
applied  
sciences

Communication

Late Reverberant Spectral Variance Estimation for
Single-Channel Dereverberation Using Adaptive
Parameter Estimator

Zhaoqi Zhang 1, Xuelei Feng 1 and Yong Shen 1,2,*

����������
�������

Citation: Zhang, Z.; Feng, X.; Shen, Y.

Late Reverberant Spectral Variance

Estimation for Single-Channel

Dereverberation Using Adaptive

Parameter Estimator. Appl. Sci. 2021,

11, 8054. https://doi.org/10.3390/

app11178054

Academic Editor: Edoardo

Alessio Piana

Received: 6 July 2021

Accepted: 28 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Acoustics, Nanjing University, Nanjing 210093, China; zhaoqizhang@smail.nju.edu.cn (Z.Z.);
xlfeng@nju.edu.cn (X.F.)

2 Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
* Correspondence: yshen@nju.edu.cn

Abstract: The estimation of the late reverberant spectral variance (LRSV) is of paramount importance
in most reverberation suppression algorithms. This letter proposes an improved single-channel LRSV
estimator based on Habets LRSV estimator by using an adaptive parameter estimator. Instead of
estimating the direct-to-reverberation ratio (DRR), the proposed LRSV estimator directly estimates
the parameter κ in a generalized statistical model since the experimental results show that even the
κ calculated using measured ground truth DRR may not be the optimal parameter for the LRSV
estimator. Experimental results using synthetic reverberant signals demonstrate the superiority of
the proposed estimator to conventional approaches.

Keywords: dereverberation; single-channel; probability-based

1. Introduction

Speech signals received within a room usually contain reverberation which impairs
the intelligibility of speech in communication scenarios such as mobile phones and hearing
aids. Reverberation will also degrade the recognition performance of automatic speech
recognition systems. Hence, speech dereverberation is still an important issue nowadays.

Dereverberation techniques can be divided into reverberation cancellation [1] and
reverberation suppression [2,3] depending on whether or not the acoustic impulse re-
sponse (AIR) needs to be estimated during the dereverberation [4]. The major part of
most reverberation suppression methods is the estimation of late reverberant spectral
variance (LRSV), which remains a challenging task due to its high time variability [5].
Habets proposed a single-channel LRSV estimator [3] based on a generalized statistical
model [6] to suppress late reverberation, and it still performs outstanding nowadays [5].
However, in Habets LRSV estimator, two parameters (i.e., the reverberation time T60 and
the parameter κ which is related to direct-to-reverberation ratio (DRR)) should be given in
advance or estimated online.

To the authors’ knowledge, there are numerous reverberation time estimation meth-
ods, whereas there are few single-channel DRR online estimation methods [7]. Besides,
according to practical experience, it may also be inappropriate to obtain κ indirectly by
estimating DRR, because even the κ calculated via measured ground truth DRR may not
be the optimal κ for the Habets estimator. A detailed discussion can be found in Section 5.
Therefore, unlike other traditional methods using estimated DRR to calculate κ, the present
work aims to propose a blind adaptive κ estimator which can improve the performance of
the Habets LRSV estimator and makes it more practical. Inspired by the optimally-modified
log-spectral amplitude (OM-LSA) algorithm [8], this letter differentiates between the direct
sound presence/absence hypotheses and derives the conditional direct sound presence
probability to give a time-varying recursive average on the estimated κ. The proposed κ
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estimator is evaluated and compared with existed κ estimator [9] and κ calculated using
measured ground truth DRR. The evaluation results show that the proposed κ estimator
performs better than the conventional κ estimator or measured κ under all evaluation con-
ditions. Besides, the quality of the dereverberated speech is also evaluated and compared
to a method using recursive maximum-sparseness-power-prediction-model (MSPP) [10].

