestamps.



Appl. Sci. 2021, 11, 8057 18 of 26

(a) The number of test data required to trigger HarassMap failure during
the test. The test data are generated by FlinkCheck approaches and SPOT
individually.

(b) The number of test data required to trigger TaxiDistance failure during
the test. The test data are generated by DiffStream approaches and SPOT
individually.

Figure 9. Results of the number of test data to trigger software failure.

We also conducted an experiment for the TaxiDistance program on DiffStream and
ran it ten times as the experience for HarassMap above. Originally, the TaxiDistance
program processes the taxi location information, which basically consists of a taxi identifier,
the position data, and timestamps. The program can be divided into two operators,
i.e., project (data transformation) and keyBy (partition all data by their ID). This program is
required to preserve the ordering of events for each ID. Exchanging these two operators
makes no difference when this program executes in sequence mode, but it may disrupt
the ordering when it runs in parallel. To demonstrate the temporal features, we extended
this program by adding a AssignerWithPunctuatedWatermarks, which assigns event time to
each stream data according to the timestamp nested in them, and a 10-second timeWindow,
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which splits the stream into groups. Similar to HarassMap, we set the window in a fixed
length (i.e., ten in this experiment). Results are shown in Figure 9b. The number of test
data varies from 74 to 2127, and the mean value is 877, which means that test data from
DiffStream can trigger a failure with 877 test data on average. As a comparison, the number
of test data varies from 2 to 12, and the mean value is 7, which means that SPOT can trigger
failure with 7 test data on average.

In summary, we have observed that test data from SPOT can trigger program failure
more efficiently, which indicates that SPOT has an advantage in generating high-quality
test data.

5.4. How Reordering Situations Can Be Covered

Our fourth case study demonstrates how PBT-based approaches can cover different
stream reordering situations. We chose TaxiDistance as the subject program and generated
test data with DiffStream.

For TaxiDistance, we adopted its original version (i.e., it consists of project operator
and keyBy only). Since there was no internal window or other built-in mechanisms to divide
streams into groups, we manually split the data series following a count-based method,
i.e., every N (we set N as 7, 8, 9, and 10 separately in our experience) consecutive data were
placed into one group. Then, we got various data fragments that were ordered or were out
of order. We calculated entropy for each of these fragments and analyzed the distribution
of entropy values. We generated eight sets of test data ranging from 500 to 4000 for each
window setting. We calculated the reordering density and entropy for each group. Results
are shown in Figure 10. The x-axis denotes the entropy value of any fragment of series
data in one group. The y-axis represents each experience that we took with the test data
ranging from 500 to 4000. The z-axis indicates the discrete density of the fraction of entropy,
i.e., the percentage of the number of fragments that share the same entropy.

(a) TaxiDistance Results with 7 data in each
window

(b) TaxiDistance Results with 8 data in each
window

(c) TaxiDistance Results with 9 data in each
window

(d) TaxiDistance Results with 10 data in each
window

Figure 10. The distribution of entropy.
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We can conclude from the results that the distribution of entropy was not even in
each experience. In particular, the fragments with large entropy (e.g., larger than 1.4 in
Figure 10a) were in an absolute majority. There were few fragments with litter entropy.
There were no fragments whose entropy was below some small value (0.4 for Figure 10a,
1.0 for Figure 10b, 0.9 for Figure 10c, and 1.0 for Figure 10d). These results expose the
limitation of data generation approaches in PBT-based solutions in terms of the entropy
distribution. This forces us to think about how to explicitly generate a test stream to cover
as many reordering scenarios as possible. In our study, SPOT can potentially generate all
possible reordering scenarios, and it will give out one stream for each reordering situation.
Thus, our method can evenly produce test data.

In summary, although the random strategies in PBT-based methods generate indi-
vidual data in an even distribution, the reordering entropy values are imbalanced when
splitting them into various time-series fragments by grouping a few data nearby. Streams
with small entropy values are seldom produced by these random generation methods. This,
in turn, forces a requirement for our research to present SPOT to cover as many reordering
situations as possible.

6. Related Work

The test is the dominant solution to verify software correctness comparing with other
solutions such as formal methods. SUTs are executed with various test suites automatically
or manually and detect deviations from expectations during the test process. Many modern
test solutions that automatically derive test input for SUTs have been proposed to detect
software crashes [46] or reveal contract violations [47].

