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Abstract: The theoretical and experimental evaluation of the cyclostationary random data trans-
ferring process corrupted by the individually and jointly cyclostationary crosstalk interference is
presented. The interference and the message signals were measured by the real time digital oscillo-
scope. Autocorrelation functions were evaluated by synchronous cyclic averaging procedure. The
analyzed periodic two-dimensional impulse response of the time-varying filter allows to obtain the
output random process with the same cyclic frequency at the output of the filter by separation of
orthogonal stationary waveforms constituting the input cyclostationary random process (CSRP).
The filtering of the measured random process was implemented by the cyclic Wiener filter. The
evaluation of the two-dimensional autocorrelation function and eye diagrams at the output of the
cyclic Wiener filter showed significant reduction of the independent interference components in the
estimated message signal.

Keywords: stochastic processes; time-domain analysis; crosstalk interference; electromagnetic
compatibility; cyclic Wiener filter

1. Introduction

The modern tendency in the assurance of signal integrity in high-speed data transmis-
sion links is the development of transceivers with adaptive channel equalization, crosstalk
cancelation, and the recovering of clock signals [1,2]. The high-speed circuits design is
based on the feed forward and decision feedback schemes optimizing tap weights [3]. The
significant performance benefit of the transceiver was achieved by optimization that utilizes
the cyclostationary properties of crosstalk [4,5]. The additional parameter of optimization
based on the minimum mean square error (MSE) is a sampling phase.

The improvement of the transceiver structure may be produced by changing the
criterion of the optimization criteria. The simulation or measurement data can be used not
only for controlling eye diagrams but also for the review of the probability models [6–9].
Probability modeling of random processes can be performed by using measurement data.
The proper model of the cyclostationary processes enforce the design of an effective signal
processing algorithm. The processing of random signals can be based on the multimodal
probability distribution using machine learning. Optimization criteria may be the maxi-
mum of the mutual information [10]. The choice of the appropriate figure of merit allows
to compare performance characteristics of different signal processing algorithms.

The verification of performance characteristics can be realized by simulation using
the electronic design automation (EDA) software [6,7] or a direct measurement using the
pseudo-random bit sequence (PRBS) generator and digital oscilloscope [8]. The complex
electromagnetic compatibility (EMC) research of the high-speed data transmission link com-
bines the time-domain measurements of the signals in the transmission lines and near-field
measurements of radiated emissions [11]. The multichannel measurement setup provides
simultaneous capturing of waveforms in parallel high-speed data transferring busses.
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The bit error rate (BER) can be estimated by statistical processing of the measured or
simulated waveforms. Traditionally in communications, performance is characterized by
the parameter of the BER defined as the relative frequency of the error:

BER = lim
nTot→∞

nErr
nTot

(1)

where nErr is the number of bit errors in the received data, nTot is the total number of
transmitted bits. The BER parameter is essentially the probability of the bit error induced
by the noise and interference accompanying the process of data transferring. The BER plot
shows the eye diagram opening for different sampling phases during the unit interval [12].

The Figure 1 shows an example of the ordinary statistical processing of waveforms
with bit rate 1 Gbit/s captured using the digital oscilloscope [13]. The synchronous
ensemble of cyclostationary signals can be represented by eye diagrams. Figure 1a,c present
eye diagrams of measured signals without and with crosstalk interference, respectively,
for the possible sampling phase during the unit interval with the duration of 1 ns. The
crosstalk degrades the signal waveform decreasing the eye-opening width in the middle of
the eye diagram. The corresponding BER plots are shown in Figure 1b,d. These plots show
the quantity of eye-opening width for the given BER level. The green and yellow contours
margin the BER level 10−4 for all sampling phases. The log-scaled BER plot can be viewed
using a cross-section for the sampling phase corresponding to the middle of the signal bit
response (white dash-dot vertical line).

Figure 1. (a) Eye diagram of the victim signal without crosstalk; (b) BER diagram of the victim signal
without crosstalk; (c) eye diagram of the victim signal with crosstalk; (d) BER diagram of the victim
signal with crosstalk. Bit rate is 1 Gbit/s.

Figure 2 shows the comparison of the BER plots for signals without and with crosstalk
interference [14]. The eye-opening width for the signal with crosstalk is 0.924 V.