2. Problem Formulation

The reverberant signal results from the convolution of the anechoic speech signal
and a causal AIR. The anechoic speech signal can be expressed in the Short-time Fourier
Transform (STFT) domain by S(k, l), where k and l are the frequency and frame indices, re-
spectively. According to the convolutive transfer function (CTF) model [2], the reverberant
speech signal Z(k, l) can be expressed as Equation (1)

Z(k, l) =
+∞

∑
l′=0

H
(
k, l′
)
S
(
k, l − l′

)
, (1)

where H(k, l) represents the AIR and it can be split into three components as Equation (2)

H(k, l) =


Hd(k), l = 0

He(k, l), 1 ≤ l ≤ Ne
Hl(k, l), l > Ne

(2)

where Hd(k) is the direct sound, He(k, l) consists of early reflections, Hl(k, l) represents
later reflections, and Ne usually corresponds to approximately 20–50 ms. The late reverber-

ant speech component Zl(k, l) =
+∞
∑

l′=Ne+1
Hl(k, l′)S(k, l − l′) mainly decreases the speech

fidelity and intelligibility [4] and needs to be suppressed. Hence, the main challenge is to
derive an estimator for the spectral variance of the late reverberant speech component (i.e.,
LRSV) λl(k, l) = E

[
|Zl(k, l)|2

]
, where E[·] denotes the expectation operator. Once λl(k, l) is

given, a spectral enhancement method [11] can be used to suppress the late reverberation.

3. Brief Review of Habets Late Reverberant Spectral Variance Estimator

The underlying theory for the present work is based on the LRSV estimator derived
by Habets [3]. The Habets method is based on a generalized statistical model which is
an improvement on Polack’s statistical model [4]. Using Hr(k, l) represents early and late
reflections. Then, the corresponding spectral variance can be written as Equation (3)

λh(k, l) = E
[
|H(k, l)|2

]
=

{
λhd

(k), l = 0
λhr (k, l), l ≥ 1

(3)

λhd
(k) = E

[
|Hd(k)|2

]
, λhr (k, l) = κ(k)λhd

(k)e
−13.8lR
T60(k) fs ,

where T60(k) is the frequency-dependent reverberation time, fs denotes the sampling
frequency, R is the discrete time shift, and κ(k) is a prior parameter that is related to DRR.

Assuming that the direct component Zd(k, l) = Hd(k)S(k, l) and the reverberant

component Zr(k, l) =
+∞
∑

l′=1
Hr(k, l′)S(k, l − l′) are uncorrelated, the corresponding spectral

variance λz(k, l) = E
[
|Z(k, l)|2

]
can be expressed as the sum of the direct component

spectral variance λd(k, l) = E
[
|Zd(k, l)|2

]
and the reverberant component spectral variance

λr(k, l) = E
[
|Zr(k, l)|2

]
, such that Equation (4)
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λz(k, l) = λhd
(k)λs(k, l)︸ ︷︷ ︸
λd(k,l)

+
+∞

∑
l′=1

λhr

(
k, l′
)
λs
(
k, l − l′

)
︸ ︷︷ ︸

λr(k,l)

,
(4)

where λs(k, l) is the spectral variance of S(k, l). The reverberant component λr(k, l) can be
further split into early reverberation λe(k, l) and late reverberation λl(k, l), as Equation (5)

λr(k, l) =
Ne

∑
l′=1

λhr

(
k, l′
)
λs
(
k, l − l′

)
︸ ︷︷ ︸

λe(k,l)

+
+∞

∑
l′=Ne

λhr

(
k, l′
)
λs
(
k, l − l′

)
︸ ︷︷ ︸

λl(k,l)

, (5)

and the main purpose is to derive an estimator for the LRSV λl(k, l). Combining
Equations (3) and (4), λr(k, l) can be obtained by Equation (6)

λr(k, l) = exp
{
−13.8R
T60(k) fs

}
[(1− κ(k))λr(k, l − 1) + κ(k)λz(k, l − 1)]. (6)

Finally, according to Equations (3) and (5), λl(k, l) can be obtained using λr(k, l) as
Equation (7)

λl(k, l) = exp
{
−13.8R(Ne − 1)

T60(k) fs

}
λr(k, l − Ne + 1). (7)

