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Abstract: Having come of age, gas film bearings enable high-speed oil-free (micro) rotating machinery
with gains in efficiency and reliability, longer maintenance intervals, and a reduction in contaminants
released to the atmosphere. Among gas bearing types, porous surface gas bearings (PGBs) have
proven successful for 50+ years and presently are off-the-shelf mechanical elements. This paper
reviews the literature on PGBs since the 1970s and reproduces an exact solution for the performance
of cylindrical PGBs. Both the analytical model and an accompanying finite-element (FE) model
predict the performance for two PGBs, a commercially available 76 mm diameter bearing and a
smaller 25 mm diameter laboratory unit whose experimental performance is available. As expected,
the FE model results reproduce the analytical predictions obtained in a minuscule computing time.
For a set external supply pressure, as the radial clearance increases, the flow rate through the bearing
grows until reaching a peak magnitude. The PGB load capacity is a fraction of the product of the
set pressure difference (pS − pa) and the bearing projected area with a significantly large centering
static stiffness evolving over a narrow region of clearances. Operation with shaft speed enhances
the bearing load capacity; however, at sufficiently high speeds, significant magnitude cross-coupled
forces limit the stable operation of a PGB. At constant operating shaft speed, as the whirl frequency
grows, the bearing effective stiffness (Keff) increases, while the effective damping (Ceff) becomes
positive for whirl frequencies greater than 50% shaft speed. Similar to a plain hydrodynamic journal
bearing, the PGB is prone to a half-frequency whirl, albeit the system natural frequency can be high,
mainly depending on the external supply pressure. In essence, for the cases considered, PGBs are
linear mechanical elements whose load capacity is proportional to the journal eccentricity.

Keywords: gas bearings; porous materials; rotordynamics; force coefficients

1. Introduction

Gas bearings support oil-free high-speed turbomachinery with significant savings in
drag power losses and a reduction in system footprint [1]. Bearings constructed with a layer
of porous material offer an alternative to other bearing types, such as orifice compensated
bearings and foil bearings [2]. Porous surface gas bearings (PGBs) are commercially
available for industrial use, in particular in linear guide systems and in the health imaging
industry [3].

The contemporary approach to the modeling of PGBs relies on the numerical solution
of the flow equations, using to advantage desktop computational resources [4]. However,
the expedience in obtaining numerical predictions often dispenses the flow physics, avoids
dimensional analysis, and disregards the effects of physical parameters that carry infor-
mation on limiting solutions. Hence, this paper carefully reviews the abundant published
literature on PGBs and recreates elegant theoretical analyses developed in the 1970s. The
predictions from the analytical model are compared against those of a computational finite
element (FE) model as well as some published experimental results.
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2. The Governing Equations for a PGB and Derived Operating Parameters

The performance of PGBs is determined by their geometry (radial clearance c, length
L, and diameter D = 2R), the gas physical properties (density ρ and viscosity µ), the magni-
tudes of supply pressure (pS) and ambient pressure (pa), the porous material permeability
coefficient (κ) and the liner radial thickness (tp), and the operating conditions of shaft
angular speed (Ω and precessional frequency (ω).

Figure 1 displays a schematic diagram of a cylindrical PGB with the journal spinning
with speed Ω. The film thickness is h = (c + eX cosθ + eY sinθ), where (eX, eY) are the
components of the journal static eccentricity. Consider an ideal gas with density ρ = p/(RgT),
whose temperature T is constant. Then, the film pressure (p) is governed by (Gargiulo,
1979) [5]. A detailed investigation on the influence of non-zero slip flow condition and
tangential flow within the porous material is out of scope in the current analysis.

