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Abstract: The amphipod (Hyalella azteca) and zebrafish (Brachydanio rerio) embryos were used for
toxicological sediment porewater testing. Porewaters from 35 sampling stations of eight streams in
southern Taiwan were screened for toxic effects and their relationship with 6 metal and 16 polycyclic
aromatic hydrocarbons (PAHs). Concentration analysis results showed that the following PAHs,
naphththalene, benzo(b)fluoranthene, dibenz(a,h)anthracene, acenaphthalene, and the heavy metal
cadmium were not detected in 35 sampling stations. The highest detection rate of 94.1% was caused
by the PAHs fluoranthene and pyrene. The highest detection rate of the metal zinc was 88.6% of
35 analyzed samples. The majority of samples (88%) were classified as level tier 1 according to
USEPA national sediment inventory. This indicates the probability of adverse effects on aquatic life
or human health. The results of a zebrafish embryo test showed that heart rate and survival were
significantly reduced with all porewater samples. Therefore, fish exposed to contaminated river
conditions may be affected in their cardiovascular functions. Looking at correlations between toxic
effects of metals and PAHs, we found that phenanthrene, anthracene, pyrene, benzo(a)anthracene,
chrysene, benzo(b)fluoranthene, and benzo(a)pyrene were low, while fluorene was highly correlated
with toxic effects of metals.

Keywords: river sediment pollution; trace metal; PAHs; toxic chemical; biomarker; circulatory function

1. Introduction

Sediments are deposits on the bottom of a water body and are naturally composed of
sand, clay, soil, organic matter, and other minerals [1,2]. Sediments are also a sink, reservoir,
and source of pollutants that harm natural water bodies and aquatic organisms [3–5].
Various chemical substances accumulate in sediments, which proves toxic effects on aquatic
habitats and ecosystems [6]. Sediment porewater is defined as the water occupying the
space between sediment particles which constantly remains in contact with sediments.
Therefore, pollutants may be exchanged between sediment and porewater through dynamic
equilibrium distribution [7]. Sediment particles are also where the benthic burrowing
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organisms depend on their livelihoods, so porewater is considered as an important toxic
exposure pathway for benthic organisms [8], but chemical data can also directly provide
relevant information for the interpretation of sediment toxicity data [6]. In recent years,
porewater has become a valuable tool for evaluating the mobility, bioavailability, and
toxicity of various pollutants [8–11].

Generally, indications provided from chemical analysis and biological exposure are
used to evaluate whether—pollutants cause toxicity to organisms. Benthic communities
are frequently used as indicators for watershed biomonitoring [12,13]. More recently,
scientists studied the distribution and toxic effects of heavy metals and PAHs [14–20].
Micropollutants such as metals and organics can affect benthic communities by altering
their physiology as well as their structure [20,21]. Polycyclic aromatic hydrocarbons (PAHs)
are a class of the most important organic compounds containing stable aromatic rings as
their molecular skeleton. They are lipophilic, carcinogenic, and have a tendency to adsorb
to sediment particles [22–24]. They are not easy to degrade in the environment [23,25]. The
main sources of PAH contamination are oil spills and hospital and municipal discharge.
PAHs also accumulate in the organs of fish or other aquatic organisms, possibly with dif-
ferent affinities to different organs and tissues (e.g., the concentration of PAHs in gill may
be greater than in muscle) [26,27]. This way, they are seriously endangering environmental
integrity and human health. Approximately 130 PAHs have been identified [28]. The US
EPA has classified 16 of the PAHs as priority-pollutants based on toxicity, their potential
for human exposure, frequency of occurrence at hazardous waste sites, and the extent
of information availability. These include: naphthalene, acenaphthylene, acenaphthene,
fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene,
benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[g,h,i] perylene, in-
deno [1,2,3-c,d]pyrene, and dibenz[a,h]anthracene [29]. Among them, benzo(a)pyrene is
currently regarded as most toxic according to the toxic equivalent quantity (TEQ) due to its
highest potency in terms of carcinogenicity [30].

Metals and metalloids are collectively referred to as heavy metals [31]. Some heavy
metals, also called trace metals (e.g., Mn, Fe, Co, Ni), are essential to organisms, while
other heavy metals (e.g., Cd, Pb, and Hg) are nonessential and usually toxic even in
trace amounts [32]. These nonessential metals can be transferred to higher trophic levels
through the food chain, and then they also provide potential risks to aquatic life and
human health [33–35]. They are deposited and released into the receiving waters and
become bioavailable through aquatic food chains and are possibly hazardous to fishes
and other aquatic populations [36,37]. Often pollutant storage reservoirs may cause toxic
effects on benthic aquatic organisms, because their growth, reproduction, feeding, and
other behaviors are taking place in the sediment [5]. Therefore, benthic organisms are often
used as bioindicators to reflect the overall effects caused by a mixture of pollutants [30]. In
this study, the amphipod Hyalella azteca and zebrafish embryos were used as biological test
species to screen the sediments of eight streams in the south of Taiwan by conducting a
48 h porewater acute toxicity test. At the same time, the concentrations of metals and PAHs
were measured in order to understand the relationship between toxicological response and
chemical analysis in an attempt to explore the level of sediment pollution.

2. Materials and Methods
2.1. Sample Collection

In this study, thirty-five sediment samples were collected from eight rivers located in
southern Taiwan (Houjin river—HJ, Donggang river—DG, Yanyan river—YS, Sanye river—
SY, Dianbao river—DB, Agongdian river—AGD, Wuluo river—WR, and Niuchou river—
LK) (as shown in Figure 1). Approximately 10 kg of sediment was collected from each
sampling site, centrifuged after collection to obtain porewater, and stored in a refrigerator
at 4 ◦C for subsequent biological and chemical experiments.
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Figure 1. Sampling sites of riverine sediments in southern Taiwan.

