
applied  
sciences

Article

Birds Eye View Look-Up Table Estimation with
Semantic Segmentation

Dongkyu Lee 1 , Wee Peng Tay 2 and Seok-Cheol Kee 3,*

����������
�������

Citation: Lee, D.; Tay, W.P.; Kee, S.-C.

Birds Eye View Look-Up Table

Estimation with Semantic

Segmentation. Appl. Sci. 2021, 11,

8047. https://doi.org/10.3390/

app11178047

Academic Editor: Ángel González-

Prieto

Received: 30 July 2021

Accepted: 27 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Smart Car Engineering, Chungbuk National University, Seowon-gu, Chungdae-ro 1,
Cheongju-si 28644, Korea; dlehdrb3909@chungbuk.ac.kr

2 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave,
Singapore 639798, Singapore; wptay@ntu.edu.sg

3 Department of Intelligent Systems and Robotics, Chungbuk National University, Seowon-gu, Chungdae-ro 1,
Cheongju-si 28644, Korea

* Correspondence: sckee@chungbuk.ac.kr

Abstract: In this work, a study was carried out to estimate a look-up table (LUT) that converts a
camera image plane to a birds eye view (BEV) plane using a single camera. The traditional camera
pose estimation fields require high costs in researching and manufacturing autonomous vehicles
for the future and may require pre-configured infra. This paper proposes an autonomous vehicle
driving camera calibration system that is low cost and utilizes low infra. A network that outputs
an image in the form of an LUT that converts the image into a BEV by estimating the camera pose
under urban road driving conditions using a single camera was studied. We propose a network that
predicts human-like poses from a single image. We collected synthetic data using a simulator, made
BEV and LUT as ground truth, and utilized the proposed network and ground truth to train pose
estimation function. In the progress, it predicts the pose by deciphering the semantic segmentation
feature and increases its performance by attaching a layer that handles the overall direction of the
network. The network outputs camera angle (roll/pitch/yaw) on the 3D coordinate system so that
the user can monitor learning. Since the network’s output is a LUT, there is no need for additional
calculation, and real-time performance is improved.

Keywords: birds eye view (BEV); look-up table (LUT); camera calibration; pose estimation; au-
tonomous vehicle; MORAI Sim Standard

1. Introduction

Autonomous driving is currently receiving much attention, with many research in-
stitutes and companies conducting related research. The autonomous vehicle field can be
divided into three major categories: recognition, judgment, and control. In particular, the
cognitive area is rapidly developing, along with the development of machine learning. In
addition, estimating 3D data based on 2D cognitive data using a camera is an essential ele-
ment for autonomous driving. Estimating the pose of a camera attached to an autonomous
vehicle is a method for outputting 3D data. In this paper, we propose a network that
predicts an LUT [1] that transforms a camera image plane to a BEV [2] plane, and we aim
to estimate the pose of the camera through this.

A camera is a sensor based on 2D data projected on a lens, so it is almost impossible to
estimate perfect 3D data. Using a single camera to obtain the distance to an object—that is,
the depth—is possible only with non-occlusion data, and the texture of the object with the
Z-value cannot be accurately obtained. Therefore, we considered that a relatively strong
feature point that can estimate a pose in the image plane is the free space and set, and we
studied pose estimation based on the feature point in the area specified as free space as an
initial goal. A semantic segmentation network [3–6] was selected as a backbone network

Appl. Sci. 2021, 11, 8047. https://doi.org/10.3390/app11178047 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9418-3973
https://doi.org/10.3390/app11178047
https://doi.org/10.3390/app11178047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11178047
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11178047?type=check_update&version=2


Appl. Sci. 2021, 11, 8047 2 of 16

to construct a network that outputs the LUT by utilizing the feature points of the free
space domain.

A BEV was used to show depth using camera data intuitively. This BEV is similar to
the around view monitoring (AVM) [7] used for parking assistance [8]. However, since
an object in a position higher than the ground is projected onto the floor and expressed,
any obstacle on the road surface is expressed as drooping compared to the original shape.
Moreover, since camera-based depth lacks a reference distance, the relative distance is
valid, but it cannot calculate the absolute distance. In general, the ToF [9] sensor, the size
of the surrounding artificial landmark, and motion data of a driving vehicle are used to
estimate actual distance. However, the purpose of this paper was to obtain the camera
pose of a driving vehicle by using only a camera, which is a low-cost sensor, so it does not
matter that the only output is the relative distance when using a BEV.