→
∇·
(

p h3

12µ

→
∇p
)
=

ΩR
2

∂(ph)
∂x

+
∂(ph)

∂t
+

κ

2µ tp
(p2 − p2

S) (1)

where
→
∇ is the vector gradient operator, µ is the gas viscosity, and pS is the pressure of

the pressurized gas supplied through the porous layer. The field p is periodic around
the bearing circumference,p(θ, z,t) = p(θ+2π,z,t), and on the axial ends of the bearing
p(θ, 1

2 L,t) = p(θ,− 1
2 L,t) = pa.

Appl. Sci. 2021, 11, 7949 2 of 24 
 

2. The Governing Equations for a PGB and Derived Operating Parameters 

The performance of PGBs is determined by their geometry (radial clearance c, length 

L, and diameter D = 2R), the gas physical properties (density ρ and viscosity μ), the mag-

nitudes of supply pressure (pS) and ambient pressure (pa), the porous material permeabil-

ity coefficient (κ) and the liner radial thickness (tp), and the operating conditions of shaft 

angular speed (Ω and precessional frequency (ω).  

Figure 1 displays a schematic diagram of a cylindrical PGB with the journal spinning 

with speed Ω. The film thickness is h = (c + eX cosθ+eY sinθ, where eX, eY) are the compo-

nents of the journal static eccentricity. Consider an ideal gas with density ρ = p/(RgT), 

whose temperature T is constant. Then, the film pressure (p) is governed by (Gargiulo, 

1979) [5]. A detailed investigation on the influence of non-zero slip flow condition and 

tangential flow within the porous material is out of scope in the current analysis.  

3
2 2( ) ( )

( )
12 2 2   

S

p

p h R ph ph
p p p

x t t



 

    
      

  
 (1) 

where   is the vector gradient operator, μ is the gas viscosity, and pS is the pressure of 

the pressurized gas supplied through the porous layer. The field p is periodic around the 

bearing circumference,    , , 2 , ,z t z t
p p

  
 , and on the axial ends of the bearing 

   1 1
2 2

, , , , aL t L t
p p p

  
  .  

Note the supplied mass flow rate through the porous material follows Darcy’s law 

[6–8].  

   2 21
2

1
~S S

p g p

m p p p p
t R T t

  

 
    (2) 

Flow unsteadiness, circumferential flow through the porous media, and inertial ef-

fects due to the volume in the porous material are not particularly important in modern 

commercial products such as carbon graphite [3,9,10]. 

 

Figure 1. Schematic diagram of a cylindrical journal and bearing with porous material layer (not to 

scale). Coordinate system noted for reference. 

The PGB geometry, porous material properties, and operating conditions combine to 

produce three fundamental (dimensionless) parameters,  

Figure 1. Schematic diagram of a cylindrical journal and bearing with porous material layer (not to
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Note the supplied mass flow rate through the porous material follows Darcy’s law [6–8].
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Flow unsteadiness, circumferential flow through the porous media, and inertial ef-
fects due to the volume in the porous material are not particularly important in modern
commercial products such as carbon graphite [3,9,10].

The PGB geometry, porous material properties, and operating conditions combine to
produce three fundamental (dimensionless) parameters,
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known as the flow feeding number, the speed number, and the frequency number, respec-
tively. Clearly pS > pa for the pressurized gas to flow through both the porous layer and
then through the film clearance to exit at the bearing sides. Most PGBs have a large slen-
derness ratio, L/D > 1, hence giving enough surface area for the pressure field to produce a
significant bearing load.

The ΛΩ aerodynamic effects due to shaft rotation dominate over aerostatic effects
(~pS). Similarly, squeeze film effects (high frequency) dominate for Λω > 1. Incidentally,
the porosity parameter Λκ relates the flow conductance across the porous layer (κ/tp) to the
conductance through the film, which is proportional to (c3/R2).

3. An Appraisal of the Past Literature

The archival literature on PGBs is abundant with a sound beginning in the early
1960s and continuous developments through the 1980s. Only in the 2000s did commercial
applications abound, in particular in the flat panel manufacturing industry, semiconductor
manufacturing industry, coordinate measuring machines, computed tomography imaging
machines, and precision machine tools and spindles [3].