4. Parameter Estimation

In Habets LRSV estimator, two parameters (i.e., T60 and κ) should be given in advance.
The reverberation time T60 can be determined by applying Schroeder’s method to the AIR.
The parameter κ is related to DRR and can be calculated [3] by solving Equation (8)

κ =
1

DRR

1− exp
{
−13.8R

T60 fs

}
exp

{
−13.8R

T60 fs

} , (8)

where DRR =
R−1
∑

n=0
h2(n)

/
+∞
∑

n=R
h2(n) and h(n) represents AIR. The Habets LRSV estimator

is often used without knowing those two parameters. The T60 estimation has been well
investigated and numerous blind approaches can be found. However, the DRR estimation
is less mature and there are few online single-channel estimation algorithms [7]. Therefore,
the reverberation time T60 is assumed to be known in the following, and the present
work focuses on the κ estimation. Most existed κ estimators [4,9] treat κ as a frequency-
independent parameter. Hence, this letter also derives a fullband κ estimator which can
make the LRSV estimator more practical and accurate.

4.1. Proposed κ Estimator

Inspired by the OM-LSA algorithm [8], this letter proposed an adaptive κ estimator
using a probability-based framework. Given two hypotheses, H0(l) and H1(l), which
indicate, respectively, direct sound absence and presence in the lth frame, as in Equation (9)

H0(l) : Z(k, l) = Zr(k, l),
H1(l) : Z(k, l) = Zd(k, l) + Zr(k, l).

(9)

When the direct sound is absent, the desired κ can be directly estimated according to
Equation (6). Accordingly, the proposed κ estimation strategy is to recursively average past
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estimated κ during periods of direct sound absence, and hold the estimate during direct
sound presence. Specifically, the proposed κ estimator is as follows in Equation (10)

H0(l) : κ(l + 1) = ακκ(l) + (1− ακ)κ̂(l),
H1(l) : κ(l + 1) = κ(l),

(10)

where ακ denotes a smoothing parameter, and κ̂(l) denotes the estimated κ in the lth
frame. Under direct sound uncertainty, the frame conditional direct sound presence proba-

bility p(l) can be employed by p(l) ∆
= P(H1(l)|Z(k, l), k = 0, 1, . . . , K ), and the recursive

averaging can be carried out in Equation (11)

κ(l + 1) = p(l)κ(l) + (1− p(l))[ακκ(l) + (1− ακ)κ̂(l)]
= α̃κ(l)κ(l) + (1− α̃κ(l))κ̂(l),

(11)

where α̃κ(l) = p(l)+ ακ(1− p(l)) is a time-varying smoothing parameter which is adjusted
by the frame conditional direct sound presence probability p(l).

Now, there are two remaining parts in the proposed κ estimator that need to be
determined: (1) the frame conditional direct sound presence probability, p(l); (2) the
estimated κ in the lth frame, κ̂(l).

4.1.1. Frame Conditional Direct Sound Presence Probability

Let us assume that the STFT coefficients, Zd(k, l) and Zr(k, l), are complex Gaussian
variables. Then, applying Bayes rule [8], the conditional direct sound presence probability

p(k, l) ∆
= P(H1(l)|Z(k, l) ) can be written as Equation (12)

p(k, l) =
{

1 +
q(l)

1− q(l)
[1 + ξ(k, l)]e−υ(k,l)

}−1
, (12)

where q(l) ∆
= P(H0(l)) is the a priori probability for direct sound absence, ξ(k, l) ∆

= λd(k,l)
λr(k,l)

is the a priori signal-to-reverberation ratio (SRR), γ(k, l) ∆
= |Z(k,l)|2

λr(k,l) is the a posteriori SRR,

and υ(k, l) ∆
= γ(k,l)ξ(k,l)

1+ξ(k,l) . Note that γ(k, l) can be calculated directly whereas q(l) and ξ(k, l)
need to be determined.