Traditionally, to measure the pose of a camera, sensor calibration with a ToF sensor
is performed, or the camera calibration process is performed in a tolerance calibration
room [10], where a marker with a specified actual distance is located. However, the
development of autonomous driving is progressing with the target of mass production,
and it is necessary to set the cost of the sensor not too high so as to mass produce it.
Therefore, we propose a system based on a single camera requiring other sensors and infra.

The rest of this paper is organized as follows: Section 2 introduces related works;
Section 3 discusses the DB used in the experiment; Section 4 describes the structure and
details of the entire network utilized in machine learning; Section 5 presents experiments
with different methods and their results; finally, Section 6 concludes the thesis and presents
future work.

2. Related Work

Le et al. [11] claimed that dynamic object detection and pose estimation are tightly
coupled tasks. When a network is constructed and trained to perform dynamic object
detection and pose estimation, the results of dynamic object detection and pose estima-
tion work complementary. By applying this point, we used semantic segmentation that
expresses the contour of an object rather than detection based on a bounding box. The LUT
was predicted using the segmentation result as a feature point, and we constructed the
network to estimate the roll/pitch/yaw of the camera image and to induce an interaction
between the segmentation and pose estimation.

Jaderberg et al. [12] proposed STN, which continues the process of warping the original
image and proposes a layer that can obtain an image that includes good features in contrast
to the original image. In this process, a fully connected layer was placed inside the STN to
consider the interrelationship of all features. We deduced the entire network to be suitable
for pose estimation, to create a layer that outputs pose by itself, and to afford this layer the
ability to convert encoded features into poses by using the fully connected layer.

Ronneberger et al. [13] proposed a general encoder–decoder and described how to
efficiently perform up-sampling after down-sampling. Many studies have utilized similar
methods. Our paper also deals with the form of an image to image (original image
to the LUT) as a result, and since encoded data were used in processing it, the overall
configuration was composed of an encoder–decoder.

3. Synthetic Database

We needed to collect image semantic segmentation and camera pose ground truth to
implement the proposed network. Representatively, MS-COCO [14] and KITTI [15] have
such data, but there is a disadvantage that the variation in camera poses is not significant.
Each of the camera rolls, pitches, and yaws range from 0 to 360 degrees, but the variety of
the open dataset has a disadvantage in that it does not reach that level.

Our solution was to use a simulator that simulates real environments and places. We
acquired data from various camera poses by using the MORAI Sim Standard [16] (Figure 1)
as a simulator. When a camera is attached to an actual vehicle, experimental data of various



Appl. Sci. 2021, 11, 8047 3 of 16

angles cannot be acquired due to in-vehicle structures such as windshields. As learning
proceeds, the results may not be generalized and may be overfitted. Since this paper
proposes a network that predicts the LUT for producing a BEV using pose data, a simulator
was used to derive data of the various poses that were constructed and utilized.

Figure 1. MORAI Sim Standard: (a) Chungbuk National University map; (b) KATRI K-city map.

3.1. Data Collection

By utilizing the simulator’s characteristics to collect various ground truths, data
related to the camera and camera pose were acquired. The process was configured so that
a separate handcraft labeling operation was not required.

An RGB camera image for the input of the whole system, the segmentation ground
truth image used for the backbone semantic segmentation, and the pose (x, y, z, roll, pitch,
and yaw) expressing the camera attachment position were acquired.

Among the pose data, the roll, pitch, and yaw, which express the angles of each 3D
axis, ranged from 0 to 360 degrees. Due to the vehicle’s windshield, it is difficult to express
the rotation of the camera in real vehicle, so only a tiny change in pose compared to the
entire range can be expressed. In this paper, various camera poses were constructed using
the simulator, because overfitting occurs when learning with data with a small number of
configurable data collection groups compared to the actual range.

