
applied  
sciences

Article

Mechanics Analysis of Rough Surface Based on
Shoulder-Shoulder Contact

Qiuping Yu 1,* , Jianjun Sun 1 and Zhengbo Ji 2

����������
�������

Citation: Yu, Q.; Sun, J.; Ji, Z.

Mechanics Analysis of Rough Surface

Based on Shoulder-Shoulder Contact.

Appl. Sci. 2021, 11, 8048. https://

doi.org/10.3390/app11178048

Academic Editor: Rui Vilar

Received: 29 July 2021

Accepted: 28 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China;
sunjianjun@njfu.edu.cn

2 College of Mechanical and Electronic Engineering, Jiangsu Vocational and Technical College of Finance
and Economics, Huai’an 223001, China; jizhengbo@jscj.edu.cn

* Correspondence: yuqiuping03@njfu.edu.cn

Abstract: Proper methods and models for mechanical analysis of rough surface can improve the
theory of surface contact. When the topography parameters of two rough surfaces are similar, the
contact should be considered shoulder-shoulder rather than top-top. Based on shoulder-shoulder
contact and fractal characteristics, the geometric model for asperity and contact mechanics model for
rough surfaces are established, and the deformation of asperity, the real contact area and contact load
of sealing surface are discussed. The effects of contact pressure p and topography parameters (fractal
dimension D and fractal roughness G) on the variation of porosity and contact area ratio Ar/A0 are
achieved. Results show that with the increase of p, larger D and smaller G corresponds to larger
initial porosity but faster and larger decrease of porosity; with the increment of D, porosity increases
first and then decreases, and smaller G corresponds to larger porosity reduction; as G becomes bigger,
porosity increases, and larger D corresponds to larger porosity difference and change. With the
addition of p, Ar/A0 increases, and the variation of Ar/A0 is closer to linearity and less at smaller
D and larger G; with the increase of D, Ar/A0 increases gradually, and the growth rate is bigger at
smaller G and bigger p; as G becomes bigger, Ar/A0 declines, and it declines more gently at smaller
D and p. The influence of D on Ar/A0 is greater than that of G. The results can provide the theoretical
basis for the design of sealing surfaces and the research of sealing or lubrication technologies of
rough surfaces.

Keywords: rough surface; shoulder-shoulder contact; mechanics analysis; porosity; contact area

1. Introduction

At a microscopic level, the rough surface consists of numerous asperities of different
sizes which may be caused by form errors, waviness and roughness. Although the waviness
affects the contact of surfaces [1], the influence of surface roughness is more significant for
rough machined fractal sealing surfaces. When two contacting surfaces are under load,
these asperities will deform, affecting the pressure bearing and sealing performance of
the surfaces. Mechanical analysis of rough surface is the main content of surface contact
theory, which involves real contact area, contact pressure and the relationship between
them. A variety of contact mechanics models were established by predecessors, promoting
the continuous development of the surface contact theory.

Hertz studied the contact mechanics of two spherical elastomers without friction
and laid the theoretical foundation of modern contact mechanics [2]. Greenwood and
Williamson combined the simulated surface with Hertz contact theory and established
the GW model [3] based on statistical characterization parameters. Based on GW model,
Greenwood [4] and Bush [5] further modified and improved the height distribution, shape
and curvature radius of asperities. Assumed that all the asperities are purely plastic de-
formed, Pullen [6] established the corresponding plastic contact model of rough surfaces.
On the principle of constant volume of asperities during plastic deformation, Chang [7]
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proposed the CEB model to analyze the elastic and plastic contact characteristics of rough
surfaces. However, the CEB model did not consider the elastic-plastic deformation, so the
results are discontinuous. Zhao et al. re-analyzed the deformation process of asperities
under load [8,9] and put forward a contact model including the elastic, elastic-plastic
and plastic deformation of asperities. Ciavarella [10], Vakis [11], Tian [12] and Song [13]
took the asperity base deformation caused by the asperity deformation into considera-
tion and established various statistical contact models for the interaction of asperities.
In addition, many researchers established the loading-unloading contact model [14,15],
rough surface contact stiffness model [16,17] and viscoelastic contact model [18,19] to meet
various working requirements. Based on the GW statistical model and probability density
function of height distribution for asperity, Xiao [20] established the total stiffness model of
rough surface contact by considering the contact state of elastic, elastic-plastic and purely
plastic deformation. Zhu proposed an unlubricated contact model for random rough
surfaces [21] and analyzed the contact between equivalent rough surfaces and rigid planes
based on statistical theory. Contact mechanical models of rough surface with statistical
characterization were established under the premise that “The contact area is less than the
cross-sectional area of the profile opening area”, however, this assumption is not consistent
with the principle of volume conservation during deformation. Moreover, the statistical
parameters in these models are greatly influenced by the sample length and resolution of
the instrument, which is highly scale-dependent and not universal.