The characterization based on the BER for the estimated signals using the minimum
mean square error criterion is demonstrative for the performance comparison. In practice
the reference level for the chosen figure of merit is provided by signal without crosstalk.
The framework of the virtual two channel experiment without and with crosstalk is used
for the synthesis and analysis of the signal estimation algorithm.
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Figure 2. Bit error rate versus voltage for time 0.5 ns. Bit rate is 1 Gbit/s.

Principal component analysis (PCA) is used to investigate the measured data. The
principal components can be computed by performing an eigenvalue decomposition of
the data correlation matrix. The crosstalk cancelation can be viewed through the cyclosta-
tionary signal minimum MSE estimation. The key factor of the estimation is the evaluated
principal components of the victim signal and crosstalk using measured data. The principal
components can be expressed as single bit responses [7,8] of cyclostationary sources for the
unit interval.

The estimation of measured waveforms is performed by using the cyclic Wiener filter.
The principle of orthogonality provides an optimum estimator for random cyclostationary
signals [15]. The cyclic Wiener filter is realized as a linear periodic time-varying filter.

The statistical signal processing of measured data can be performed using several
techniques. The sliding window filtering of discrete-time signals is equivalent form of the
frequency shift filtering (FRESH) [10,16]. It can be shown that simple matrix form of sliding
window filtering corresponds to the multi-input to multi-output linear time-invariant
transforms of the frequency shifted components of the signal.

The serial to parallel transformation of the cyclostationary signals for sliding window
filtering can be viewed as forming of a stationary vector. The modern description of
synthesis and analysis of signal estimators is presented using a matrix transformation of
extended correlation matrices.

The paper is organized as follows. After a short introduction, the fundamentals of
linear periodic time-varying filtering theory (LPTV) are provided in Section 2. The descrip-
tion includes frequency shifting with subsequent linear time invariant filtering (FRESH)
and sliding window (SW) filtering implemented by serial to parallel transformation of
the measured time series. The equivalence of both approaches is shown, and compact
matrix form of the SW filtering is provided. The implementation of the cyclic Wiener
filtering algorithm using the LPTV SW approach for the estimation of the input random
cyclostationary data sequence corrupted by random cyclostationary crosstalk with the
same cyclic period and stationary interference signals are discussed Section 3. The Wiener
solution of the estimation problem is based on the principle of orthogonality, assuming the
independence between the random processes constituting the measured data sequence.
The independence of crosstalk and the informative cyclostationary processes can be justi-
fied by the independence of the information bit sequences in communication lines. The
experimental research of the influence of the crosstalk from adjacent transmission line on
the quality of the data communication link with and without the proposed Wiener filtering
algorithm is investigated in Section 4. The quality of the data transferring is characterized
by the BER related to the eye-opening width for bit rates from 0.4 Gbit/s to 2.5 Gbit/s. The
paper is concluded by a discussion of obtained results.
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2. Linear Periodic Time-Varying Filtering

Linear time-varying (LTV) systems are described by a wider class of signal pro-
cessing algorithms than linear time invariant (LTI) systems. The filtering, modulation,
compensation, equalization, and compression is representing application examples of LTV
systems [16]. The superposition principle of the LTV system is very useful for statistical
signal processing. The correlation analysis for LTV filtering of the additive mixture of
signals, which contains a desired signal, interferences and noise, can be simplified due to
the linear combination of partial output signals.

The LTV system with periodic impulse response (IR) can be used for realization
of the efficient cyclostationary signal estimator known as the cyclic Wiener filter [17]
(pp. 240–266). In Section 2.1, the theory of discrete-time LPTV filtering is introduced. In
Section 2.2, the synthesis and analysis of the cyclic Wiener filter are discussed.

2.1. Frequency Shift Filtering

The output signal of the discrete-time LPTV system can be obtained using the follow-
ing general expression

y(n) =
∞

∑
m=−∞

h(n, m)x(m) (2)

where x(m) is an input signal of the LPTV system;

h(n, m) = h(n + kN, m + kN) (3)

is a periodic two-dimensional IR with period N.
The LPTV filtering procedure can be described particularly as frequency shifting

and subsequent linear time invariant filtering [16]. The harmonic series representation
(HSR) of the signals is used for such description. When N is a cyclic period of the random
cyclostationary process, the harmonic series decomposition provides wide sense stationary
components. The equivalent LTI multi-input to multi-output (MIMO) transformation of
the components is used for filtering of the overlapping in the frequency domain desired
signal and interferences with the corresponding bandwidths [10].