2.2. Sediment Porewater Toxicity Testing with the Amphipod Hyalella azteca

Hyalella azteca is an epibenthic and phytal amphipod which plays a vital role in
ecosystem resilience due to its detritus-feeding and potential high abundance in nature.
It is widely distributed in the freshwaters of North America, South America, and the
Caribbean. Algae, epiphytes, and sediment particles are the main food sources of this
amphipod. It is about 3–8 mm long (males are larger than females) and considered to be
sensitive to aquatic pollutants [38]. It is known to tolerate slight salinity changes, but not
to survive pH conditions of less than 6.0.

Centrifuged porewater (50 mL) was obtained and kept at 4 ◦C until analysis. Water
parameters such as pH, conductivity, temperature, and dissolved oxygen were measured
before and after this process at room temperature. Specimens of H. azteca, aged between
7 and 10 days, were selected to ensure that the test organisms were similar. H. azteca in
reconstituted water (96 mg/L NaHCO3, 30 mg/L MgSO4, 4 mg/L KCl, 50 mg/L CaSO4,
and 50 mg/L CaCl2 were dissolved in deionized water and aerated vigorously for at least
24 h) was used as controls. Operating conditions included a photoperiod of 16 L:8 D,
temperature 23 ± 1 ◦C, and 20 mL reconstituted water/sample volume. Samples were
tested in duplicates of 10 test organisms per beaker and the controls were reconstituted
waters following a standard method. Ten individuals were placed in a beaker for 48 h
exposure, and their survival rates were compared. Differential survival with samples was
then compared to the control (80%) to estimate the level of toxicological risk.

In this study, after adjusting the results to the control group, samples with a relative
survival rate of <75% were defined as being toxic to organisms following US EPA sug-
gestions [39,40]. The relative survival rate was obtained from the ratio of the observed
survival rate of the sample organisms compared to the expected survival rate of the control
group (Equation (1)).

Relative survival rate =
Observed survival rate
Expected survival rate

× 100 (1)
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It was suggested that if the adjusted survival rate of organisms was less than 75%, this
would cause adverse effects on aquatic organisms and human health. If the survival rate
was between 75% and 90% for aquatic organisms, human health could be harmed, and if
aquatic organisms showed a survival rate >90%, human health was certainly affected [40].

2.3. Sediment Porewater Toxicity Testing with Zebrafish Embryos

Mature wild zebrafish (AB strain wild type) were obtained from the Taiwan Zebrafish
Core Facility at Academia Sinica (TZCAS). The experimental protocol was approved
(approval no. NPUST-102-041) by the Institutional Animal Care and Use Committee
(IACUC) of NPUST. Briefly, the zebrafish were raised at 28 ◦C in a circulating water tank.
The photoperiod was set at 14/10 h light/dark cycle and mature wild zebrafish were fed
with commercial ornamental fish food twice a day. The fertilized eggs obtained from the
free spawning zebrafish were used for the assessment of developmental toxicity of the
35 porewater samples.

The one-cell stage of zebrafish fertilized eggs was evaluated for the toxicity of porewa-
ter and the experiment was carried out in 12-well plates. Thirty fertilized eggs of zebrafish
were placed in each well containing 2 mL of aerated porewater samples. The porewater
was refilled daily to record the survival rate, hatching rate, and deformity rate of zebrafish
and the deformity pattern was observed using a dissecting microscope (Leica Z16-APO,
Leica Microsystems Inc., Wetzlar, Germany). Fertilized eggs in aerated water (5.03 mM
NaCl, 0.33 mM MgSO4·7H2O, 0.17 mM KCl, and 0.33 mM CaCl2·2H2O) were dissolved in
deionized water, aerated vigorously for at least 8 h, and used as controls. Controls and all
treatment groups were made in triplicate. The heartbeat rate of 6 hatched zebrafish per
replicated treatment was evaluated on the third day as recorded by microscopic observation
every minute. The experimental results were analyzed statistically by t-test and p < 0.05
was regarded as significantly different.

2.4. Analysis of Polycyclic Aromatic Hydrocarbons (PAHs)

The porewater samples were filtered through a 0.22 µm filter membrane (syringe filter,
diameter 13 mm, PVDF) which was followed by solid phase extraction (LiChrolut RP18®

500 mg, 6 mL Merck, Darmstadt, Germany). Related to the concentration of the solvent,
the PAHs concentration was measured by Ultra performance liquid chromatography
(UPLC) (Waters, Milford, MA, USA) coupled with a photodiode array detector (PDA) and
a fluorescence detector for analysis and quantification. The separation was carried out on
a UPLC® BEH Shield RP18 (2.1 × 150 mm, 1.7 µm) column, with ultra-pure water and
acetonitrile as the mobile phase for gradient elution. For acenaphthylene, the UV detector
wavelength was set at 228 nm. The elution conditions to separate the target compounds by
fluorescence detection, and method detection limits (MDL) are shown as supplementary
material (Tables S1–S3). The linear correlation coefficient (R) for all compounds was >0.995.

2.5. Analysis of Trace Metals

Sample pretreatment and analysis were followed by NIEA standard method (NIEA
M353.01C). Porewater samples were filtered through cellulose acetate filters (pore diameter,
0.45 µm). The filtrate was acidified with 1% trace-metal grade nitric acid as a pre-treatment.
The extracted portion was detected using an inductively coupled plasma optical emission
spectrometer (ICP-OES, Optima 2100 Perkin-Elmer, Waltham, WA, USA) for Cr, Ni, Cu, Zn,
Pb, and Cd analysis.