Considering that λz(k, l) decays frame by frame during periods of direct sound
absence H0(l), the a priori probability for direct sound absence q(l) can be defined as
Equation (13)

q(l) =
1
K

K−1

∑
k=0

u(λz(k, l − 1)− λz(k, l)), (13)

where u(·) is the unit step function. Then, the a priori SRR ξ(k, l) can be obtained via
recursive average as in Equation (14)

ξ(k, l) = αξ ξ(k, l − 1) +
(
1− αξ

)
max

{
λz(k,l)
λr(k,l) − 1, 0

}
, (14)

where αξ is a smoothing parameter.
After p(k, l) is determined, the frame conditional direct sound presence probability

p(l) can be regarded as an average of p(k, l) over all frequency bins p(l) = 1
K

K−1
∑

k=0
p(k, l).

4.1.2. Estimated κ in Each Frame

Under direct sound absence hypothesis H0(l), Equation (4) becomes λz(k, l) = λr(k, l),
and substituting it into Equation (6) yields Equation (15)

λz(k, l) = exp
{
−13.8R
T60(k) fs

}
[(1− κ)λr(k, l − 1) + κλz(k, l − 1)]. (15)
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After some algebra, Equation (15) can be rewritten as Equation (16)

κ =
exp

{
13.8R

T60(k) fs

}
λz(k, l)− λr(k, l − 1)

λz(k, l − 1)− λr(k, l − 1)
. (16)

Then, the estimated κ in the lth frame is determined in Equation (17) by averaging
Equation (16) in the frequency domain

κ̂(l) =

K−1
∑

k=0

[
exp

{
13.8R

T60(k) fs

}
λz(k, l)− λr(k, l − 1)

]
K−1
∑

k=0
[λz(k, l − 1)− λr(k, l − 1)]

. (17)

Note that the numerator and the denominator of Equation (16) are separately averaged
in order to avoid division by zero.

Equation (17) is similar to the conventional estimator Equation (18) [9]. However,
Equation (17) is derived under direct sound absence hypothesis using Equation (6). Hence,
the proposed estimator using a probability-based framework to update κ, rather than
a simple heuristic used in conventional estimator. Further comparison can be found in
Section 5.

κ̂(l) =
exp

{
13.8RNe

T60 fs

} K−1
∑

k=0
λz(k, l)−

K−1
∑

k=0
λl(k, l − Ne)

K−1
∑

k=0
λz(k, l − Ne)−

K−1
∑

k=0
λl(k, l − Ne)

. (18)

5. Performance Evaluation

In this section, the performance of the LRSV estimator using the proposed κ estimator
is evaluated. The performance using κ obtained by other four different methods are also
evaluated, including conventional κ estimator [9], the measured ground truth κ calculated
with measured DRR and T60 (fullband and subband) according to Equation (8), and the
scanning-optimal κ obtained by scanning method which scans κ successively from 0.05 to
1.5 at intervals of 0.01 . Besides, the quality of the dereverberated speech using proposed
method is also evaluated and compared to a recent method using recursive MSPP [10].

5.1. Setup

The Signals to be processed in this letter are synthetic reverberant signals created
by convolving original AIRs measured in a real hall with reverberation time of 2 s (from
an open database [12]) with a male speaker signal of 15 s length. Six AIRs (referred
to as AIR1 ∼ AIR6) with different κ ranging from 0.12 to 1.54 are adopted. Figure 1
demonstrates the signal there was used in experiment with and without reverberation.
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(a)
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(b)

Figure 1. Plot of signal used in experiment with and without reverberation. (a) with reverberation;
(b) without reverberation.
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As mentioned in Section 4, the ground truth κ(fullband and 1/3-octave subband) is
calculated using the measured DRR and T60 via Equation (8). Besides, the reverberation
time T60 is assumed to be known. Hence, the T60 used in this work is directly determined
in 1/3-octave subbands by applying Schroeder’s method to AIRs. For evaluation purposes,
the ground truth late reverberant speech component zl(n) is defined as the anechoic
male speaker signal convolved with the tail of AIR starting 50 ms after the direct sound.
Other parameters used in this paper are chosen empirically as κ(0) = 1, ακ = 0.75,
and αξ = 0.95, similar to the reference [8]. All experiments are carried out in computer
using MATLAB software.