The discrete Fourier transform (DFT) of L samples of the input signal is defined by

X(m) =
1
L

L−1

∑
n=0

F−nm
L x(m) (4)

where FL = ej2π/L.
The frequency shifting of the input signal by µ L

N and the following linear time in-
variant filtering using rectangular frequency response Π(m) is expressed in the frequency
domain as follow:

X̃µ(m) = X
(

m + µ
L
N

)
Π(m), µ = 0, . . . , N − 1 (5)

where

Π(m) = U(m)−U
(

m− L
N

)
(6)

U(m) is a unit step function.
The time domain response is written using inverse DFT:

x̃µ(n) =
L−1

∑
m=0

Fnm
L X̃µ(m) (7)
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The initial signal can be written using harmonic series representation that is the
summation of the orthogonal components:

x(n) =
N−1

∑
µ=0

Fµn
N x̃µ(n) (8)

where FN = ej2π/N .
The single component of the output signal can be obtained using the equivalent

discrete-time multi-input to single output (MISO) LTI filtering:

ỹν(n) =
N−1

∑
µ=0

∞

∑
m=−∞

Gνµ(n−m)x̃µ(m) =
N−1

∑
µ=0

Gνµ(n) ∗ x̃µ(n) (9)

where the convolution operation is denoted by symbol ∗. The νth Fourier coefficient of the
discrete time two-dimensional functiongµ(n′, n) is given by

Gνµ(n) =
1
N

N−1

∑
n′=0

gµ(n′, n)F−νn′
N (10)

where gµ(n′, n) is periodic along time n′ and non-periodic along time n. The function
gµ(n′, n) can be obtained by changing variables n = n′ and m = n′ − n in the periodic
two-dimensional IR hµ(n, m) that is the µth version of the IR h(n, m) frequency shifted
by µ L

N :
gµ(n′, n) = gµ(n′ + kN, n) = hµ(n′, n′ − n) (11)

where
hµ(n, m) = hµ(n + kN, m + kN) = h(n, m)Fµm

N (12)

The resulting output of the LPTV system is written as combination of the orthogo-
nal components:

y(n) =
N−1

∑
ν=0

Fνn
N ỹν(n) (13)

2.2. Sliding Window Filtering

The sliding window filtering is another efficient realization of the LPTV system for
overlapped in the time domain desired signal and interferences [12]. The serial to parallel
(s/p) transformation [10] of the time series can be used for SW filtering. The benefit of s/p
representation is provided by the developed matrix mathematics.

The discrete-time LPTV sliding window filtering with length N can be expressed using
the simultaneous time shift of both the output and input signals by kN and the property of
the periodic two-dimensional IR:

y(n + kN) =
N−1

∑
m=0

h(n + kN, m + kN)x(m + kN) =
N−1

∑
m=0

h(n, m)x(m + kN) (14)

The compact matrix form of the expression (14) can be obtained using s/p transforma-
tion of signal y(n) to the vector signal y[k]:

y[k] =
N−1
∑

n=0
y(n + kN)un =

N−1
∑

n=0
un

N−1
∑

m=0
h(n, m)x(m + kN)

=
N−1
∑

n=0

N−1
∑

m=0
unh(n, m)uT

mx(m + kN)um = Hx[k], k = 0, . . . , L
N − 1

(15)



Appl. Sci. 2021, 11, 7988 6 of 17

where

H =
N−1

∑
n=0

N−1

∑
m=0

unh(n, m)uT
m (16)

x[k] =
N−1

∑
m=0

x(m + kN)um (17)

um = Pmu0 (18)

is mth unit vector obtained by m permutations of the initial unit vector u0 = (1 0 . . . 0)T ;

P =


0 0 · · · 0

1 0
. . .

...
...

. . . 0 0
0 · · · 1 0

 (19)

is a permutation matrix.
The scheme of SW filtering is shown in Figure 3. It consists of the s/p transformation

of the input signal x(n), linear transformation (15) of the parallel vector signal x[k] and
parallel to serial (p/s) transformation of the parallel vector signal y[k] for obtaining the
output serial signal y(n).

Figure 3. Scheme of sliding window filtering.

An example of a two-dimensional impulse response h(n, m) of an SW filter is shown
in Figure 4. The chosen number of samples per cyclic period N = 3.

Figure 4. Two-dimensional impulse response h(n, m) of the sliding window filter, N = 3.