3.2. LUT Generation

Due to the nature of the simulator that provides a camera image without lens system
distortion, the distortion removal procedure is omitted, an ideal camera matrix is created,
and the rotation and translation matrices are generated using the extracted camera pose
roll/pitch/yaw and translation information. cx/cy means the principal length of the
camera and fx/ fy means the focal length, and based on these contents, the camera matrix
K is estimated, which is a conversion matrix between the camera’s original plane and the
normalized plane.

cx = width/2

cy = height/2

pi = 3.141592...

fx = cx/
(

tan
(

0.5 ∗ f ov ∗ pi
180

))
fy = cy/

(
tan
(

0.5 ∗ f ov ∗ pi
180

))
f =

{
fx
(

fx ≥ fy
)

fy ( fx < fy)



Appl. Sci. 2021, 11, 8047 4 of 16

K =

 f 0 cx
0 f cy
0 0 1


In the homography production stage, through image calibration, the existing methods

combine the 3 × 3 rotation matrix (R) and the 3 × 1 translation matrix (T) to create and
utilize a 3 × 4 matrix RT, but if this method is used, the axis before rotation is applied.
Due to the gimbal lock phenomenon that occurs when huge angles are rotated on an axis,
the conversion may not be performed properly. Therefore, we multiplied 3 × 4 R|Tnull
first and multiplied 3 × 4 Ri|T later to solve the problem. The problem was solved by
considering the rotation of the coordinate axis first and then applying a translation matrix
based on a new three-dimensional orthogonal axis (3 × 3 unit matrix) rather than the
rotated axis (maybe with gimbal lock). The details are as follows.

R|Tnull =

 r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0



Ri|T =

 1 0 0 tx
0 1 0 ty
0 0 1 tz


RT = Ri|T ∗ R|Tnull

Since the RT obtained in this way is a 3 × 4 matrix, which is a transformation between
a 3D homogeneous coordinate system and a 2D homogeneous coordinate system, the z-axis
data are removed, based on the camera coordinates, to be used in the BEV transformation
(which is a 2D-to-2D transformation, z = 0). If column 3 is deleted in RT, an effect in which
the z-axis data becomes 0 is derived, and a 3 × 3 matrix is obtained.

The homography H between the original image and the BEV is the product of
RT3rdColRemoved (which is the rotation matrix between the image and the BEV), the camera
matrix K, and the matrix that makes the scale and makes left-top of the BEV to (0, 0).

H =

 bevScale 0 −bevWidth/2
0 bevScale −bevHeight
0 0 1

 ∗ K ∗ RT3rdColRemoved

Both the x and y coordinates of the original image corresponding to the BEV points
can be obtained using homography H. The x and y coordinate values are divided by the
width and height of the original image, multiplied by 65,525, converted into 16-bit data,
and then stored as images named LUT_X and LUT_Y, respectively.

4. Proposed Deep Learning Network

The network (Figure 2) consists of an encoder, a decoder, an LUT generator, and a
pose regressor. As loss functions, segmentation loss in the encoder, LUT loss in the LUT
generator, and pose loss in the pose regressor were used.

The input of the whole network is a three-channel RGB image, and the output is the
predicted pose and LUT of the BEV. The predicted pose is output through the encoder and
pose regressor, and the LUT is output through the encoder, decoder, and LUT generator.

The pose regressor is attached in the form of an add-on, and by connecting it, the
overall direction of the network is given and the performance is improved. The predicted
pose helps the user to intuitively monitor the learning progress during the learning process.

The image output in the LUT reduces the post-processing time because it enables the
BEV to be produced immediately after performing only the memory copy process and
simple interpolation operation without additional operation.

In Tables 1–5, C denotes the customizable channel, and H and W denote the height
and width of the input image (or input feature map), respectively.



Appl. Sci. 2021, 11, 8047 5 of 16

Figure 2. Entire network structure.

Table 1. (a). Encoder layer detail; (b). Encoder feature map detail.

(a)

Name In Channels Out Channels Layer Remarks

EL00 3 C Semantic segmentation

Encoder layer

EL01 C 16
2D convolution (kernel: 3; stride: 1; padding: 1)

EL02 3 16

EL03 16 64

Compress block
EL04 64 256

EL05 256 1024

EL06 1024 4096

(b)

Name Channel Height Width Remarks

EF00 3 H W

Encoder feature

EF01 C H W

EF02
16 H W

EF03

EF04
64 H/2 W/2

EF05

EF06
256 H/4 W/4

EF07

EF08
1024 H/8 W/8

EF09



Appl. Sci. 2021, 11, 8047 6 of 16

Table 1. Cont.