From 1965 to 1967, Sneck et al. publish three seminal papers [6–8] to introduce
the theoretical framework for the analysis of gas lubricated PGBs. The authors derived
analytical solutions for the flow rate and load capacity of PGBs under aerostatic conditions
and produced experimental verification for both the load capacity as well as the flow
coefficients. The authors noted the importance of surface roughness that modifies the
PGB nominal clearance to produce agreement with the measured load and flow. The later
reference [8] noted that shaft surface speed aids to increase the load capacity of PGBs
and presents ultimate solutions for operation under very large speed numbers (ΛΩ >> 1).
Sneck et al. [6–8] did not study the effect of frequency on the bearing stiffness coefficients,
and altogether ignored damping coefficients.

At about the same time, in 1968, Mori et al. [11,12] developed a similar solution,
albeit for an incompressible fluid, and produced predictive formulas for load capacity
and gas flow that agreed well with experimental results for finite length PGBs (L/D ~ 1/2).
Both Sneck et al. and Mori et al. found that the PGB load capacity was a fraction of
W* = ((pS − pa) × (L D)), i.e., the product of the pressure difference (pS − pa) times the bear-
ing projected area. Having introduced an equivalent clearance for the layer of porous mate-
rial, cκ = (12 κ tp)1/3, Mori et al. reported a maximum aerostatic load capacity ~(0.7 ×W*)
for the range (cκ/c) ~ 0.6–1.0; hence, the practical flow feeding number Λκ ~ (R/tp)2 >> 1.

A decade later (1978), Rao and Majumdar [13] presented a perturbation analysis
and numerical solution to calculate the stiffness (K) and damping (C) force coefficients
of aerostatic PGBs (ΛΩ = 0). The unique predictions showed C < 0 for small frequency
numbers (Λω). Interestingly enough, the analysis did not include the volume of the porous
material, which, if large enough and under dynamic conditions, traps the gas to produce a
pneumatic-hammer effect, i.e., a self-excited instability due to the absence (even negative)
of effective damping [14].

Just a year later, in 1979, Gargiulo [5] presented a comprehensive analysis that in-
cluded both steady-state performance parameters and the dynamic force coefficients via a
perturbation analysis that produces analytical expressions as a function of ΛΩ, Λω , and Λκ ,
and includes the effect of the material porosity volume. For very small porous volumes,
Cargiulo [1] reported a hardening bearing stiffness as frequency grows while the damping
coefficient decreases steadily. The findings are similar to those for orifice-compensated
aerostatic gas bearings, as published by Lund [15] in 1968. Large porous volumes could
lead to a negative direct stiffness but not negative damping, in opposition to Rao and Ma-
jumdar’s findings [13]. Under hybrid operations, i.e., operation with shaft speed (ΛΩ > 0),
the analysis reports cross coupled stiffness and damping coefficients, growing in propor-
tion to the shaft speed until ΛΩ → 10, to then drop for operation at higher shaft speeds.
Cargiulo [5] left for the future (the 21st century) the dynamic stability of PGBs operating in
a hybrid mode.
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In a companion paper, Cargiulo [16] described the outcome of experiments that for
the most part validated the theoretical predictions, in particular the PGB load capacity
and the direct force coefficients. The test bearing has L = D = 50.4 mm and a porous
liner with thickness tp = 6.4 mm and permeability κ = 2.3 × 10−9 mm2 (cκ = 5.6 µm). The
experiments also revealed the onset of unstable behavior characterized by vibrations of
the test system at its natural frequency. The tests conducted with various radial clearances,
c = 3 to 17 µm, demonstrated that the test aerostatic PGB produced a journal displacement
directly proportional to the applied load, even up to the point of journal contact with the
porous liner surface. Hybrid operation, i.e., with shaft rotation (ΛΩ > 0), increases the
PGB load capacity and its stiffnesses, direct and cross-coupled. Incidentally, the higher the
supply pressure, the larger the bearing centering stiffness (and natural frequency), and
hence the more likelihood of a PGB to be tailored for dynamically stable operation.