The relation between the equivalent FRESH and SW type of LPTV filtering can be
obtained through s/p transformation for the corresponding HSR components of the input
and output signals:

x[k] =
N−1

∑
n=0

x(n + kN)un =
N−1

∑
µ=0

Fµ~
xµ[k], y[k] =

N−1

∑
n=0

y(n + kN)un =
N−1

∑
ν=0

Fν ~
yν[k] (20)
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where

~
xµ[k] =

N−1

∑
n=0

x̃µ(n + kN)un,
~
yν[k] =

N−1

∑
n=0

ỹν(n + kN)un, F = diag(0, FN , . . . , FN−1
N ) (21)

The FRESH filtering also has the following compact matrix form:

~
y(n) =

N−1
∑

ν=0
ỹν(n)uν =

N−1
∑

ν=0

N−1
∑

µ=0
uνGνµ(n) ∗ x̃µ(n)

=
N−1
∑

ν=0

N−1
∑

µ=0
uνGνµ(n)uT

µ ∗ x̃µ(n)uµ = G(n) ∗ ~
x(n)

(22)

where the convolution operation is denoted by symbol ∗,

G(n) =
N−1

∑
ν=0

N−1

∑
µ=0

uνGνµ(n)uT
µ ,

~
x(n) =

N−1

∑
µ=0

x̃µ(n)uµ (23)

Figure 5 shows the scheme of the frequency shift filtering. The linear transformation
has the form of multi-input to multi-output filtering.

Figure 5. Scheme of frequency shift filtering.

The νth Fourier coefficient of the LTI filter impulse response can be expressed using
the inner product of the permutated frequency shifted matrixHµ and matrix Φν = N−1Fν:

Gνµ(n) =
〈
HµPn, Φν

〉
= N−1〈HµPn, Fν

〉
= N−1tr

(
FνHHµPn

)
(24)

where Hµ = HFµ is a frequency shifted version of the matrix H,

Pn =

{
PnT , 0 ≤ n ≤ N − 1
P|n|, −N + 1 ≤ n < 0

(25)

The bank of one-dimensional IRs of the FRESH filter is shown in Figure 6. This
structure is functionally equivalent to the SW filter with a two-dimensional IR shown
in Figure 4. The single one-dimensional IR is complex valued. Real parts are shown in
Figure 6a–c. The corresponding imaginary parts are presented in Figure 6d–f.
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Figure 6. Real (a–c) and imaginary (d–f) parts of 1D impulse responses Gν,µ(n) of frequency shift filter corresponding to the
sliding window filter.

The transformation of signal in the LPTV system can be realized by SW filtering or by
equivalent FRESH filtering. An example of the output pulse amplitude modulated (PAM)
signal is shown in Figure 7 for both types of filters.

Figure 7. Output signals for sliding window filter (blue stems) and equivalent frequency shift filter
(red crosses).

The analysis of the compact matrix form of the SW LPTV filtering using HSR shows
that its FRESH representation includes frequency shifts and MIMO LTI filtering of band-
limited components of the input signal. The output full-band signal is obtained by combin-
ing the orthogonal components.

3. Synthesis and Analysis of Cyclic Wiener Filter

The signal estimation problem can be viewed through the SW filtering of the measured
signals rearranged using serial to parallel transformation. This estimator is referred as
a Wiener filter. The equality of the period of the corresponding LPTV filter and cyclic
period of the corresponding random cyclostationary processes makes the estimator a cyclic
Wiener filter.

The matrix notation used for the SW filtering of cyclostationary signals simplifies
the description dealing with the stationary vectors. The desired signal is transformed
into a real-valued vector x[k]. The measured signal denoted by the vector y[k] with the
same length is linear transformed using a real-valued weighting matrix W. The difference
between estimated and desired signals is an estimation error e[k]. Two equations can be
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used for the introduction of the signal estimation problem, avoiding denotation of the filter
output signal:

x[k] = Wy[k]− e[k]
e[k] = Wy[k]− x[k]

(26)

The obtained dual equations can be mapped into the composite form using the virtual
two channel estimation problem. Figure 8 shows the pair of two-channel systems where
input and output vectors are composite block vectors. The block vector z[k] is obtained
as a composition of vectors x[k] and y[k]. The block vector s[k] consists of vectors e[k] and
y[k]. The scheme in Figure 8a is used for synthesis, and the scheme in Figure 8b is used for
an analysis problem. The mentioned schemes are identical if permuting input and output
block vectors. The motivation of this step is an application of the partitioned correlation
matrices for input and output composite vectors. These matrices contain all the necessary
correlations between vectors for solving estimation problems.