Majumdar and Bhushan [22] established the rough surface contact model (M-B model)
based on fractal theory for the first time. They deduced the elastic and plastic contact
deformation of the single asperity, but they did not consider the elastic-plastic contact
problem. Wang and Komvoulos modified the M-B model by considering the effect of the
expansion factor of the size distribution domain of the micro contact on the deformation
of asperities [23]. Yan and Komvoulos initially put forward a three-dimensional rough
surface contact model with fractal characteristics [24] and obtained the total contact load
and contact area of the rough surface by derivation. Based on the modified M-B model,
Zhu [25], Miao [26] and Tian [27] derived the relationship between the contact area of
a single asperity and its normal deformation. Liu [28] thought that the contact area of
a single asperity increases with the increment of its normal deformation, and when the
contact area is less than the critical contact area the deformation is plastic, otherwise it is
elastic, which is consistent with the deformation mechanism of the M-B model. Morag [29]
and Liou [30] proposed using the opening size of asperity’s base to express the contour
curve. They defined the index n of asperities at different levels to describe the deformation
of asperity, and pointed out that under certain contact loads, the high-level asperity will
transform to a low level. Huang [31] combined fractal theory with a finite element model
to study the contact characteristics of three-dimensional rough surface under thermal-
mechanical coupling. By deducing the W-M function in the spherical coordinate system
and conducting numerical simulation, Liu [32] obtained the profile of rough spherical
surface, established the fractal rough spherical contact model and analyzed the influence
of fractal parameters on the relationship between contact load and contact area on rough
spherical surface. According to the contact mechanism of spherical surface, Yuan [33]
established the contact model of rough spherical surface, derived the analytical expression
of real contact area and contact load, and obtained the contact pressure distribution of rough
spherical contact area at different deformation stages. In the study of contact mechanics
of rough surfaces based on fractal theory, fractal parameters are used to describe rough
surfaces, it can overcome the influence of measuring instrument resolution and sampling
length. However, the conclusion that “asperity appears plastic, elastic-plastic and elastic
deformation in turn” is against reality.

Zhang [34] fully considered the influence of surface roughness and analyzed the
contact characteristics of rough surface when establishing the contact model. Wang [35]
established a loading–unloading contact analytical model between two cylindrical rough
surfaces based on fractal theory and investigated the effect of parameters in the model on
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the loading–unloading contact performance. In addition, some scholars use the shoulder-
shoulder contact model [36–39] rather than top-top contact model when studying the
contact force, contact stiffness and friction heat of two surfaces. However, these models do
not have explicit applications for shoulder-shoulder contact, and do not specifically study
the fractal machined surface that conforms to the W-M function. Therefore, the research on
the contact mechanics for rough surfaces, especially the shoulder-shoulder contact, needs
in-depth investigation.

In the present paper, the contact state and porosity of rough sealing surfaces are
analyzed; the geometric model for asperity and contact mechanics model for rough surfaces
are established; and the deformation of asperity, the real contact area and contact load
of rough sealing surfaces are discussed. Based on these, the effects of contact pressure
and surface topography parameters (fractal dimension D and fractal roughness G) on the
porosity and contact area of sealing surface are studied.

2. Contact Analysis of Rough Surface
2.1. Contact State of Rough Surface

For the research of contacting rough surfaces, the two surfaces are mostly simplified.
The smoother surface is usually simplified as a smooth rigid plane, and the contact state
of the two surfaces is shown in Figure 1. However, in reality the sealing interface is not
completely smooth and there are many asperities on both surfaces, as shown in Figure 2.