MF00
4096 H/16 W/16

Middle feature

MF01

MF02 64 H/2 W/2

MF03 256 H/4 W/4

MF04 1024 H/8 W/8

MF05 4096 H/16 W/16

Table 2. (a). Compress Block Layer Detail; (b). Compress block feature map detail. (c). Custom residual block layer detail.
(d). Custom residual block feature map detail.

(a)

Name In Channels Out Channels Layer Remarks

CL00
C 4C Custom residual block

Compress layer
CL01

CL02 4C 8C Concatenate

CL03 8C 4C 2D convolution (kernel: 3; stride: 1; padding: 1)

(b)

Name Channel Height Width Remarks

CF00
C H W

Compress feature

CF01

CF02
4C H/2 W/2

CF03

CF04 8C H/2 W/2

CF05

4C H/2 W/2CF06

CF07

(c)

Name In Channels Out Channels Layer Remarks

RL00 C 2C 2D convolution (kernel: 3; stride: 2; padding: 1)

Residual layer
RL01 2C 4C 2D convolution (kernel: 3; stride: 1; padding: 1)

RL02 C 4C 2D convolution (kernel: 3; stride: 2; padding: 1)

RL03 4C 4C Element Add

(d)

Name Channel Height Width Remarks

RF00 C H W

Residual feature

RF01 2C H/2 W/2

RF02 4C H/2 W/2

RF03 4C H/2 W/2

RF04 4C H/2 W/2

Table 3. (a). Decoder layer detail. (b). Decoder feature map detail.

(a)

Name In Channels Out Channels Layer Remarks

DL00 64 16 Pixel shuffle

Decoder layerDL01 64 16 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL02 256 64 Pixel shuffle



Appl. Sci. 2021, 11, 8047 7 of 16

Table 3. Cont.

DL03 256 64 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL04 64 16 Pixel shuffle

DL05 64 16 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL06 1024 256 Pixel shuffle

DL07 1024 256 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL08 256 64 Pixel shuffle

DL09 256 64 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL10 64 16 Pixel shuffle

DL11 64 16 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL12 4096 1024 Pixel shuffle

DL13 4096 1024 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL14 1024 256 Pixel shuffle

DL15 1024 256 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL16 256 64 Pixel shuffle

DL17 256 64 Convolution transposed (kernel: 2; stride: 2; padding: 0)

DL18 64 16 Pixel shuffle

DL19 64 16 Convolution transposed (kernel: 2; stride: 2; padding: 0)

(b)

Name Channel Height Width Remarks

DF00
64 H/2 W/2

Decoder feature

DF01

DF02
256 H/4 W/4

DF03

DF04
64 H/2 W/2

DF05

DF06
1024 H/8 W/8

DF07

DF08
256 H/4 W/4

DF09

DF10
64 H/2 W/2

DF11

MF02 64 H/2 W/2

Middle feature

MF03 256 H/4 W/4

MF04 1024 H/8 W/8

MF05 4096 H/16 W/16

MF06

16 H W

MF07

MF08

MF09

MF10

MF11

MF12

MF13



Appl. Sci. 2021, 11, 8047 8 of 16

Table 4. (a). LUT generator layer detail. (b). LUT generator feature map detail.

(a)

Name In Channels Out Channels Layer Remarks

LL00

16 32 Concatenate

LUT layer

LL01

LL02

LL03

LL04

32 16 2D convolution (kernel: 3; stride: 1; padding: 1)
LL05

LL06

LL07

LL08 16 64 Concatenate

LL09 64 16 2D convolution (kernel: 3; stride: 1; padding: 1)

LL10 16 3 2D convolution (kernel: 3; stride: 1; padding: 1)

(b)

Name Channel Height Width Remarks

LF00

32 H W

LUT feature

LF01

LF02

LF03

LF04

16 H W
LF05

LF06

LF07

LF08 64 H W

LF09 16 H W

LF10 3 H W

MF06

16 H W Middle feature

MF07

MF08

MF09

MF10

MF11

MF12

MF13

Table 5. (a). Pose regressor layer detail. (b). Pose regressor feature map detail.