2.6. Calculations of Porewater Toxicity by Interstitial Water Benchmark Units (IWBUs)/Interstitial
Water Toxic Units (IWTU)

The pollutant distribution between the sediment and the porewater is expected to
cause different toxic effects. It is not proper to restrict toxicity evaluation to either result.
Therefore, interstitial water benchmark units (IWBUs) can be used to predict the toxic
effects of various metals on aquatic organisms. These IWBU values are calculated based on
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the porewater concentration and the final chronic value (FCV) as proposed by Di Toro et al.
in 2005 (Equation (2), Table 1).

∑ i
Mi

FCVi
=

MCu
FCVCu

+
MPb

FCVPb
+

MNi
FCVNi

+
MZn

FCVZn
+

MCd
FCVCd

(2)

Table 1. Derived final chronic values from dissolved water concentrations.

Metal Freshwater FCV

Cu 0.960[e(0.8545[ln(hardness)]−1.465)]
Pb 0.791[e(1.273[ln(hardness)]−4.705)]
Ni 0.997[e(0.8460[ln(hardness)]+1.1645)]
Zn 0.986[e(0.8473[ln(hardness)]+0.7614)]
Cd CF [e(0.7852[ln(hardness)]−3.490]

CF = 1.101672—[(ln hardness)(0.041838)] (revised from Di Toro et al., 2005).

For PAHs, the dissolved phase concentrations (Cd) of each nonionic organic contami-
nant are divided by its corresponding FCV to derive interstitial water toxic units (IWTUs)
(Equation (3)). Table 2 shows Cd, PAHi, FCVi values for the 16 compounds.

∑
i

IWTUFCV,16 = ∑ i
Cd

Cd, PAHi,FCVi
(3)

Table 2. The final chronic values for the 16 PAHs.

Compound FCV (µg/L) Compound FCV (µg/L)

Acenaphthene 55.85 Chrysene 2.042
Acenaphthylene 306.9 Dibenz[a,h]anthracene 0.2825

Anthracene 20.73 Fluorene 39.3
Benzo[a]anthracene 2.227 Fluoranthen 7.109

Benzo[a]pyrene 0.9573 Indeno[1,2,3-c,d]pyrene 0.275
Benzo[b]fluoranthene 0.6774 Phenanthrene 19.13
Benzo[k]fluoranthene 0.6415 Pyrene 10.11
Benzo[g,h,i]perylene 0.4391 Naphthalene 193.55

Source: U.S. EPA (2003) [41].

In sediments in which IWBUs or IWTU is >1.0, benthic organisms are not protected
and adverse effects may occur. Conversely, if the IWBUs/IWTU is ≤1.0, sediment toxicity
due to mixing of contaminants is unlikely.

3. Results and Discussion

Four water parameters were routinely monitored during the toxicity testing proce-
dures, including temperature, pH, dissolved oxygen, and conductivity. Since the test was
commonly performed under controlled conditions, at constant temperature, water temper-
ature was commonly the least varying factor. The pH, dissolved oxygen, and conductivity
are shown in Table 3, before and after exposure.
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Table 3. pH, dissolved oxygen, and conductivity in sediment porewaters during toxicity testing.

Site
pH Dissolved Oxygen

(mg/L)
Conductivity
(µmho/cm)

Initial End Initial End Initial End

BK 7.78 8.86 5.81 4.93 16 18

YS1 8.15 8.52 4.52 5.39 576 560

YS2 8.22 8.44 4.80 5.86 1090 1100

YS3 8.36 8.72 4.44 5.94 1040 1040

YS4 8.68 8.69 5.52 5.83 178 182

YS5 8.34 8.80 5.43 5.85 184 188

SY1 8.02 8.45 4.73 6.46 1990 1960

SY2 8.07 8.40 3.86 5.47 1670 1730

SY3 8.14 8.56 4.26 6.82 1210 1220

AGD1 8.30 8.61 2.70 6.36 77 73

AGD2 8.43 8.31 4.26 5.55 84 65

DB1 7.97 8.61 3.89 5.80 1560 1610

DB2 8.27 8.61 4.75 5.90 1710 1710

DB3 8.35 8.59 5.44 5.71 877 887

DB4 7.82 8.30 4.64 5.18 788 783

DB5 7.90 8.60 4.86 5.59 890 903

HJ1 7.81 8.41 2.04 5.89 85 92

HJ2 7.76 8.51 2.16 1.62 73 86

HJ3 8.29 8.30 1.73 1.26 78 80

HJ4 8.53 8.81 1.21 1.45 90 76

HJ5 7.89 7.84 2.28 1.29 74 106

HJ6 8.10 8.56 2.89 1.09 123 72

HJ7 8.14 8.80 1.25 1.56 1490 1690

LK1 8.39 8.36 4.42 5.69 83 56

LK2 8.40 8.47 4.40 5.64 67 56

LK3 8.36 8.50 4.46 5.47 92 83

WR1 8.48 8.55 3.47 5.83 133 105

WR2 8.19 7.89 4.22 5.56 48 50

WR3 8.57 8.71 4.28 5.83 79 69

WR4 8.38 8.23 4.30 5.52 65 50

WR5 8.48 8.20 5.25 6.14 116 107

WR6 8.10 8.39 3.87 5.37 102 86

DG1 7.62 8.40 1.04 1.20 680 660

DG2 8.07 8.35 1.21 1.29 21 24

DG3 8.25 8.71 2.19 1.73 54 37

DG4 8.02 8.72 2.33 1.26 20 24
Houjin river—HJ, Donggang river—DG, Yanyan river—YS, Sanye river—SY, Dianbao river—DB, Agongdian
river—AGD, Wuluo river—WR, and Niuchou river—LK.