Figure 1. Contact diagram of smooth plane and rough surface.
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The red areas in Figures 1 and 2 represent the total volume of pores and skeletons
between the two surfaces, and the skeleton volume can be obtained by function integral.
Porosity φ is the proportion of pore volume in total volume, subscript r-f is the contact
between rough and flat surfaces, and r-r is the contact between two rough surfaces. The
porosity in these two cases is as follows:

φr−f =
Vp

V0
=

V0 −Vs

V0
, φr−r =

Vp

V0
=

V0 −Vs1 −Vs2

V0
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In contact analysis, the object of study is usually a single asperity or a pair of asperities.
The surface contact shown in Figures 1 and 2 can be represented by the largest asperity, as
shown in Figures 3 and 4.
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According to the W-M function of fractal surface and the two different contact states,
the initial contact state of two rough surfaces can be simulated by MATLAB (as shown
in Figure 5), and then the initial porosity can be obtained to verify which contact state is
more practical.
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2.2. The Initial Porosity of Rough Sealing Surface

Zuo [40] used fractal parameters to describe rough surfaces and found they can
comprehensively characterize the overall, local and internal structure of the surface. For
the fractal machined rough surface, W-M function can be used to describe the contour
curve of any asperity before deformation

z(x) = GD−1l2−D cos
(πx

l

)
,− l

2
< x <

l
2

(1)
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where D is the fractal dimension of the surface, G is the fractal roughness, l is the base
diameter of the asperity which can be given by l = 1/γn, γn is the spatial frequency of the
asperity. When n = nmin, the base diameter of the largest asperity is l = 1/γnmin, when
n = nmin + 1, the base diameter of the corresponding asperity is l = 1/γnmin+1, etc.

For the asperity satisfying Equation (1), its maximum height h = GD−1l2−D corresponds
to the maximum surface roughness, and the corresponding l is the base diameter of the
maximum asperity.

The number of asperities on the sealing surface is related to the maximum contact
area [23], which satisfies

n(a)1,2 =
D1,2

2
ψ

2−D1,2
2 aL

D1,2
2 a−

D1,2
2 −1 (2)

where n(a) is the distribution density function for the contact area, subscript 1 and
2 represents two rough surfaces, respectively, n(a) takes the smaller value of n(a)1 and n(a)2,
a is the contact area of asperity, aL is the maximum area of micro contact, ψ is the correction
factor of Ar/aL, which is the ratio of the real contact area to the maximum area of micro
contact. This can be obtained from the transcendental equation [41]:

ψ(2−D)/2 − (1 + ψ−D/2)
(D−2)/D

(2− D)/D
= 1 (3)

For the sealing surface with known surface topography parameters, the nominal
contact area A0 is equal to the sum of the cross-sectional area of the largest asperity and all
other smaller asperities on the surface:

A01,2 =
∫ aL1,2

0
an(a)1,2da =

D1,2

2− D1,2
ψ

2−D1,2
2 aL1,2 (4)

where aL1,2 is the largest area of micro contact, aL1,2 = πl1,2
2/4, m2; A0 takes the larger value

of A01 and A02.
So far, the numerical expression can be used to calculate the porosity for sealing

surface under certain topography parameters. Equation (5) is the initial porosity when
a plane contacts a rough surface, and Equation (6) is the initial porosity when two rough
surfaces contact.

φr−f = 1−
∫ h

0 n(a)a·adz(x)
A0h

= 1−
DaL

D
2 π0.5

∫ aL
0 a

1−D
2 · sin

√
πa
l da

4A0l
(5)

φr−r = 1−
∫ h1

0 n(a)1a·adz(x)1
A0h′ −

∫ h2
0 n(a)2a·adz(x)2

A0h′

= 1−
D1h1aL1

D1
2 π0.5∫ aL1

0 a
1−D1

2 ·sin
√
πa

l1
da/l1+D2h2aL2

D2
2 π0.5∫ aL2

0 a
1−D2

2 ·sin
√
πa

l2
da/l2

4A0h′

(6)

In Equation (5), h is the height of the largest asperity on the rough surface; in Equation
(6), h’ is the maximum distance between asperities on two surfaces, h1 and h2 is the
maximum height of asperity on two rough surfaces, respectively. Once the rough surface
is determined, the specific value of fractal dimension D and fractal roughness G, h’, h1
and h2 can be obtained through assigning or measurement. According to Equation (1), the
corresponding l, l1 and l2 can be obtained, so aL, aL1 and aL2 can also be achieved, and then
the initial porosity can be calculated.