Figure 8. (a) Synthesis scheme; (b) analysis scheme.

The input to output relations for the corresponding synthesis and analysis schemes
shown in Figure 8 can be written using partitioned matrix B for the definition of linear
transformation of composite vectors z[k] and s[k] in accordance with (26) as follows:

z[k] = Bs[k] =
(

x[k]
y[k]

)
=

(
−I W
0 I

)(
e[k]
y[k]

)
s[k] = Bz[k] =

(
e[k]
y[k]

)
=

(
−I W
0 I

)(
x[k]
y[k]

) (27)

where I is an identity matrix.
The correlation matrix of the block vector z[k] is a partitioned block matrix:

Rzz = E{z[k]zT [k]} =
(

Rxx Rxy
Ryx Ryy

)
(28)

where E{•} is an expectation operator, Rxx = E
{

x[k]xT [k]
}

and Ryy = E
{

y[k]yT [k]
}

are the correlation matrices; Rxy = E
{

x[k]yT [k]
}

and Ryx = E
{

y[k]xT [k]
}

are the cross-
correlation matrices.

The Wiener solution of the estimation problem is based on the principle of orthog-
onality. The error e[k] and the measurement y[k] are the uncorrelated random signals
so that:

E
{

e[k]yT [k]
}
= E

{
y[k]eT [k]

}
= 0 (29)

The correlation matrix of composite vector s[k] is analyzed in the same manner as the
correlation matrix Rzz and has a block diagonal form due to the orthogonality of the error
and measured signal:

Rss = E{s[k]sT [k]} =
(

Q 0
0 Ryy

)
(30)
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where
Q = E

{
e[k]eT [k]

}
(31)

is an error covariance matrix.
The linear transformation of the random composite vectors s[k] and z[k] for synthe-

sis and analysis schemes can be viewed through the transformation of corresponding
correlation matrices using matrix B:

Rss = BRzzB =

(
−I W
0 I

)(
Rxx Rxy
Ryx Ryy

)(
−I 0
WT I

)
Rzz = BRssB =

(
−I W
0 I

)(
Q 0
0 Ryy

)(
−I 0
WT I

) (32)

The upper triangular matrix U and block diagonal matrix D corresponding to the Cholesky
decomposition of partitioned correlation matrix Rzz can be used for matrix factorization:

Rzz = UDUT =

(
I RxyR−1

yy
0 I

)(
Rzz/Ryy 0

0 Ryy

)(
I 0

R−1
yy Ryx I

)
(33)

where
Rzz/Ryy = Rxx −RxyR−1

yy Ryx (34)

is the Schur complement of Ryy in Rzz.
The comparison the blocks U in (33) and B in (32) gives the equation for the cyclic

Wiener filter:
W = RxyR−1

yy (35)

The error covariance matrix Q can be found by comparing correlation matrix Rss in
(32) and block diagonal matrix D in (33):

Q = Rzz/Ryy = Rxx −RxyR−1
yy Ryx (36)

In summary of this section, the virtual two channel experiments can be discussed. The
analysis problem corresponds to the linear transformation of composite vector z[k].

This model produces an error that is orthogonal to the measurement provided by the
appropriate Wiener filter. The synthesis problem can be modeled using the same linear
transformation of the composite vector s[k] with a given block diagonal correlation matrix
that returns the vector z[k]. The decomposition of the correlation matrix of vector z[k]
provides the block Cholesky factors corresponding to the transformed correlation matrix
of vector s[k].

The crosstalk interference canceler is a specific cyclic Wiener filter. The main con-
tribution to the disturbance of the signal is generated by cyclostationary crosstalk in the
presence of low stationary noise compared with the desired signal. The characteristics of
the synthesized and analyzed cyclic Wiener filters for crosstalk cancelation is presented in
Section 4.

4. Experimental Results
4.1. Measurement Setup

The measurements of electromagnetic emissions caused by the data sequence trans-
ferred along transmission line in the presence of crosstalk interference were implemented
by the test setup shown in Figure 9. The binary PRBS with the length equal to (210–1)
binary symbols was generated by the Anritsu pulse pattern generator MP1604B.
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Figure 9. (a) Wiring diagram of the measurement setup; (b) photo of the device under test.