After a long hiatus, in 2006, Miyatake et al. [17] assessed the stability of a rotor
supported on PGBs coated with a surface layer that was ~300 times more restrictive than
that of the porous media itself. The manufacturing of surface loaded porous materials is
a major breakthrough in PGBs, as they practically eliminate the potential for pneumatic
hammer; see Otsu et al. [18].

In practice, PGBs are mounted in series with elastomeric supports (o-rings) to add
more effective damping, albeit the soft mounts also reduce the system natural frequency.
See for example the synopsis by Hwang [14]. Most recently, various publications de-
tail the application of tilting pad PGBs to enable oil-free turbomachinery operating at
high speeds; see San Andrés et al. [2,4,19,20] and Feng et al. [21–23]. Tilting pad journal
bearings effectively eliminate the cross-coupled stiffness coefficient that could easily ex-
cite a hydrodynamic instability and thus extend the maximum operating shaft speed of
rotor-bearing systems.

At Texas A&M University, since 2015, San Andrés et al. have been conducting measure-
ments of the rotordynamic response of solid rotors supported on carbon-graphite PGBs: one
rotor of small diameter (29 mm) and operating at a high shaft angular speed (55 krpm) [19],
and another with large diameter (100 mm) and turning at 18 krpm maximum [4,20]. The
rotors’ surface speeds (Us = ΩR) equal 82 m/s and 94 m/s, respectively. Rotordynamic
tests show stable responses, free of sub synchronous whirl frequencies. Imbalance mass
induced synchronous whirl speed rotor motion amplitudes show peak magnitudes while
crossing critical speeds largely determined by the pressure (pS) supplied to the bearings.
Derived from recorded amplification factors, the system damping ratio is larger than 10%,
uncharacteristically high for gas bearing supported rotors. The computational analysis
in [4] solves the Reynolds equation and Darcy’s diffusion equation that couple the flow in
the PGB film land to that through the porous layer. The model produces force coefficients
that agree well with experimentally-derived effective damping and stiffness coefficients
and shows that the magnitude of supply pressure (pS), the permeability coefficient (κ),
the pad-pivot stiffness, and the assembly clearance affect significantly the performance,
static and dynamic, of the test bearings. In addition, just published in 2021, [2] describes
an experimental campaign and the results that quantify the force coefficients of a large
size, four tilting pad PGB. From dynamic load experiments conducted with shaft speeds
at 6 and 9 krpm (32 and 64 m/s surface speed), the identified PGB’s direct stiffness and
damping coefficients are practically invariant with excitation frequency (to max 200 Hz),
The pads’ pivot compliance largely determines the bearing direct stiffness coefficients. The
experiments also reveal that the load capacity of the bearing is mainly aerostatic, mostly
determined by the supply pressure and the bearing preload assembly.

Feng at Hunan University leads an extensive research program whose objective is to
develop oil-free bearing technologies applicable to high speed rotating machinery. Feng’s
group has effectively tackled bump-type foil GBs, metal mesh foil GBs, and most recently,
PGBs since 2018. Feng et al. develop computational analyses for tilting pad PGBs [21,22]
and cylindrical PGBs [23] and present model validations against their own experimental
results as well as those in [20].
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Other minor recent computational developments by Bohle [24] and Lawrence and
Kemple [25] provide numerical steps toward modeling aerostatic PGBs while ignoring
the vast prior literature reviewed above. Li et al.’s recent work on cylindrical PGBs [23]
is particularly of notice, since the recorded static load performance of the test PGB agrees
with numerical predictions. However, the identified test bearing force coefficients are
rather unique since they follow a trend opposite to prior knowledge, both experimental
and analytical [5,16]. That is, the PGB direct stiffness coefficient drops with frequency,
while the direct damping coefficient increases.