Sealing surfaces with specific topography parameters (D: 1.3, 1.35, 1.4, 1.45, 1.5, 1.55,
1.6; G: 25× 10−11 m) were selected to achieve the simulation value for initial porosity based
on W-M function and MATLAB programming. Then these values were compared with the
numerical calculation value obtained by Equations (5) and (6). The results are shown in
Figure 6.
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When the fractal parameters of the two rough surfaces are the same, the calculated
value based on the rough-rough contact is closer to the simulated value; the maximum
relative error is less than 5%, while the relative error between the calculated and simulated
value based on the rough-flat contact is 10.5~15.5%. Therefore, when the topography
parameters of two surfaces are the same or similar, the contact should be considered
shoulder-shoulder rather than top-top. Shoulder-shoulder contact should be used for the
modeling and mechanical analysis of the rough surface.

2.3. Porosity of Rough Sealing Surface after Loading

Under the action of contact pressure, the asperities on the rough surface will deform
(i.e., produce the compression w’), which will change the porosity of the sealing interface.
Taking the calculation unit of sealing interface (the total volume is V0 = L × L × h’, L is
the length and width of the calculation unit, and h’ is the height of the calculation unit,
namely the height of red area in Figure 2) as the research object, after loading the height of
the sealing interface will change from h’ to h’ − w’. Then, the volume of the calculation
unit changes from V0 = L × L × h’ to V0’ = L × L × (h’ − w’). According to the principle
that the skeleton volume remains unchanged before and after deformation, the skeleton
volume is still Vs = (1 − φ0) × V0 and the pore volume is Vp’ = V0’ − Vs, then the porosity
of sealing surfaces becomes:

φ =
Vp
′

V0
′ =

L× L× (h′ − w′)− (1− φ0)× L× L× h′

L× L× (h′ − w′)
=

φ0h′ − w′

h′ − w′
(7)

where φ0 is the initial porosity of the sealing interface.

3. Geometric Model for the Shoulder-Shoulder Contact
3.1. Model Simplification of the Shoulder-Shoulder Contact

When two rough surfaces contact, the actual contact situation is shown in Figure 7a,
which can be simplified as the contact of the two largest asperities, as shown in Figure 7b.
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For the single asperity, its contour curve satisfies Equation (1), and the curve equations
of two asperities in Figure 7b can be expressed as:

y1(x) = G1
D1−1l12−D1 cos

(
πx
l1

)
(8)

y2(x) = −G2
D2−1l12−D2 cos

(
π(x + d)

l2

)
+ H (9)

H is the distance between the two surfaces and d is the distance between the rotation
axes of the two asperities.
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∣∣∣∣∣∣∣∣∣
x=xc

R2 =

∣∣∣∣∣∣∣∣∣
[

1 +
(

dy2
dx

)2
]1.5

d2y2
dx2

∣∣∣∣∣∣∣∣∣
x=xc

=

∣∣∣∣∣∣∣∣∣
[

1 +
(
−π

l2
h2 sin

(
π(x+d)

l2

))2
]1.5

−π2

l22 h2 cos
(
π(x+d)

l2

)
∣∣∣∣∣∣∣∣∣
x=xc

xc represents the x coordinate value at the contact point.
The equivalent curvature radius at the contact point is R = 1/(1/R1 + 1/R2).
The stress analysis at the contact area is shown in Figure 8.
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3.2. Area Solution for the Shoulder-Shoulder Contact

The coordinates of point 1 and point 2 in Figure 8 can be obtained by setting up the
two curve equations of asperities simultaneously (x1 < x2 is the default condition),

sin θ =
|y1 − y2|√

(x1 − x2)
2 + (y1 − y2)

2
, cos θ =

|x1 − x2|√
(x1 − x2)