Measuring test efficiency. In general, adding more test data implies improving the bug
exposure probability. However, it is time-consuming when considering more test data.
In addition, adding too much similar test data will only lead to an inferior test suite.
Beyond the number of test data, some metrics exist to estimate the test suit quality, including
code coverage, mutating testing, et cetera. In particular, code coverage measures the
quantity of code executed after feeding these test data. Coverage is the criterion that is
commonly used to guide the test data generating process. Among all coverage criteria,
branch coverage is predominant. Another existing method to measure the efficiency of
test data is mutation testing [48] which evaluates the test data set by injecting bugs in SUT
deliberately and then checking the adequacy that the tests reveal these bugs. In this paper,
we adopt a code coverage metric, i.e., JDU path coverage [12], to measure the efficiency of
SPOT from one aspect. During our case study, we also describe the efficiency of SPOT from
two other aspects: (1) the minimum number of test data required on average to trigger
failures and (2) the number of reordering situations that can be covered.
Big data testing. Much effort has been made recently to develop test solutions for big
data programs. These test methods are to generate test suites to trigger bugs and catch
the deviation program behavior under the trade-off between completeness (i.e., full fault
detection) [46] and test cost [49]. We investigate big data program testing research, includ-
ing symbolic execution-based test data generation, property-based test data generation, et
cetera. We briefly divide these solutions into two categories, i.e., source-code-dependent
approaches vs. source-code-independent approaches.
Source-code-dependent approaches to test big data programs. This category refers to the
test solutions that should be aware of the semantics of the programs, i.e., they should know
the implementation of a program entirely or partially, and then conduct the test based on
the knowledge of the source code. These approaches can be white-box or grey-box.

Csallner et al. [19] presented a method to discover bugs leading to indeterminism in
MapReduce programs. It uses symbolic execution methods to systematically explore the
program and then generate test cases that will violate correct conditions.

Olston et al. [50] presented an example data generation approach for dataflow pro-
grams. Their solutions focus on the core operations in Pig Latin, including Load, Filter,
Group, et cetera. They model each of these operations with equivalence classes to express
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a dataflow program with these classes. A generic algorithm is then used to generate ex-
ample data by considering operators one-by-one from the end to the start of the Pig Latin
program. Similarly, Pawar [51] extends the equivalence class concept and uses dynamic
symbolic execution to generate the example data. These two approaches both share similar
limitations, i.e., they are hard to process operators with UDFs and/or complex conditions.

To overcome these problems, Li et al. [52] developed SEDGE, which integrates concrete
execution and symbolic execution, to produce example data with higher coverage than
past techniques. It reimplements the example data generation component of Apache Pig.
SEDGE starts with a concrete execution with a small sample of the real input data and
then performs a symbolic analysis to construct constraints for the paths that the concrete
execution has not covered. At last, they use the Z3 SMT solver [53] to solve the constraints.

Gulzar et al. present [13,20] BigTest to generate synthetic data for Apache Spark. It
performs symbolic execution in UDFs, and then combines them on the logical specification
of dataflow and relational operators. It explores all paths in Spark applications uniformly
without considering the diverse possibility for each path. Symbolic execution in SPOT is
initially inspired by BigTest, but has also ventured into its own.

Zhang et al. [54] propose BigFuzz, a coverage-guided fuzz testing tool for Spark.
It constructs an equivalent program fitting for fast test generation after conducting a
source-to-source transformation. BigFuzz contains schema-aware data mutation operators
guided by real-word error types, increasing the possibility of creating meaningful test data.
BigFuzz, as a fuzz method, internally requires instrumentation for monitoring coverage
and gear the mutation toward program errors.

However, all of these approaches generate test data independently, while the temporal
relations are not widely considered. On the contrary, one of our key insight for SPOT is
that various reordering in one stream will lead to different process results, which inspires
us to synthesize the independent data into varied temporal relations.

Source-code-independent approaches to test big data program. In contrast with source-
code-dependent approaches, these source-code-independent solutions do not require
knowledge of source code and conveniently work in a black-box fashion.

Li et al. [55] proposed a combinatorial test data generation method for ETL (i.e.,
extract, transform, and load) applications. Their solution works in two steps. First, create
input domain models (IDMs) by automatically analyzing the original data source and
incorporating the constraints derived from requirements manually. Second, test data are
generated with the IDMs and achieve t-way coverage. They also present adaptive IDMs to
extend the original IDMs to avoid creating IDMs repeatedly when new change happens to
the original source.

Morán et al. [56] presented a testing approach that simulates different infrastructure
configurations to detect software faults easily masked in a stable test environment but
revealed in production. Their solution is based on combinatorial testing, partition testing,
and random testing to choose the infrastructure configurations.

Kallas et al. [25] presented DiffStream by adopting differential testing methods that are
widely used in testing traditional software, e.g., compiler testing [54]. Diffstream figures
out the bugs in one DSP program that will be triggered in parallel execution mode. It
generates input stream data randomly, feeds these data into this program in parallel and
sequential versions, and then concludes the existence of bugs by comparing the equality
of results from both versions. They target the problem caused by unordered data among
operations, while we focus on the problems coming from the out-of-order input data.
They constrain a strict order for dependent events, which may be overstrong, as one DSP
program can still perform correctly when some kind of disorder happens (e.g., when late
events arrive, retrigger the computation, and restore the previous result).