3.1. Water Quality Monitoring of Porewater Samples

The test results showed that the pH values of all porewater samples were between 7.62
and 8.68, which approximated a pH ranging from 6.5 to 8.5. The dissolved oxygen values
of 35 sampling sites ranged from 1.04 to 5.44 mg/L. Vaquer-Sunyer and Duarte [42] stated
that most crustaceans begin to show elevated mortality when the dissolved oxygen reaches
below 2.45 ± 0.14 mg/L, whereas dissolved oxygen levels in the rivers of HJ and DG in



Appl. Sci. 2021, 11, 8021 7 of 17

this study were both lower than 2.45 mg/L and thus were worthy of further discussion of
the physiological effects of dissolved oxygen. Conductivity increased due to an increase in
salinity. Sampling sites HJ7 and DG1 were closer to the ocean, and the conductivity was
relatively higher here than at the inland sites. In addition, site YS crossed the industrial
area, and sites such as DB and SY were adjacent to the factory area. Therefore, discharged
sewage led to relatively higher electrical conductivity.

3.2. Survival Rate of Hyalella azteca Exposed to Whole Sediment Porewater Samples

In this study, 88% of the 35 sample stations had adverse effects on aquatic organisms
and with this on human health. The survival of the remaining 12% sites was between 75%
and 90%, showing that the sediment pollutants of eight streams in the southern region
had a great variation. The results of 35 survival rates of porewater exposure are shown in
Figure 2, demonstrating different potential ecological risks.
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Figure 2. Survival rate of Hyalella azteca exposed to 35 sediment porewater samples in eight river basins. Error bars represent
standard deviations (n = 2).

Figure 2 shows the survival rate of H. azteca in sediment porewaters. The mean control
survival of H. azteca in the 48 h exposures met test acceptability criteria for survival [39,43].
Higher amphipod survival rates (>80%) were found at the following sites: DB3, DB5,
AGD1, HJ1, HJ4, DG1, DG2, and DG4. All amphipods died in porewaters from sites DB1,
DB2, SY1, SY2, SY3, HJ7, LK1, LK3, and WR. This indicates that the Sanye River (sites
designated as SY) and Niuchou River (designated as LK) showed acute toxic effects on
benthic invertebrates.

It was suggested that if the adjusted survival rate of organisms was less than 75% this
would cause adverse effects on aquatic organisms and human health. If the survival rate
was between 75% and 90% for aquatic organisms, human health could be harmed and if
aquatic organisms showed a survival rate > 90%, human health was certainly affected [40].

3.3. Toxic Effects of Sediment Porewater on Zebrafish Embryos

In this research, the effects of 35 sediment porewater samples on the development of
zebrafish in different regions of Taiwan were evaluated after four days of exposure. The
results of mortality, hatchability, and deformity rate on zebrafish embryos were recorded
daily to evaluate the toxic effects of the sediment porewater as shown in Figures 3–5.
Embryos of nearly all fertilized eggs hatched on the third day of the general culture and
the hatchability reached more than 98% in cases. In some instances, the control group
could also show abnormal development due to physical differences between the organisms.
However, the deformity ratio of the control group was low at about 1%. The samples
tested were based on the results of mortality and nine sediment porewater samples, HJ7,
DB 1~5, and SY 1~3 were classified as being acutely toxic where all zebrafish embryos
died after one day of immersion. The toxicity of four samples from YS4, WR1, WR 3, and
WR 6 showed the second highest toxicity, which could also be classified as the highest
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toxicity due to the fact that all zebrafish embryos were dead after a two-day exposure.
When zebrafish embryos were exposed to porewater samples from HJ3, DG1, LK1, LK2,
HJ2, LK3, YS1~3, WR2, WR 4, and WR 5, either all of them died or the survival rate was
lower than 20% on the third day. We classified such porewater samples as moderately toxic.
The other 10 porewater samples (HJ1, DG3, HJ5, DG4, YS5, HJ6, AGD1, AGD2, HJ4, and
DG2) were classified as less toxic. The survival rate here was still roughly higher than
15% on the fourth day of exposure. The embryonic development of zebrafish lasted for
about 2 days and the main organs of zebrafish were developing thereafter until larval fishes
hatched from their eggs. The development of zebrafish was seriously affected by pollutants
contained in the porewater samples, causing incomplete development of organs in the
fish embryos as shown in Figures 3–5. In terms of deformity, a high deformity ratio was
discovered in the moderate toxicity samples HJ3 and YS3. At site HJ3, 78% of the samples
showed deformation while the survival rate was still below 69% on the second day. Recent
research found that there were up to 85% deformities in the surviving individuals of the
porewater sample from YS3. The remaining less toxic samples showed that mortality and
deformity rates increased at longer treatment periods. Moreover, the hatching rate was low
and showed delays until hatching. Although less toxic samples were classified with low
toxicity, they still showed a significant toxic effect compared to the control group.
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Figure 3. Toxic effects on survival, hatching rate, and deformity rate of zebrafish embryos of river sediment porewater from
different sampling sites in Tainan city. Error bars represent standard deviations (n = 3).
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Figure 4. Toxic effects on survival, hatching rate, and deformity rate of zebrafish embryos of river sediment porewater from
different sampling sites in Kaohsiung city. Error bars represent standard deviations (n = 3).
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Figure 5. Toxic effects on survival, hatching rate, and deformity rate of zebrafish embryos of river sediment porewater from
different sampling sites in Pingtung city. Error bars represent standard deviations (n = 3).