The Log Spectral Distortion (LSD) [4] is adopted to evaluate the LRSV estimator by
computing the root mean square(RMS) value of the difference between the estimated LRSV
λ̂l(k, l) and the ground truth LRSV λl(k, l), which is defined as Equation (19)

LSDlate(l) =

√
1
K

K−1
∑

k=0
|e(k, l)|2,

e(k, l) = L
{

λ̂l(k, l)
}
− L{λl(k, l)},

(19)

where L{·} = max{10lg|·|, δ} is the log spectrum confined to 50 dB dynamic range and
δ = maxk,l{10lg|·|} − 50. The mean LSD (refered to as LSD) is obtained by averaging
Equation (19) over all frames. In addition, the lower and upper semi-variance of error
e(k, l) were also calculated to evaluate the LRSV estimator [5] as Equation (20)

σl =
√

1
|τl | ∑

k,l∈τl

(e(k, l)− e)2, τl : e(k, l) ≤ e

σu =
√

1
|τu | ∑

k,l∈τu

(e(k, l)− e)2, τu : e(k, l) > e
(20)

where e = meank,l{e(k, l)} is the mean value of e(k, l).
In order to evaluate the robustness of the proposed estimator to noise, the white noise

was added to synthetic reverberant signals with variable RSNR [5]

RSNR =

∑
k,l

λd(k, l) + λr(k, l)

∑
k,l

λv(k, l)
(21)

where λv(k, l) is the additive noise spectral variance.

5.2. Results and Analysis

Figure 2 depicts the mean LSD for Habets LRSV estimator using κ obtained by different
methods, including the measured ground truth κ(fullband and subband), proposed κ
estimator, conventional κ estimator and the scanning method.

As shown in Figure 2, an scanning-optimal κ can be obtained for each AIR as the
corresponding LSDlate reaches a minimum during the scanning process, and it can be
observed that such scanning-optimal κ is far from the measured ground truth κ, which alerts
us that the measured κ may not be the optimal κ for Habets LRSV estimator. Although the
measured fullband κ performs better for AIR4 and the measured subband κ performs
better for AIR2, they perform poorly for other AIRs. As for the proposed κ estimator,
the LSDlate value exhibits a minimum for three AIRs, and is close to the minimum for
other AIRs. It suggests that the proposed κ estimator performs not only much better than
the conventional κ estimator and measured ground truth κ (both fullband and subband),
but even as well as the scanning-optimal κ obtained by scan method. It is worth mentioning
that the scanning-optimal κ may not be the real optimal κ, but it still can be seen as an
appropriate κ considering the experimental results.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Plot of LSD as a function of κ for (a–f): AIR1 ∼ AIR6. LSD for the measured ground
truth κ(fullband and subband), proposed κ estimator and conventional κ estimator are presented as
reference lines for comparison. (a) AIR1; (b) AIR2; (c) AIR3; (d) AIR4; (e) AIR5; (f) AIR6.

Figure 3 shows the averaged log error obtained using all RIRs for varying RSNR. As the
RSNR decreases, all estimators show a more and more positive bias, which means the LRSV
estimator performs worse with background noise and should be used after a denoising
algorithm. However, the ‘length’ of the whisker bars of the proposed κ estimator is always
shorter than other methods. In other words, the proposed κ estimator yields lower variance,
which suggests that the proposed κ estimator is more robust with background noise.
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Figure 3. Mean and standard deviation of log error e(k, l) for different RSNR. The means are indicated
by symbols (circle, cross, etc.), and the semi-variances are indicated by whisker bars.

Figure 4 compares the measured ground truth κ with the scanning-optimal κ, and as
depicted in it, the scanning-optimal κ is not obviously related to the measured ground
truth κ. It precludes us from simply applying a bias correction to the measured κ, which is
sometimes used in practical.

1 2 3 4 5 6

AIR

0

0.5

1

1.5

k
a

p
p

a

measured scanning-optimal

Figure 4. Plots of the measured ground truth κ and the scanning-optimal κ for each AIR.