Espinosa et al. [26] presented a property-based testing tool called FlinkCheck specifi-
cally for Apache Flink. The core idea of FlinkCheck is adopting bounded temporal logic to
guide how random streams are generated (i.e., generators in PBT), and define the properties
(i.e., formulae in PBT) that determine how outputs are expected to behave.
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Nevertheless, the black-box method, especially random fashion, is hard to cover all
program processing logic in high efficiency and always requires a tremendous amount
of test data. To tackle this, the authors of some recent research studies have proposed
coverage-guided generation approaches to enhance the random way. For instance, Gold-
stein et al. [57] used coverage information to thin the random generator in property-based
testing to provoke software bugs with fewer tests. Even though these approaches are not
directly oriented to stream program testing, it inspires us to improve the random generation
part to produce more “thinning” distribution of inputs to find bugs with fewer tests.

Measuring reordering. Several existing metrics measure the degree of package out-of-
order in the network domain, including reordering density [30,31], entropy [32], et cetera.
Torres-Jr et al. [51] make a survey to compare these metrics and highlight both the mean
displacement and entropy metric. According to its equation, the mean displacement for
one out-of-order stream may be zero, which is not as intuitive as the entropy metric. We
prefer the zero to denote the ordered stream. For this reason, we choose entropy in our
research to describe the reordering degree of stream data.
Running test in some order. Generally, tests should be able to conduct independently.
However, in some cases, it is required to run tests in some specific order. Test case genera-
tion for traditional event-driven software (e.g., GUI-based applications) requires all possi-
ble combinations of events (e.g., menu open) and the mechanism to order test cases [49].
For concurrent software testing, the inputs’ timing is critical [58,59]. Many existing test
frameworks, e.g., Junit, NUnit, and TestNG, support specify the test order. For instance,
TestNG will run the tests according to the order predefined in a configuration file, and it
offers several ways to order the tests

7. Conclusions and Future Work

In this paper, we propose SPOT as an efficient and effective test data generation
solution for DSP programs. Currently, there are few approaches directly applicable to DSP
programs. FlinkCheck and DiffStream are the most recent solutions. They generate test data
randomly, which covers stream reordering nonexplicitly. However, they are not efficient in
terms of path coverage. The entropy distribution of the randomly generated data is highly
skewed, where streams with little entropy are hard to generate. There are some symbolic
execution-based approaches for batch processing systems (e.g., Hadoop, Spark). These
approaches achieve high coverage efficiently. Test data, however, are independent and not
aggregated as time series in different reordering situations. The pros and cons of these
two categories of techniques inspire us to develop a novel solution, i.e., SPOT, which can
achieve both high path coverage and various reordering situations.

SPOT achieves high coverage by producing representative data with symbolic execu-
tion. It then composes these independent data into streams in various reorderings with
an iterative algorithm. To support symbolic analysis automatically, we have developed
JPF-Flink, which coordinates the Flink program execution processes, and delegates the
symbolic execution to SPF. Our case studies demonstrate that SPOT can symbolically
analyze five common operators. Operators such as window are not considered in the
symbolic analysis phase. Instead, the stream synthesis phase will consider the temporal
information contained in these window-type operators. SPOT can generate test data more
efficiently regarding JDU path coverage and triggering program failures. In addition,
SPOT can generate streams covering all possible reordering situations evenly, while the
random-generation-based approaches will usually produce entropy-skewed streams.

However, it should be noted that there are several limitations in this study. First, we
rely on manually creating model classes of DSP frameworks , which is both error-prone
and time-consuming in development and maintenance, and requires a significant upfront
cost when analyzing a program with new DSP frameworks. One potential solution is to
synthesize the framework models automatically, similar to PASKET [37]. Second, SPOT
supports only five common operators with the time and develop resource limits. In the
future, we can support other operators such as union in a similar process. Third, we rely
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on the entropy metric to measure the reordering of one stream. Other reordering metrics
exist, and our approach to synthesize one stream may vary when those different metrics
are considered. In the future, we will investigate how to integrate other reordering metrics
in SPOT. Fourth, there will be k! possible reorderings when one stream contains k data. It
is easily beyond the resource limitation when k gets larger. One of our future work is to
adopt heuristic algorithms to improve search efficiency and reduce the duplicated streams
with the same entropy. Finally, the subject programs in our case studies are from former
papers, or built ourselves basing on the snippets and descriptions from public websites
(e.g., GitHub, Flink official website, et cetera). In the future, we will apply SPOT to more
real cases from the industry.
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