3.4. Toxic Effects of Sediment Porewater on Zebrafish Embryos

In general, zebrafish hatch after 2~3 days post-fertilization (2 dpf), when most of the
organs are developed. In our study, the morphology of zebrafish was observed on the 2nd
and 3rd day of sediment porewater immersion with results shown in Figures S1 and S2.
The zebrafish in the control group show normal development on the 2nd day. Their eyes,
trunk, and yolk sacs indicate a clear formation of melanin; however, most samples from
sediment porewater of different rivers show developmental stagnation (such as sample
HJ3-1, HJ3-2, HJ2, HJ3, and HJ5-2) and effects of delay. Deformity of spinal cord and tail
curvature could also be observed (sample HJ5-1, DG4-1, DG4-2, YS1-1, WR4-3, and others).
The number of melanophores of the control group on the 3rd day increased significantly
compared to the 2nd day sample. The samples treated with sediment porewater not only
showed developmental stagnation and delays, some embryos also showed tail deformities
and necrosis (such as AGD1-1, AGD1-2, AGD1-3, YS2-1, HJ6-3, HJ5-1, HJ5-3, DG4-1, DG4-2,
DG4-3, DG3-1, DG3-2, and DG3-3). Pericardial edema was also found in samples DG1-1,
DG4-2, HJ-3, DG3-1, and DG3-3.

3.5. Toxic Effects on Embryonic Cardiac Function

The cardiovascular system is the first organ system to form during embryonic de-
velopment. The circulatory system is also a key factor for embryonic survival. In acute
embryonic toxicity testing, the heart rate of hatching zebra fry was determined after the
third day. The variations of embryonic heartbeat of zebrafish are shown in Figure 6. The
porewater samples DG1, LK2, YS1, and YS2 caused a significant decrease in heartbeat
compared to the control group. The average heartbeat rate of zebrafish in the control group
was about 185 times per minute (taken as 100%), while the heartbeat rates were dropping
to 133 and 115 per minute in toxic samples from stations YS1 and YS2. There show the
most significant effects with heartbeat dropping down to 71% and 62%. The heartbeat
rate of moderately toxic samples (HJ3, LK1, HJ2, LK3, YS3, WR2, WR4, and WR5), cannot
be measured due to insufficient fish larvae which were dead or deformed on the third
day. The effect of low toxicity (survival ratio was still roughly higher than 15% on the
fourth day of exposure) samples (HJ1, HJ4, DG2, DG3, DG4, HJ5, HJ6, YS6, AGD1, and
AGD2) on heart rate was evaluated and the results are shown in Figure 6. Low toxicity
samples also caused a significant decrease in heartbeat rate. Compared to the control group,
the degree of decline was between 80% (AGD1) to 93% (DG4). Overall, the decreasing
tendency of the heartbeat rate was less in moderately toxic samples YS1 and YS2. The
results showed that both medium toxic and low toxic samples can significantly cause a
decrease in heartbeat rate, which indicates that the heart beat and circulatory function of
fish generally deteriorated when exposed to sediment leachates of the two rivers.
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embryos exposed for 72 h at sampling stations with slightly toxic and moderately toxic porewaters. Error bars represent
the standard deviation of the six zebrafish embryos. * p < 0.05 indicates significant differences between the control and
exposure groups.

3.6. Comparative Results of PAH Concentrations

For chemical analysis, naphthalene, benzo(b)fluoranthene, dibenz(a,h)anthracene,
and acenaphthalene were not detected in any of the porewater samples. Among the
detected PAHs, fluoranthene was the most abundant quantified PAH in the porewater
at all stations, followed by pyrene. High concentrations of the B[a]A, CHRY, and FLTH
at site HJ were probably due to the five major industrial pollution sources (refineries,
export processing zones, two industrial zones, and plastic manufacturing) found nearby,
which bear a large amount of industrial wastewater and household sewage. Site DG1
was surrounded by livestock industries in the region which caused livestock wastewater
pollution. The pollution sources in River YS could be related to domestic wastewater
and additional wastewater discharge from the Linhai Industrial Zone and surrounding
steel plant. Moreover, the mainstream of SY is crossing through two major industrial
areas, coupled with discharged wastewater from the livestock industry. Pollution at river
DB is due to the metal industry along the river, causing serious metallic and domestic
wastewater pollution. These are caused by the major metal surface treatment industry and
animal husbandry in the AGD upstream. The main pollution source impact of livestock
wastewater on the WR and LK may be related to high concentrations of PAHs. The results
of chemical analysis are shown in Table 4.

The ΣPAHs in the porewater of the 35 stations ranged from 0.085 to 378 µg/L,
and the average ΣPAHs of the eight streams ranged from 4.807 ± 5.614 (AGD river)
to 69.846 ± 151.487 (WR river).The sampling station with the highest ΣPAHs was WR1,
followed by HJ1. Studies showed that the concentration of ΣPAHs in the porewater ranged
between 48.2 and 205.7 µg/L from the Lanzhou Reach of the Yellow River (China). The
concentration of ΣPAHs detected in the porewater of the Mersey Estuary (UK) ranged from
0.095 to 0.742 µg/L [44]. The concentration range within porewater of Xiamen Harbor
(China) was <1 to 3548 ng/L [45]. The total PAHs detected in the Jiulong River Estuary and
Western Xiamen Sea, China ranged from 158 to 949 µg/L [46]. Compared to other studies,
the concentrations of the 16 PAHs in the porewaters of this study are still slightly higher
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than in other aquatic environments, indicating that the toxicity of the porewater is worthy
of a follow-up discussion.

Table 4. Concentrations of 16 PAHs in sediment porewaters.