2 + (y1 − y2)
2

According to Figure 9, coordinate transformation is carried out, and finally the inclined
plane contact part, as shown in Figure 10, is obtained and its area can be calculated.
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1© Taking O as the coordinate origin and moving coordinate system XOY to the point
of (x1, y1) to form the new coordinate system X′O′Y′.{

x′ = x− x1
y′ = y− y1

⇒
{

x = x′+ x1
y = y′+ y1

2© Taking O′ as the coordinate origin and rotating the coordinate system X′O′Y′ at θ
degree counterclockwise to form the new coordinate system X”O′Y”.{

x′′ = x′ cos θ + y′ sin θ
y′′ = y′ cos θ − x′ sin θ

⇒
{

x′ = x′′ cos θ − y′′ sin θ
y′ = y′′ cos θ + x′′ sin θ

Substituting 1© and 2© into the surface equation of asperity 1:

y = G1
D1−1l12−D1 cos(± π

l1

√
x2 + z2),

Since y” = 0 after transformation, then coordinate value of Z-axis is

z = ±

√√√√√ 1(
π
l1

)2

[
ar cos

(
x sin θ + y1

G1
D1−1l12−D1

)]2
− (x cos θ + x1)

2
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Therefore, the intersection area S equals to

S = 2
∫ Ld

0

√√√√√ 1(
π
l1

)2

[
ar cos

(
x sin θ + y1

G1
D1−1l12−D1

)]2
− (x cos θ + x1)

2dx (10)

where Ld is the linear distance between point 1 and point 2, Ld =
√
(x1 − x2)

2 + (y1 − y2)
2.

4. Establishment of Contact Mechanics Model
4.1. Analysis of Deformation State

With the increment of applied load, the deformation of asperity will increase, resulting
in elastic, elastic-plastic and purely plastic deformation.

When analyzing the contact mechanics of asperities on rough surface, the assumptions
are as follows:

1© Deformations only occur on asperities on the rough surface, while the macro
base does not deform. The volume of asperities remains unchanged before and after
deformation.

2© In the process of surface contact, there is no interaction between asperities, and
neither surface material strengthens.

(1) Elastic deformation
According to Hertz theory, the contact force in the direction of Fa during elastic

deformation is Fa = 4ER0.5w1.5

3 . E represents the equivalent elastic modulus, which can be
expressed as E = 1/[(1 − ν1

2)/E1 + (1 − ν2
2)/E2], ν1, ν2 and E1, E2 denotes the Poisson’s

ratio and elastic modulus of surface 1 and 2, respectively. R is the equivalent curvature
radius and w is the deformation in Fa direction.

The contact area perpendicular to the direction of Fa, namely the area of inclined plane
is aa = πRw, it is same with the intersection area S in Equation (10).

The contact force in Fn direction is Fn = Fa · cos θ = 4ER0.5w1.5

3 cos θ.
The contact area perpendicular to Fn direction is an = πRwnθ.
When elastic contact occurs, the average contact pressure in Fn direction is

pn =
Fn

an
=

4Eaa
0.5

3π1.5R

When the average contact pressure on the contact surface is less than the yield limit σy
of the material, the asperities are in an elastic state. Under this condition, the elastic contact
pressure can be expressed by pn. When pn equals to σy, the inception of yield occurs and
the critical area aec can be given by

aec =

(
3π1.5Rσy

4E

)2

(11)

Purely plastic deformation
The asperity yields fully when the average pressure is equal to 3σy [42], in

this condition

pn
σy

= 2
3

{
1 + ln

[
1
3

(
E
σy

)( r
R
)]}

namely 3 = 2
3

{
1 + ln

[
1
3

(
E
σy

)(
apc

0.5

π0.5R

)]}
After simplification, the critical plastic deformation area apc can be expressed as

apc =

(
3e3.5σyπ

0.5R
E

)2

(12)
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(3) Elastic-plastic deformation
When aec ≤ a ≤ apc, the asperity has elastic-plastic deformation. In this contact state,

the relationship between the contact area and contact pressure becomes extremely complex.
Considering that variations of the contact area and contact pressure should be continuous
and smooth at the critical point of initial yield and be fully plastic, a template function
f (a) [8] can be constructed. The template function is only used to distribute the weight of
elastic area and plastic area in the elastic-plastic interval and does not involve the derivation
conditions and process of the model, so it does not affect the compatibility of the model.