(a)

Name In Channels Out Channels Layer Remarks

PL00 4096 8192 Concatenate

Pose layer
PL01 8192 1024 2D convolution (Kernel: 3; stride: 1; padding: 1)

PL02 1024 4HW Flatten (3D to 1D)

PL03 4HW 3 Fully connected layer



Appl. Sci. 2021, 11, 8047 9 of 16

Table 5. Cont.

(b)

Name Channel Height Width Remarks

PF00 8192 H/16 W/16

Pose Feature

PF01 1024 H/16 W/16

PF02 4HW 1 1

PF03 3 1 1

MF00
4096 H/16 W/16

MF01

4.1. Encoder

To create an LUT that converts to a BEV using a single camera, we used semantic
segmentation-based features [5] for the semantic segmentation backbone network. After
fitting the original image and the segmentation result to the same scale, down-sampling is
performed through the compress block. The output from each compress block comprises
encoded data for multiple scales, and through this, a network robust to multiple scales
is constructed.

The semantic segmentation layer aims to find precise boundaries for objects in the
image. In addition, since the proposed network aims to estimate the pose using image
features, we inserted a semantic segmentation layer into the encoder (Figure 3, Table 1) to
utilize the information on the precise boundary as a feature.

Figure 3. Encoder structure.

The compress block (Figure 4a, Table 2a,b) plays a role in integrating features using the
custom residual block (Figure 4b, Table 2c,d), referring to He et al. [17], and the structure
that fuses the original image and segmentation features.

Figure 4. (a) Compress block structure; (b) custom residual block structure.



Appl. Sci. 2021, 11, 8047 10 of 16

4.2. Decoder

Due to the characteristics of a camera that projects light in a specific space, far-distance
data are insufficient compared to near-distance data, which cause aliasing. We constructed
a parallel path to efficiently perform anti-aliasing by utilizing the features delivered from
the encoder.

A structure for restoring and up-scaling multi-scale encoded data was constructed by
composing a parallel path through the transposed convolution [8] and pixel shuffle [18] to
solve the aliasing phenomenon that may occur in the up-scaling process.

The decoder (Figure 5, Table 3) does not output a separate loss, but delivers data to
the LUT generator.

Figure 5. Decoder structure.

4.3. LUT Generator

Through converging and compressing the results obtained through the decoder, three
LUT channels were finally generated. The first/second channels represent x/y coordinates
of the original image, respectively, and the third channel represents the boundary for the
camera’s field of view (FoV) area during the LUT conversion process (the boundary value
is the max value, while the rest is the min value). Figure 6 and Table 4 show the structure
of the LUT generator.

Figure 6. LUT generator structure.



Appl. Sci. 2021, 11, 8047 11 of 16

4.4. Pose Regressor

In essence, the LUT is an interpretation of the geometrical information of the im-
age (the geometrical information described in this paper is the camera pose, that is, the
roll/pitch/yaw), so we must consider the camera pose regression from the network design
stage. To effectively add pose regression information to the network, we aimed to make the
network recognize the task of estimating the pose by attaching a pose regressor (Figure 7,
Table 5) to the network.

Figure 7. Pose regressor structure.

To estimate the pose, we compressed the encoder data and utilized the fully connected
layer [19] to understand the correspondence of all the information between the encoder
features [12].

In the angle expression method using the degree or radian, the non-continuous parts
such as 0 degrees/360 degrees and –π/π may hinder the learning performance, so cos is
used and then translated, while the region of the value is scaled to change from –1~1 to
0~1, and the activation function of the final layer is used as a sigmoid to efficiently infer
the value of 0~1.

5. Experiments
5.1. Loss Cost

Three feature points calculate loss cost. The seg loss is at the end of the segmentation
backbone of the encoder, the LUT loss is located at in LUT generator output, and the pose
loss is obtained from the pose regressor output.

The contour of the semantic segmentation feature must be precise to help improve
the entire network’s performance, so we output the segmentation loss using the pixel-wise
cross-entropy [20] of the segmentation.

The LUT loss is calculated through pixel-wise mean squared error (MSE), and the
weights of the first/second and third channels, which have different basic properties, are
experimentally learned differently.