The wiring diagram of the measurement equipment is presented in Figure 9a. Two
identical microstrip lines of zigzag configuration were placed in parallel with 1 mm between
them. One line was assumed as a victim and the other one as the aggressor. Microstrip
lines were fed by the same Anritsu pulse pattern generator, but the aggressor’s sequence
was delayed by some random time duration for eliminating the correlation between PRBSs.
Microstrip lines were fabricated using a 1.6 mm thick FR4 substrate with a characteristic
impedance of 50 Ω having the length of 50 mm and the width of 1.85 mm. The photo of
the microstrip line is shown in Figure 9b.

Synchronous measurement of signals passing through the transmission lines were
implemented by a serial data analyzer LeCroy SDA 813Zi-A with a sampling frequency
of 40 GSa/s. The total number of samples registered in each realization for implementing
the ensemble averaging procedure was chosen around five million, which is less than the
duration of the PRBS. This allows to confirm the randomness of the registered data.

4.2. Correlation Analysis of the Measured Signals

The crosstalk voltage can be assumed as an additive and an independent component
of the received signal. The aggressor’s signal transmitted in the parallel transmission
line has the same cyclic period as the victim’s signal [12]. Time-domain measurement
of the signals in the transmission lines can be implemented using digital oscilloscopes
with sampling rates above decades of gigahertz [18]. The signals measured by real-time
oscilloscope were characterized directly in the time-domain. The impulse response of the
periodic filter is estimated using time-domain characteristics.

The model of the registered signal v(n) in the assumption of observing the signal of
interest d(n) corrupted by additive interference c(n) and stationary noise w(n) is given by:

v(n) = d(n) + c(n) + w(n) (37)

The correlation matrix of the measured signal v(n) can be expressed as the sum of the
correlation matrices Rdd, Rcc and Rww for corresponding jointly uncorrelated components
of the signal v(n):

Rvv = Rdd + Rcc + Rww = SΣST + Rww (38)

where SΣST is a decomposition of the correlation matrix for cyclostationary sources using
principal components; S = (sd sc) is a composite matrix of the eigenvectors sd and sc of the
correlation matrices Rdd and Rcc, respectively; Σ = diag(λd, λc) is a diagonal matrix with
diagonal elements corresponding to the eigenvalues λd and λc of the correlation matrices
Rdd and Rcc, respectively; Rww is diagonal correlation matrix of wide sense stationary noise.

The crosstalk canceler can be expressed as cyclic Wiener filter using equation (35):

C = RdvR−1
vv (39)

where
Rdv = RT

vd = Rdd (40)
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is a cross correlation matrix of the signal of interest and the received signal;

R−1
vv =

(
SΣST + Rww

)−1
= R−1

ww −R−1
wwS

(
Σ−1 + STR−1

wwS
)−1

STR−1
ww (41)

is the inverse of the correlation matrix Rvv obtained using the matrix inversion lemma or
Woodbury identities [19].

The cyclic Wiener filter C is the LPTV filter used for the waveform estimation of the
signal of interest d(n).

Figures 10 and 11 show the estimated correlation matrices of the cyclostationary
sources, the evaluated eigenvalues and scaled eigenvectors corresponding to first eigenval-
ues of correlation matrices for bit rates 0.4 Gbit/s and 2.5 Gbit/s respectively.

Figure 10. (a) The correlation matrix Rdd of the victim signal without crosstalk; (b) the correlation matrix Rcc of the crosstalk
interference signal. (c) The eigenvalues of the correlation matrices Rdd and Rcc. (d) The scaled eigenvectors of the correlation
matrices. Bit rate is 0.4 Gbit/s.

Figure 12 shows the cyclic Wiener filter C for signals with bit rates 0.4 Gbit/s and
2.5 Gbit/s respectively.

The calculated weighting matrix C for the data signal estimator has a dumped region
(“canyon”) due to the peak of the crosstalk correlation matrix. Except this region, the
weighting matrix repeats the flat form of the data signal correlation matrix. The signal
estimation can be physically interpreted as a balanced rejection of fluctuations caused by
crosstalk concentrated over time in the middle of the data signal single bit response. As
a result, it achieved immunity of the output signal to the crosstalk fluctuations and the
reception sufficient part of the data signal to resist the noise.
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Figure 11. (a) The correlation matrix Rdd of the victim signal without crosstalk; (b) the correlation matrix Rcc of the crosstalk
interference signal. (c) The eigenvalues of the correlation matrices Rdd and Rcc. (d) The scaled eigenvectors of the correlation
matrices. Bit rate is 2.5 Gbit/s.