The recent literature from 2018 through 2021 [2,21,24,25] focuses on building complex
comprehensive computational tools with model verifications specific to a tailored configu-
ration for oil-free machinery. The literature misses careful dimensional analysis, physical
scaling, and dimensionless number representation that could help improve the selection of
the numerical method and its validation.

This paper reworks the classical analyses of Gargiulo [5], Sneck [6], and Mori [11] to
derive an exact solution for the ultimate flow rate and flow coefficient, static load capacity,
and dynamic force coefficients of a generic cylindrical PGB. In the last stage of the analysis,
the evaluation of integrals, the current development relies on modern mathematical soft-
ware capable of symbolic algebra processing. The authors wish the engineering student
and neophyte researcher appreciate the art of fundamental physical analysis, while staying
for a short time away from the mundane routine of number crunching.

4. A Close Form Solution to the Flow and Dynamic Force Coefficients in a PGB

In reference to Figure 1, consider journal center motions with small amplitude (δeX,
δeY) and frequency (ω) about an equilibrium position (eX0, eY0). The film thickness (h) and
pressure (p) fields equal the sum of zeroth-order fields (h0, p0) and first-order or perturbed
fields (hσ, pσ)|σ = X, Y,

h = h0 + δeX hX eiωt + δeY hY eiωt → p = p0 + δeσ pσ eiωt, σ = X, Y (4)

where hX = cos(θ) and hY = sin(θ). Above, σ = X, Y, i =
√
−1.

Substituting Equation (4) into the Reynolds Equation (1) produces the zero-order
equation for p0

→
∇·
(

p0h0
3

12µ

→
∇p0

)
=

ΩR
2

∂(p0h0)

∂x
+

κ

2µ tp

(
p0

2 − p2
S

)
(5)

and the first-order equation

→
∇·
(

h0
3

12µ

[
pσ

→
∇p0 + p0

→
∇pσ

])
= ΩR

2
∂(p0hσ+pσh0)

∂x + i ω (p0hσ + pσh0)

−
→
∇·
[

p0h0
2

4µ hσ

→
∇·p0

]
+ κ

µ tp
p0 pσ

(σ = X, Y) (6)

Following San Andrés [26], the equations above are integrated in a typical finite
element (FE) and assembled over the flow domain to produce sets of algebraic (nonlinear)
equations for solution of the pressure fields; and subsequent calculation of the PGB reaction
force, drag torque and power, and dynamic force coefficients. Details of the FE model are
omitted for brevity.

For operation at a centered condition, h0 = c, Equation (5) reduces to

→
∇·
(→
∇p0

2
)
=

12 κ

c3 tp

(
p0

2 − p2
S

)
(7)
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That dispenses with the effects of gas viscosity (µ) and shaft speed (Ω). Let ψ0 =(
p2

0 − p2
S
)
, then Equation (7) reduces to the simple ordinary differential equation,

d2

d z2 (ψ0)−Λκ ψ0 = 0. (8)

Above, z =
( z

R
)

with γ2 = Λκ = 3 κ
tp c

(
D
c

)2
as the feed flow parameter. The solution

of Equation (8) with ambient pressure (pa) at the bearing sides z = ±
(

L
D

)
gives

ψ0(z) = ψ0|p = pa

cosh(γz)

cosh
(

γ L
D

) → p0(z) =

√√√√p2
S +

(
p2

a − p2
S
) cosh(γz)

cosh
(

γ L
D

) . (9)

The mass flow rate (
.

M) supplied to the bearing through the porous layer equals

.
M =

‹
.

m R dθ dz = γ

(
π c3

6 µ

)
tanh

(
γ

L
D

) (
pS

2 − pa
2)

RgT
. (10)

Note that
.