For the result of the pose regressor, the pose loss is obtained by using the MSE. Due
to the relatively small number of elements, a smaller value is output compared to the
other losses.

Since the domain covered by each loss and the convergence speed in the learning
process are different, the weight multiplied by each loss cost in calculating the total loss
was experimentally obtained and is as follows.

SegLoss = CrossEntropy(Seg)



Appl. Sci. 2021, 11, 8047 12 of 16

LUTLoss = 5 ∗MSE(LUTX) + 5 ∗MSE(LUTY) + 3 ∗MSE(LUTFOV)

PoseLoss = MSE(Pose)

TotalLoss = 1 ∗ SegLoss + 5 ∗ LUTLoss + 100 ∗ PoseLoss

5.2. Quantitative Evaluation

In this paper, the seg loss is a learning measure for segmentation features inside the
network, and the LUT and pose losses are quantitative indicators for the LUT/3D spatial
angle, respectively (Table 6).

Table 6. Differences between the versions of the network (v1~v4).

No Scale Parallel Path Pose Regressor Processing Time (s) Seg Loss LUT Loss Pose Loss

v1 Single 2 pixel shuffles X 0.18 0.65 1.59 -

v2 Single Pixel shuffle and
convolution transposed X 0.20 0.58 0.09 -

v3 Multi Pixel shuffle and
convolution transposed X 0.74 0.22 0.04 -

v4 Multi Pixel shuffle and
convolution transposed O 0.81 0.14 0.01 0.14

We gradually changed the layers to infer the change in performance from the structural
evolution of our network (Table 7).

Table 7. Metrics of gradual change for the network.

From To Processing Time
Change (To/From)

Seg Loss
Change (To/From)

LUT Loss
Change (To/From)

v1 v2 1.11 0.89 0.06
v2 v3 3.70 0.38 0.44
v3 v4 1.09 0.64 0.25

The resolution representation of the encoder, decoder, and LUT generator was tested
with 1 (single scale)/4 (multi-scale), and the parallel path of the decoder was tested with
two pixel shuffles or pixel shuffle and convolution transposed. Finally, we tried to improve
the performance through the combination with a pose regressor.

All tests were inferenced in the NVIDIA GTX 1080 environment, and three losses
were evaluated.

If the parallel path composed of two pixel shuffles is changed to a layer consisting
of pixel shuffle and convolution transposed, the speed is 1.11 times slower, but the seg-
mentation loss is reduced 0.89 times and the LUT loss is significantly reduced as well
(0.06 times).

If the resolution representation considered by the encoder, decoder, and LUT generator
is changed from single scale to multi-scale, the speed is 3.7 times slower, the seg-mentation
loss is 0.38 times less, and the LUT loss is 0.44 times less, so we can see that the loss
decreases. When changing to multi-scale, we can see that the segmentation loss is signifi-
cantly reduced.

When learning that by adding a pose regressor to the end of the encoder, the speed is
only reduced 1.09 times, but the segmentation loss is reduced 0.64 times and the LUT loss by
0.25 times, we can see that the loss cost is significantly reduced, while the processing speed
is slightly increased. Through this, we can understand that it is meaningful to connect the
pose regressor to the end of the encoder to obtain the direction of the entire network.

5.3. Qualitative Evaluation

Since the coordinates of the original image corresponding to each coordinate of the
BEV can be estimated using the LUT data obtained from the end of the network, the BEV



Appl. Sci. 2021, 11, 8047 13 of 16

was generated through this value. It was tested using two map data of Chungbuk National
University (CBNU) and KATRI K-city (Tables 8 and 9).

Table 8. Chungbuk National University map-based BEV generation evaluation.

Origin

GT

v1

v2

v3

v4



Appl. Sci. 2021, 11, 8047 14 of 16

Table 9. KATRI K-city map-based BEV generation evaluation.

Origin

GT

v1

v2

v3

v4

As we progressed from v1 to v4, the aliasing decreased. Particularly, if we compare v3
(without a pose regressor) and v4 (with a pose regressor), we can see that the concept of
the overall pose is added, and the distant region is converted relatively well.