Figure 12. Cyclic Wiener filter: (a) bit rate is 0.4 Gbit/s; (b) bit rate is 2.5 Gbit/s.

4.3. Bit Error Rate Estimation

In order to demonstrate the effectiveness of the cyclic Wiener filtering and discuss the
results of the crosstalk cancelation an analysis of the eye diagrams and BER characterization
was performed. Figures 13 and 14 show pairs of the eye diagrams and the corresponding
BER diagrams for bit rates 0.4 Gbit/s and 2.5 Gbit/s, respectively. Figure 15 shows the bit
error rate versus the voltage for the middle of the single bit responses for bit rates 0.4 Gbit/s
and 2.5 Gbit/s. The figures verify the effective crosstalk cancelation using the cyclic Wiener
filter. However, the achieved eye-opening width is smaller for bit rate 2.5 Gbit/s than for
bit rate 0.4 Gbit/s. This tendency was analyzed using a series of experiments.
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Figure 13. (a) Eye diagram of victim signal with crosstalk; (b) BER diagram of victim signal with
crosstalk; (c) eye diagram of estimated signal; (d) BER diagram of estimated signal. Bit rate is
0.4 Gbit/s.

Figure 14. (a) Eye diagram of victim signal with crosstalk; (b) BER diagram of victim signal with
crosstalk; (c) eye diagram of estimated signal; (d) BER diagram of estimated signal. Bit rate is
2.5 Gbit/s.
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Figure 15. Bit error rate versus voltage for time 1.25 ns: (a) bit rate is 0.4 Gbit/s; (b) bit rate is 2.5 Gbit/s.

The same statistical signal processing was performed for eight different bit rates from
0.4 Gbit/s to 2.5 Gbit/s:

• Correlation analysis of the signals measured by digital oscilloscope including time syn-
chronization, correlation matrix estimation, evaluation of the eigenvalue decomposition;

• Weighting matrix calculation using the inverse correlation matrix and the following
SW filtering of victim signal with crosstalk using serial to parallel transformation;

• Eye-opening width estimation in the middle of the single bit response for the BER
level 10−4.

Figure 16 shows the obtained results of estimated eye-opening width for bit rates from
0.4 Gbit/s to 2.5 Gbit/s.

Figure 16. Eye-opening width versus bit rate from 0.4 Gbit/s to 2.5 Gbit/s.

It can be seen in Figure 16 the degradation of the effectiveness of the performed
signal estimation for increasing bit rates. The physical reason of such degradation is
the decreasing in the signal to interference ratio. The mathematical interpretation is
increasing the projection of the error produced by the evaluated cyclic Wiener filter to the
observed measurement.

5. Conclusions

The current study focuses on the realization of the parallel high-speed data transfer-
ring busses can encounter and induce unintentional emission of crosstalk signals. The
assurance of signal integrity in such data transmission links can be achieved by the crosstalk
cancelation using a transceiver utilizes the cyclostationary properties of crosstalk. The
model of the victim signal consists of the valuable data signal corrupted by the additive
of the cyclostationary aggressor signal and stationary noise. The independence of the
crosstalk and informative cyclostationary processes is justified by the independence of the
information bit sequences in communication lines of the aggressor and the victim. In this
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case, the filtering of the observed measured random process can be implemented by the
cyclic Wiener filter, estimating the message in the measured signal.

Filtering of the random process with periodical correlation properties needs to be
implemented by the linear system with a periodically changing impulse response. It is
shown that the output of an LPTV structure may be expressed as a sum of the filtered
versions of frequency shifted copies of the input cyclostationary random process. The
equivalent time-domain sliding window transformation of the cyclostationary random
process assumes the serial to parallel transformation of the input signal, multi-input to
multi-output linear filtering of this vector process, and the parallel to serial transformation
providing the filtered cyclostationary output signal.

The experimental results obtained by cyclic averaging of the measured random pro-
cesses before and after the cyclic Wiener filtering showed significant reduction in the
crosstalk interference components in the estimated message signal. The evaluated eye
diagrams provide the estimation of the bit error rate which quantitatively characterizes the
transmission of data after the implemented filtering of the aggressor’s interference. The
investigated dependence of the eye-opening width versus bit rate of the data transferring
showed the reduction in the eye width caused by a decrease in the signal to interference
ratio of the measured signal.
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