f (a) = −2
(

a− aec

apc − aec

)3
+ 3
(

a− aec

apc − aec

)2
(13)

Then the average contact pressure in the elastic-plastic stage is given by

pnep = pne + (pnp − pne) f (a)

= pne + (pnp − pne)

(
−2
(

a−aec
apc−aec

)3
+ 3
(

a−aec
apc−aec

)2
)

= 4Eaa
0.5

3π1.5R +
(

3σy − 4Eaa
0.5

3π1.5R

)(
−2
(

a−aec
apc−aec

)3
+ 3
(

a−aec
apc−aec

)2
) (14)

4.1.1. Real Contact Area and Contact Load of Rough Surface

For two rough surfaces in contact when the number of asperities on the interface
satisfies Equation (2), its nominal contact area A0 can be expressed by Equation (4).

When aL < aec, all the contact asperities are in elastic deformation, therefore, the real
contact area Ar is the elastic contact area Are and the contact force Fn is the elastic contact
force Fne, which can be given by

Ar1,2 = Are1,2 =
∫ aL

0
an(a)1,2da =

D1,2

2− D1,2
k1,2aL (15)

Fn1,2 = Fne1,2 =
∫ aL1,2

0
pnean(a)1,2da =

4kED1,2ae
1.5

3(3− D1,2)π1.5R
(16)

where k1,2 = ψ
2−D1,2

2 , aL is the contact area of the largest asperity; Ar is the larger value
between Ar1 and Ar2; Fn takes the larger value of Fn1 and Fn2.

When aec ≤ aL ≤ apc, the contact asperities are in elastic-plastic deformation. In
this scenario, the total contact area Ar is the sum of elastic contact area Are and elastic-
plastic contact area Arep, and the total force Fn is the sum of elastic contact force Fne and
elastic-plastic contact force Fnep

Ar1,2 = Are1,2 + Arep1,2 + Arp1,2

=
∫ aec

0 an(a)1,2da +
∫ aL

aec
an(a)1,2da =

D1,2
2−D1,2

k1,2aL
(17)

Fn1,2 = Fne1,2 + Fnep1,2
=
∫ aec

0 pnean(a)1,2da +
∫ aL

aec
pnepan(a)1,2da

=
∫ aec

0
4Eaa

0.5

3π1.5R an(a)1,2da +
∫ aL

aec

(
4Eaa

0.5

3π1.5R +
(

3σy − 4Eaa
0.5

3π1.5R

)(
−2
(

a−aec
apc−aec

)3
+ 3
(

a−aec
apc−aec

)2
))

an(a)1,2da

=

4kED1,2aec 3−D1,2
2

3(3−D1,2)π1.5R aL

D1,2
2 + kD1,2

2 aL D1,2
2

∫ aL
aec

(
4Eaa

0.5

3π1.5R +
(

3σy − 4Eaa
0.5

3π1.5R

)(
−2
(

a−aec
apc−aec

)3
+ 3
(

a−aec
apc−aec

)2
))

a
−D1,2

2 da

(18)

When aL > apc, the contact asperities are in plastic deformation. In this condition, the
total contact area Ar is the sum of elastic contact area Are, elastic-plastic contact area Arep
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and plastic contact area Arp, and the total force Fn is the sum of elastic contact force Fne,
elastic-plastic contact force Fnep and plastic contact force Fnp.

Ar1,2 = Are1,2 + Arep1,2 + Arp1,2

=
∫ aec

0 an(a)1,2da +
∫ apc

aec
an(a)1,2da +

∫ aL
apc

an(a)1,2da =
D1,2

2−D1,2
k1,2aL

(19)

Fn1,2 = Fne1,2 + Fnep1,2 + Fnp1,2
=
∫ aec

0 pnean(a)1,2da +
∫ apc

aec
pnepan(a)1,2da +

∫ aL
apc

pnpan(a)1,2da

=
∫ aec

0
4Eaa

0.5

3π1.5R an(a)1,2da

+
∫ apc

aec

(
4Eaa

0.5

3π1.5R +
(

3σy − 4Eaa
0.5

3π1.5R

)(
−2
(

a−aec
apc−aec

)3
+ 3
(

a−aec
apc−aec

)2
))

an(a)1,2da

+
∫ aL

apc
3σyan(a)1,2da

(20)