Sites ACE ACY ANTH B[a]A B[a]P B[b]F B[k]F B[ghi]P CHRY D[ah]A FLU FLTH IND PHEN PYR NAP

YS1 ND ND ND 6.686 ND ND ND ND 0.988 ND ND 0.178 ND ND 0.084 ND
YS2 ND ND 0.808 6.901 ND ND ND ND ND ND ND 0.174 ND ND 0.088 ND
YS3 ND ND 0.422 6.964 ND ND ND ND ND ND ND 0.193 ND ND 0.096 ND
YS4 ND ND 0.384 6.691 ND ND ND ND 2.289 ND ND 0.18 ND ND 0.086 ND
YS5 ND ND 0.93 6.687 ND ND 0.007 ND 1.378 ND ND 0.179 ND ND 0.084 ND
SY1 ND ND 0.671 6.691 ND ND ND ND 1.238 ND ND 0.261 ND ND 0.086 ND
SY2 ND ND 0.647 ND ND ND 0.001 ND ND ND ND ND ND ND 0.084 ND
SY3 ND ND ND 6.699 ND ND ND ND 1.898 ND ND 0.223 ND 2.764 0.096 ND

AGD1 ND ND 0.794 7.329 ND ND ND ND ND ND ND 0.284 ND 0.282 0.088 ND
AGD2 0.139 ND 0.312 ND ND ND 0.001 ND ND ND 0.113 0.185 ND ND 0.087 ND
DB1 ND ND 0.364 6.882 0.168 ND ND ND 9.056 ND ND 0.239 ND ND ND ND
DB2 ND ND 0.271 6.712 ND ND ND ND 2.707 ND ND 0.188 ND ND 0.085 ND
DB3 ND ND ND 6.696 ND ND 0.006 ND 0.682 ND ND 0.179 0.87 5.717 0.084 ND
DB4 ND ND ND ND ND ND ND ND ND ND 0.113 0.189 0.238 0.237 0.095 ND
DB5 ND ND ND 6.773 ND ND 0.031 ND 4.026 ND ND 0.215 ND ND 0.106 ND
HJ1 0.155 ND 1.122 8.604 ND ND 0.89 ND 90.095 ND 0.11 0.364 ND 0.575 0.09 ND
HJ2 ND ND 0.997 7.189 ND ND 0.059 0.08 1.935 ND ND 0.179 ND ND ND ND
HJ3 0.148 ND ND 6.814 ND ND 0.057 ND 7.37 ND 0.11 0.19 ND ND 0.087 ND
HJ4 ND ND 0.771 ND ND ND 0.001 ND ND ND 0.113 0.178 ND 0.243 0.093 ND
HJ5 ND ND 0.32 6.925 ND ND 0.144 ND 18.027 ND 0.117 0.226 0.242 0.274 0.085 ND
HJ6 ND ND 0.534 6.707 ND ND 0.015 ND 2.408 ND ND 0.184 ND 0.234 0.086 ND
HJ7 ND ND 0.232 7.71 ND ND 0.382 ND 48.618 ND ND 0.277 ND 0.351 0.089 ND
LK1 ND ND 1.098 6.857 ND ND 0.037 ND 5.022 ND ND 0.185 0.238 ND 0.084 ND
LK2 ND ND ND ND ND ND 0.001 ND ND ND ND ND ND ND 0.084 ND
LK3 ND ND 0.201 44.305 ND ND 0.165 ND 0.247 ND ND 0.25 ND 0.312 0.089 ND
WR1 ND ND 0.214 14.678 0.015 ND 3.782 ND 356.24 ND ND 1.182 ND 2.531 0.115 ND
WR2 ND ND 0.335 ND ND ND 0.224 0.455 ND ND ND 0.184 ND ND ND ND
WR3 ND ND 0.266 8.748 ND ND ND ND ND ND ND 0.218 0.249 ND 0.099 ND
WR4 ND ND 0.394 6.901 ND ND 0.093 ND 11.832 ND ND 0.228 ND 0.242 0.099 ND
WR5 ND ND 0.283 6.727 ND ND ND ND 1.114 ND ND 0.231 ND ND 0.096 ND
WR6 ND ND 0.56 ND ND ND ND ND 0.251 ND ND 0.187 ND 0.217 0.087 ND
DG1 ND ND 0.952 ND ND ND ND ND 0.253 ND ND 0.22 ND ND 0.085 ND
DG2 0.148 ND 0.782 ND ND ND 0.021 ND ND ND 0.11 1.084 ND ND 0.092 ND
DG3 ND ND 1.212 ND ND ND 0.001 ND ND ND 0.116 0.173 ND ND 0.085 ND
DG4 ND ND 0.563 36.811 ND ND 0.154 ND 0.248 ND ND 0.211 ND 0.289 0.086 ND

Unit: µg/L; ND—not determined; abbreviations were designated as following: naphthalene (NAP), acenaphthylene (ACY), acenaphthene
(ACE), fluorene (FLU), phenanthrene (PHEN), anthracene (ANTH), fluoranthene (FLTH), pyrene (PYR), benzo[a]anthracene (B[a]A),
chrysene (CHRY), benzo[b]fluoranthene (B[b]F), benzo[k]fluoranthene (B[k]F), benzo[a]pyrene (B[a]P), benzo[g,h,i]perylene (B[ghi]P),
indeno[1,2,3-c,d]pyrene (IND), and dibenz[a,h]anthracene (D[ah]A).

3.7. Comparison of Results from PAH Analysis and Biological Survival Rates

The survival rate of test organisms and the concentration of PAHs were determined,
after statistical analysis. The degree of correlation was classified as low when the cor-
relation was ±0.3 (between 0.3 and −0.3) while moderate and high correlations were
±0.3 to 0.6 ±0.6 to 0.9 (between 0.3 and 0.6, −0.3 to −0.6). Since naphthalene, acenaph-
thene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and acenaphthalene were not de-
tected, the correlation could not be calculated. The biological survival rate showed a
low correlation with phenanthrene, anthracene, pyrene, benzo(a) anthracene, chrysene,
benzo(b) fluoranthene, and benzo(a) pyrene; medium correlation with fluoranthene and
benzo(g,h,i)perylene; and a high correlation with fluorene.