The reason for the mismatch between the measured ground truth κ and the scanning-
optimal κ may be that the generalized statistical model is a simplified approximation of
AIR, which causes the error of estimation in Equation (6) and the error will vary with the
anechoic speech signal λs(k, l). Hence, in order to compensate that error, the value of κ
needs to be modified, which makes the measured ground truth κ not the scanning-optimal
κ for Habets LRSV estimator. To prove the above viewpoint, 13 different anechoic speech
signals of 15 s length are used to obtain corresponding scanning-optimal κ for each AIR.
The results are shown in Figure 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Plot of scanning-optimal κ using different speech signals for (a–f): AIR1 ∼ AIR6. The mea-
sured κ is also presented as reference line for comparison. (a) AIR1; (b) AIR2; (c) AIR3; (d) AIR4;
(e) AIR5; (f) AIR6.

It can be seen that for different speech signals, the scanning-optimal κ changes ran-
domly and can differ by up to 0.54, which reveals that the optimal κ for Habets LRSV
estimator may be not only related to DRR but also related to the speech signal. In other
words, it may be less effective to obtain κ indirectly via the blind DRR estimation algorithm.
On the contrary, estimating κ directly as the proposed method did may achieve better
performance. However, this letter only uses 13 different anechoic speech signals of 15 s
length each, along with six AIRs, which is not enough to prove this hypothes, further
research is needed using more speech signals and more AIRs.
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5.3. Speech Dereverberation

Furthermore, the quality of the dereverberated speech using the estimated LRSV is
evaluated, and the log-spectral amplitude gain function [11] is adopted to suppress the
late reverberant speech component. Besides, a method using recursive MSPP [10] is also
evaluated as a reference. The measures are the segmental SRR and LSD (averaged over
all frames) between the estimated and true early speech component [3,4], the short-time
objective intelligibility(STOI) [13] and perceptual evaluation of speech quality(PESQ) [14].
The results are averaged over all AIRs and presented in Table 1.

Table 1. Improvement of objective speech quality measures.

Measuredfull Measuredsub Optimalscan Proposed Conventional MSPP

∆SRR 7.81 7.73 7.80 8.61 6.80 7.60
∆LSD −3.47 −3.46 −3.57 −3.77 −3.29 −3.82
∆STOI 0.0678 0.0693 0.0765 0.0785 0.0676 0.0362
∆PESQ 0.18 0.17 0.20 0.24 0.16 0.04

It can be observed that the proposed method achieves best performance in three
measures and only performs slightly worse in LSD, which validates the superiority of the
proposed estimator to conventional approaches. It also indicates that the LRSV estimator
using proposed method performs even better than that using the measured ground truth
κ(fullband and subband). It is worth mentioning that a single measure is not convincing,
so this letter used four measures to jointly judge the performance of the proposed method.
Hence, although MSPP has lower score than proposed method in LSD, considering all four
measures, we still believe that the proposed algorithm is superior.

6. Conclusions

This work improves Habets LRSV estimator by proposing an adaptive κ estimator.
We differentiate between the direct sound presence/absence hypotheses, and derive the
frame conditional direct sound presence probability p(l) using Bayes rule. Under the
direct sound absence hypothesis, the estimated κ in the lth frame κ̂(l) is given under
the assumption of {λz(k, l) = λr(k, l)}|H0(l) . Finally, κ(l) is recursive averaged with a
time-varying smoothing parameter α̃κ(l) which is adjusted by the frame conditional direct
sound presence probability p(l).

The proposed κ estimator has been evaluated and compared to conventional κ esti-
mator and a recursive MSPP method proposed in recent years. Experimental results show
that the LRSV estimator using the proposed κ estimator outperforms other methods. It is
also found that the ground truth κ calculated using measured DRR is not the optimal κ for
the LRSV estimator since the optimal κ may be affected by speech signals. It suggests us
estimate κ directly and adaptively rather than using the blind DRR estimation algorithm to
obtain κ, which may be a less effective approach. However, further research is needed to
prove this hypothesis.
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