Ar is the larger value between Ar1 and Ar2; Fn takes the larger value of Fn1 and Fn2.
Although the expressions of the real contact area Ar are the same in the three states,

since the largest asperity has different deformation properties, aL in each formula is differ-
ent, so the actual contact area is not the same. Therefore, when calculating the real contact
area, it is necessary to determine the deformation properties of the largest asperity.

4.1.2. Model Validation

To verify the accuracy of the established model, results of Ar* − p* in Kucharski
experiment [43], Y-K modified model [24] and Sahoo finite element analysis [44] were
extracted, and the same material parameters and topography parameters were used in the
present established model for calculation. These four sets of data were compared.

The material is steel, elastic modulus E = 200 GPa, Poisson’s ratio v = 0.3, yield
strength of 400 MPa, Vickers hardness (HV) of 1.12 GPa, fractal dimension D = 1.3 and
fractal roughness G = 1.36× 10−11 m. In the comparative analysis, dimensionless treatment
is needed, dimensionless contact load p* = F/(E*A0), dimensionless contact area ratio
Ar* = Ar/A0.

The relationship between Ar* and p* in different methods are shown in Figure 11. It
can be seen that the data of this model is in good agreement with Kucharski experimental
data and Sahoo finite element analysis data.
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4.2. Solution of Porosity and Real Contact Area

The calculation steps of porosity and real contact area are as follows:
(1) For the rough sealing surface, determine the comprehensive elastic modulus E and

the yield strength σy of the softer surface.
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(2) By assigning or measuring, the detailed value of fractal dimension D and fractal
roughness G, the maximum distance h’ between the rough surfaces and the maximum
height of the asperity on each rough surface h1 and h2 can be achieved. The corresponding
l1 and l2 can be obtained according to Equation (1), A0 can be achieved through Equation (4),
and the initial porosity can be gained by Equation (5). Under the action of contact pressure,
there exists compression w’, and the porosity can be calculated by Equation (10).

(3) Calculate the critical elastic deformation aec and critical plastic deformation apc of
the asperity through Equations (11) and (12), obtain the contact area aL of the largest asperity
on the sealing surface by Equations (16), (18) and (20) according to the given specific
pressure pc, then compare aL with aec and apc to determine the deformation properties of
the asperity.

(4) Obtain the real contact area Ar according to Equations (15), (17) and (19), and then
the specific value of Ar/A0 is achieved.

The parameters of the sealing surface are as follows:
Material: Graphite M106k
D: 1.3, 1.35, 1.4, 1.45, 1.5
G: 17 × 10−11 m, 25 × 10−11m, 33 × 10−11m, 41 × 10−11m, 49 × 10−11m.
D1 = D2, G1 = G2, E1 = E2 = 20 GPa, σy1 = σy2 = 117.6 MPa, ν1 = ν2 = 0.29.
The porosity and contact area ratio Ar/A0 of the above sealing surfaces were calculated,

and the influence of contact pressure (the unit is MPa) and surface topography parameters
D and G (the unit is 10−11m) were analyzed.

4.2.1. Porosity

(1) Influence of contact pressure p on porosity
The change of porosity with contact pressure p is shown in Figure 12. Since asperities