3.8. Discussion of Trace Metal Concentrations of Sediment Porewater and the Survival Rate of
Hyalella azteca

Table 5 shows heavy metal concentrations in the porewater of sediments of the 35 sites.
Test results showed that the concentrations of the trace metals nickel, copper, and lead
were mostly below the detection limits. Chromium and zinc were the two most detected
metals in sediment porewater. The highest metal concentration for total chromium was
detected at sample site LK2; zinc showed the highest concentration at site WR4.
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Table 5. Concentrations of heavy metals in sediment porewaters.

Sites Cr Ni Cu Zn Pb

YS1 0.017 ND ND 0.02 ND
YS2 0.045 ND ND 0.164 ND
YS3 0.046 ND ND 0.153 ND
YS4 0.005 ND ND 0.102 ND
YS5 0.025 ND ND 0.171 ND
DB1 0.019 ND ND 0.249 ND
DB2 ND ND ND 0.027 ND
DB3 0.017 ND 0.007 0.431 ND
DB4 0.031 ND ND 0.313 ND
DB5 0.038 ND ND 0.939 ND
SY1 0.042 ND ND 0.223 ND
SY2 0.212 0.029 0.01 0.554 0.005
SY3 0.183 0.022 ND 0.574 ND

AGD1 ND ND ND 1.034 ND
AGD2 0.025 ND ND 0.878 ND

HJ1 0.009 ND ND 0.065 ND
HJ2 ND ND ND 0.191 ND
HJ3 ND ND ND ND ND
HJ4 ND ND 0.007 0.018 ND
HJ5 ND ND ND ND ND
HJ6 ND ND ND 0.023 ND
HJ7 ND ND ND ND ND
LK1 0.014 0.02 0.007 0.167 ND
LK2 0.149 0.185 ND 3.333 ND
LK3 0.029 ND ND 0.594 ND
WR1 ND ND ND 0.159 ND
WR2 ND ND ND 0.041 ND
WR3 0.012 ND ND 1.011 ND
WR4 0.036 0.256 0.126 3.609 0.045
WR5 ND ND ND 0.016 ND
WR6 ND ND ND 0.034 ND
DG1 0.007 ND ND 0.123 ND
DG2 0.009 ND ND 0.406 0.007
DG3 0.007 ND ND 0.178 ND
DG4 ND ND ND ND ND

Unit: mg/L. ND < MDL:Cr (0.006 mg/L), Ni (0.014 mg/L), Cu (0.006 mg/L), Zn (0.012 mg/L), Pb (0.004 mg/L).

The concentration of heavy metals measured in the porewater of the HJ3 and HJ7
sediment was low; however, we observed a low survival rate of H. azteca. A possible reason
is that the death of H. azteca may be due to other classes of pollutants, or due to high content
of TOC combined with free metal ions, which may decrease their bioavailability and, con-
sequently, reduce their toxicity [47–49]. The literature mentioned that the concentration of
heavy metals in porewater is high, not all of which comes from the isolation of heavy metals
in sediments, but may be caused by the release of contaminated groundwater [50]. Studies
have also pointed out that the copper concentration in the sediment porewater of lakes is
positively correlated with organic matter content, but the mortality of chironomid larvae
could not be explained by the copper concentration in the porewater [51]. Therefore, it is
impossible to determine the cause of the mortality of H. azteca based on the concentration
of trace metals in the porewater alone.

3.9. Interstitial Water Benchmark Units (IWBUs) and Interstitial Water Toxic Units (IWTUs)
Used to Determine Toxicity in Sediment Porewater

In the present study, the survival rates of H. azteca and IWBUs were calculated as
shown in Figure 7. The results of IWBUs (>1 means toxic) showed that 22 sample sites
were toxic and 13 sample sites were not. The results of ∑IWTU showed that 77% of the
sample sites exceeded 1.0 (Figure 8), benthic organisms were not protected, and adverse
effects may occur. According to the survival rate of Hyalella azteca, 28 sample sites were
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toxic and 7 sample sites were not. In this study, IWBUs and ∑IWTUs were used to predict
the biological toxicity of the porewater of the sediment of eight streams in southern Taiwan,
with an accuracy of 79% and 85% (number of IWBUs (∑IWTUs)) > 1 site, and corresponding
to the percentage of sites with Hyalella azteca survival rate < 80%, showing that both
porewater toxicity calculations for metal and organic compounds can be used as a tool
for initial toxicity predictions. When the sample station coincided with IWBUs > 1 and
IWTUs > 1, H. azteca exposure to the sample also showed toxic effects (survival rate < 80%),
showing that the combination of IWBUs and IWTUs indicators can more effectively predict
the potential toxicity of porewater.
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The results of calculating the IWBUs and survival rate of zebrafish embryos in this
study showed that when IWBUs > 1 and ∑IWTUs > 1 (indicating toxic action), it can
accurately predict the toxic effects on zebrafish embryos (Figures 9 and 10). However,
when IWBUs < 1 (indicating non-toxic action), the zebrafish embryos still exhibit toxic
effects. This can be explained by the notion that IWBU is mainly for benthic organisms,
and embryo exposure belongs to the early life cycle stage of organisms, so the sensitivity
is higher than that of later stages [52]. Therefore, the toxicity thresholds for a test with
embryos are lower than the set values of the original IWBU.