6. Conclusions

In this work, we studied BEV conversion based on a single camera image. We used
segmentation backbone-based features during the study, and the performance difference



Appl. Sci. 2021, 11, 8047 15 of 16

before and after attachment was analyzed by adding on a pose regressor. Since it is
challenging to collect various camera poses using an actual camera, we tested the network
through a simulator.

We plan to conduct research using actual camera data (or actual + synthetic data) in
this network in the future and try to reduce aliasing by improving the network. In addition,
to supplement the characteristics of a single camera, which makes it difficult to estimate
scale, it is intended to produce a real distance-based BEV with an explicit unit rather than a
relatively real distance through combination with a ToF sensor or other odometry methods,
as with adjacent frames of a single camera.

Author Contributions: Conceptualization, D.L., W.P.T.; methodology, D.L., W.P.T.; validation,
D.L.; writing—original draft preparation, D.L.; writing—review and editing, S.-C.K.; supervision,
S.-C.K.; funding acquisition, S.-C.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the MOTIE (Ministry of Trade, Industry, and Energy) in
Korea, under the Fostering Global Talents for Innovative Growth Program (P0008751) supervised
by the Korea Institute for Advancement of Technology (KIAT). This research was supported by
the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research
Center support program (IITP-2021-2020-0-01462) supervised by the IITP (Institute for Information &
communications Technology Planning & Evaluation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Choi, D.Y.; Choi, J.H.; Choi, J.W.; Song, B.C. CNN-based Pre-Processing and Multi-Frame-Based View Transformation for Fisheye

Camera-Based AVM System. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing,
China, 17–20 September 2017.

2. Zhu, X.; Yin, Z.; Shi, J.; Li, H.; Lin, D. Generative Adversarial Frontal View to Bird View Synthesis. In Proceedings of the 2018
International conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018.

3. Chao, P.; Kao, C.Y.; Ruan, Y.S.; Huang, C.H.; Lin, Y.L. HarDNet: A low memory traffic network. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.

4. Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road
Scenes. arXiv 2021, arXiv:2101.06085.

5. Tao, A.; Sapra, K.; Catanzaro, B. Hierarchical Multi-scale Attention for Semantic Segmentation. arXiv 2020, arXiv:2005.10821.
6. Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for

Semantic Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018.

7. Hsu, C.M.; Chen, J.Y. Around View Monitoring-Based Vacant Parking Space Detection and Analysis. Appl. Sci. 2019, 9, 3403.
[CrossRef]

8. Lee, D.; Lee, J.S.; Lee, S.; Kee, S.C. The Real-time Implementation for the Parking Line Departure Warning System. In Proceedings
of the 3rd IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 3–5 September 2018.

9. Dhall, A.; Chelani, K.; Radhakrishnan, V.; Krishna, K.M. LiDAR-Camera Calibration using 3D-3D Point correspondences. arXiv
2017, arXiv:1705.09785.

10. Lee, D.; Kee, S.C. Real-time Implementation of the Parking Line Departure Warning System Using Partitioned Vehicle Region
Images. Trans. KSAE 2019, 7, 553–560.

11. Le, H.; Liu, F.; Zhang, S.; Agarwala, A. Deep Homography Estimation for Dynamic Scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

12. Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial Transformer Networks. In Proceedings of the Conference on Neural
Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015.

13. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9
October 2015.

14. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In
Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014.

http://doi.org/10.3390/app9163403


Appl. Sci. 2021, 11, 8047 16 of 16

15. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets Robotics: The KITTI Dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

16. MORAI Sim Standard. Available online: http://www.morai.ai (accessed on 30 August 2021).
17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
18. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Wang, Z. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

19. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten
zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

20. Rubenstein, R.Y.; Kroese, D.P.; Cohen, I.; Porotsky, S.; Taimre, T. Cross-Entropy Method; Springer: Boston, MA, USA, 2013.

http://doi.org/10.1177/0278364913491297
http://www.morai.ai
http://doi.org/10.1162/neco.1989.1.4.541

	Introduction 
	Related Work 
	Synthetic Database 
	Data Collection 
	LUT Generation 

	Proposed Deep Learning Network 
	Encoder 
	Decoder 
	LUT Generator 
	Pose Regressor 

	Experiments 
	Loss Cost 
	Quantitative Evaluation 
	Qualitative Evaluation 

	Conclusions 
	References