will be squeezed and filled into the pores of the sealing interface under the action of contact
pressure, porosity decreases with the increase of p. Larger D and smaller G corresponds
to larger initial porosity, but the corresponding decrease of porosity is faster and larger in
amplitude with the increase of p. When the rough surface has large fractal dimension and
small fractal roughness, the surface is smooth and the roughness is small, so the ratio of
the initial pore volume to the total volume of the sealing surface is high. However, with
the increase of the contact pressure and the deformation of the asperities, the decrease rate
of the pore volume is greater than that of the total volume of the sealing surface, so the
porosity continues to decline.
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Seen in Figure 13a1–a3, with the increase of fractal dimension D, the overall variation
trend of porosity increased first and then reduced (when p = 0.1 MPa, all the porosity
increases; the larger the p is, the earlier and faster the porosity decreases), and the smaller
the G is, the larger the porosity decreases. At the beginning, with the increase of D, many
small pores within the rough sealing surfaces are shown, so the porosity increases. With
the further increase of D and p, it is easier for the asperities to deform and fill into the
pores, so the porosity decreases. Seen in Figure 13b1–b3, with the increment of G, all the
porosity increases, larger p corresponds to lower porosity and larger D corresponds to
larger difference and amplitude of porosity change. Larger G means rougher surface and
coarser asperity, and it is much more difficult for the asperity to deform and fill into the
pores, so the porosity is bigger.
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Figure 13. Change of porosity with (a1–a3) fractal dimension D; (b1–b3) fractal roughness G.
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4.2.2. Contact Area Ratio

(1) Influence of contact pressure on Ar/A0
As shown in Figure 14, with the addition of contact pressure p, Ar/A0 increases, and

the variation of Ar/A0 is closer to linearity with smaller changing amplitude at smaller
fractal dimension D and larger fractal roughness G. With the increase of p, the deformation
of the asperity increases, resulting in the augment of the real contact area. Smaller D and
larger G means the asperity has smaller curvature radius, so the value and increment am-
plitude of real contact area after compression is smaller, therefore, the value and variation
range of Ar/A0 is smaller.
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(2) Influence of topography parameters on Ar/A0
As can be seen from Figure 15a1–a3, with the increase of D, Ar/A0 increases gradually,

and the growth rate is bigger at smaller G and bigger p. Seen in Figure 15b1–b3, as G
becomes bigger, Ar/A0 declines, and it declines more gently at smaller D and smaller p. The
influence of surface topography parameters on Ar/A0 is mainly reflected by the curvature
radius of surface asperity and the real contact area after deformation. From Figure 15 it
is found that the influence of fractal dimension D on Ar/A0 is greater than that of fractal
roughness G.

Through the research, the contact condition and porosity of rough sealing surface can
be better understood. In practice, by combining these findings and the specific working
requirements (better lubrication or lower leakage), we can choose a rougher or smoother
surface so as to determine the corresponding surface processing method. On the basis of
the given surfaces, by measuring the relevant parameters and calculating according to the
established model, the contact pressure under which the sealing surface has no percolation
or has appropriate lubrication can be calculated.
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4.3. Conclusions

(1) The contact state and porosity of rough sealing surfaces were analyzed. Through
numerical calculation and simulation, it was found that when the topography parameters
of two rough surfaces are the same or similar, the contact should be considered shoulder-
shoulder rather than top-top.

(2) The geometric model for the shoulder-shoulder contact and contact mechanical
model for rough surfaces were established, and the deformation of asperity, the real contact
area and contact load of rough sealing surface were discussed. By comparison with other
methods, the present contact mechanics model was verified.

(3) The change rules of porosity φ with contact pressure p and topography parameters
were obtained: Porosity decreases with the increase of p; larger fractal dimension D and
smaller fractal roughness G correspond to larger initial porosity but faster and larger
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decrease of porosity; with the increment of D, porosity increases first and then decreases on
the whole, and smaller fractal roughness G corresponds to larger porosity reduction; as the
fractal roughness G becomes bigger, all the porosity increases, and larger D corresponds to
a larger difference and change of porosity.

(4) The change rules of contact area ratio Ar/A0 with contact pressure p and topogra-
phy parameters were achieved: With the addition of contact pressure p, Ar/A0 increase,
and the variation of Ar/A0 is closer to linearity with smaller changing amplitude at smaller
fractal dimension D and larger fractal roughness G; with the increase of D, Ar/A0 increases
gradually, and the growth rate is bigger at smaller G and bigger p; as G becomes bigger,
Ar/A0 declines, and it declines more gently at smaller D and p; the influence of fractal
dimension D on Ar/A0 is greater than that of fractal roughness G.

(5) The findings of this paper could be further verified by comparing the porosity
obtained by the established model with the results obtained by 3D reconstruction and finite
element analysis, and the leakage or lubrication of sealing surface also could be studied, all
which need further in-depth research.
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