Appl. Sci. 2021, 11, 8021 14 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 19 
 

 
Figure 8. Diagram of interstitial water toxic units and the Hyalella azteca survival rate correlation. 

 
Figure 9. Diagram of the correlation of interstitial water benchmark units and zebrafish embryo 
survival rate. 
Figure 9. Diagram of the correlation of interstitial water benchmark units and zebrafish embryo
survival rate.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 19 
 

 
Figure 10. Diagram of the correlation of interstitial water toxic units and zebrafish embryo survival rate. 

4. Conclusions 
The results of our chemical analysis from 35 porewater samples showed that the 

PAHs naphththalene, acenaphthalene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and 
the metal cadmium were not detected at all ampling stations, and the detection frequency 
of the other 22 compounds, ranging from high to low, was fluoranthene (94.29%), pyrene 
(91.43%), and zinc (88.57%). The mortality rate of H. azteca exposed to 11 sampling stations 
(DB1, DB2, SY1, SY2, SY3, HJ7, LK1, LK3, WR1, WR3, and WR6) was 100% at the end of 
the porewater toxicity test, and the survival rate was not significantly correlated with the 
6 trace metals and 16 PAHs. In addition, 100% mortality in the zebrafish embryo toxicity 
tests was not only observed at the previous 11 sites but also at the other 12 sampling sites 
(YS1, YS2, YS3, YS4, DB3, DB4, DB5, HJ2, LK2, WR2, WR4, and WR5). This indicates that 
the porewater of these 11 sites was toxic for both test organisms, and zebrafish embryos 
were more sensitive than the amphipod H. azteca. Based on the experimental results, the 
samples show a lack of acute mortality and can also significantly reduce the heartbeat rate 
of zebrafish embryos. Therefore, it is concluded that the hatching rate of zebrafish em-
bryos provided a more sensitive endpoint than mortality and deformity rate. These results 
also indicate that the cardiac functioning and circulatory system of fish embryos de-
creased in a moderate or even low toxic environment. Therefore, it is concluded that the 
index of heart rate is more sensitive than mortality, and deformity rates of early larvae 
towards polluted porewater areas of sediments can be affected to some extent. Pearson 
correlation analysis showed that the concentration of acenaphthene, fluorene, and anthra-
cene had a significant positive correlation with zebrafish embryo survival rate (p < 0.05), 
the heart rate had a significant positive correlation only with fluorene and anthracene (p 
< 0.001), and the deformity rate had a significant positive correlation with anthracene (p < 
0.05). The chemical analysis and toxicological approach provide a preliminary under-
standing of the possible risks of dissolved metals and PAHs in sediment porewaters col-
lected from different regions of Taiwan. 

Supplementary Materials: The following materials are available online at www.mdpi.com/xxx/s1, 
Table S1. Mobile phase gradient for the UPLC. Table S2. Wavelength programs for fluorescence 
detection. Table S3. Retention times and method detection limits of the 16 PAHs. Figure S1: Effects 

Figure 10. Diagram of the correlation of interstitial water toxic units and zebrafish embryo survival
rate.

4. Conclusions

The results of our chemical analysis from 35 porewater samples showed that the PAHs
naphththalene, acenaphthalene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and the
metal cadmium were not detected at all ampling stations, and the detection frequency of
the other 22 compounds, ranging from high to low, was fluoranthene (94.29%), pyrene
(91.43%), and zinc (88.57%). The mortality rate of H. azteca exposed to 11 sampling stations
(DB1, DB2, SY1, SY2, SY3, HJ7, LK1, LK3, WR1, WR3, and WR6) was 100% at the end of
the porewater toxicity test, and the survival rate was not significantly correlated with the



Appl. Sci. 2021, 11, 8021 15 of 17

6 trace metals and 16 PAHs. In addition, 100% mortality in the zebrafish embryo toxicity
tests was not only observed at the previous 11 sites but also at the other 12 sampling sites
(YS1, YS2, YS3, YS4, DB3, DB4, DB5, HJ2, LK2, WR2, WR4, and WR5). This indicates that
the porewater of these 11 sites was toxic for both test organisms, and zebrafish embryos
were more sensitive than the amphipod H. azteca. Based on the experimental results, the
samples show a lack of acute mortality and can also significantly reduce the heartbeat rate
of zebrafish embryos. Therefore, it is concluded that the hatching rate of zebrafish embryos
provided a more sensitive endpoint than mortality and deformity rate. These results also
indicate that the cardiac functioning and circulatory system of fish embryos decreased in
a moderate or even low toxic environment. Therefore, it is concluded that the index of
heart rate is more sensitive than mortality, and deformity rates of early larvae towards
polluted porewater areas of sediments can be affected to some extent. Pearson correlation
analysis showed that the concentration of acenaphthene, fluorene, and anthracene had a
significant positive correlation with zebrafish embryo survival rate (p < 0.05), the heart
rate had a significant positive correlation only with fluorene and anthracene (p < 0.001),
and the deformity rate had a significant positive correlation with anthracene (p < 0.05).
The chemical analysis and toxicological approach provide a preliminary understanding
of the possible risks of dissolved metals and PAHs in sediment porewaters collected from
different regions of Taiwan.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
article/10.3390/app11178021/s1, Table S1. Mobile phase gradient for the UPLC. Table S2. Wavelength
programs for fluorescence detection. Table S3. Retention times and method detection limits of the
16 PAHs. Figure S1: Effects of deformities caused by sediment porewater from different locations in
Taiwan on zebrafish after 2 days of treatment. The main deformities include spinal cord curvature,
cardiac edema, developmental stagnation, tail necrosis. Figure S2: Effects of deformities caused by
sediment porewater in different locations in Taiwan on zebrafish after 3 days of treatment. The main
deformities include all the above.
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