M is proportional to
√

κ c3

tp
, the average gas density ρ∗ =

1
2
(pS+pa)

RgT , and the
pressure difference (pS − pa). If the bearing clearance (c) is very large (as when there is no
shaft inserted in the bearing), then p = pa over the flow domain, and the supplied flow rate
is the largest and equal to

.
Mmax
c →∞

=
1
2

κ

µ tp

(
p2

S − p2
a
)

RgT
(π D L) (11)

.
M

.
Mmax
Cr→∞

=
tanh

(
γ L

D

)
(

γ L
D

) . (12)

The ratio of flows is only a function of the bearing geometry and the permeability
coefficient (κ), since

(
γ L

D

)
=
√

3κ
tpc

L
c . Equation (11), known as the flow coefficient for

PGBs [6,7], serves to estimate the permeability coefficient (κ) from measurements of the
supplied flow (

.
Mmax) for various supply pressures, as will be shown later.

Incidentally, the shear drag torque (To) and power loss (Ploss) for the laminar flow in a
centered journal bearing equal

To = µ ΩR (R/c) (π D L), Ploss = To Ω. (13)

Note that for an air film, the drag friction coefficient f = To/(W* R) << 1.
As the analysis considers small amplitude motions about the centered condition

(e = 0), then from p = p0 + (δeX pX + δeY pY)ei ω t, deduce

p2 = p2
0 + 2 p0 (δeX pX + δeY pY ) ei ω t ; ψ =

(
p2 − p2

S

)
= ψ0 + (δeX ψX + δeY ψY ) ei ω t. (14)

Hence, ψX = 2p0 pX; ψY = 2p0 pY. Presently, for small amplitude motions about
e = 0, let

ψX = ψXc(z) cos θ +ψXs(z) sin θ, ψY = ψYc(z) cos θ +ψYs(z) sin θ. (15)
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Then, write the first order Equation (6) for the perturbed pressure fields as

d2

d z2

[
ψXc
ψXs

]
−A

[
ψXc
ψXs

]
= C1 cosh(γz) + C2;

d2

d z2

[
ψYc
−ψYs

]
−AT

[
ψYc
−ψYs

]
= C1 cosh(γz) + C2

(16)

where A =

[ (
1 + γ2)+ iΛω ΛΩ
−ΛΩ

(
1 + γ2)+ iΛω

]
,

C1 =

[
i 2Λω − 3 γ2

−2ΛΩ

]
ψas

c
1

cosh(γ L
D )

and C2 =

[
i 2Λω

−2ΛΩ

]
p2

S
c

(17)

with ψas =
(

p2
a − p2

S

)
, ΛΩ =

12µ Ω
2p0

(
R2

c2

)
; Λω =

24µ ω

2p0

(
R2

c2

)
(18)

using average pressure p0 = 1
L
´ L

0 p0 dz. The boundary conditions for the perturbed fields
are homogeneous, i.e.,ψX(z=± L

D ) = ψY(z=± L
D ) = 0. Then,

ψXc = ψYs = ψXs = ψYc = 0 at z = ± L
D

. (19)

Note that Equation (16) reveals that ψXc = ψYs, ψXs = −ψYc.
Once found, integration of the pressure field (p) acting on the rotor surface gives the

bearing reaction force (F) with components

−
[

FX
FY

]
=

˛ (
P0 − Pa + (δeX PX + δeYPY) ei ω t

)[ cos θ
sin θ

]
Rdθdz. (20)

As the bearing is centered, the zeroth order pressure field does not produce a static
force, i.e., F = 0. The first order pressure fields produce the matrix of complex dynamic
stiffnesses H, where Hij =

(
Kij + i ω Cij

)
i,j = X,.[

HXX
HYX

]
=

[
HYY
−HXY

]
=

˛
−pX

[
cos θ
sin θ

]
R dθdz = −

˛ (
ψX
2 p0

)[
cos θ
sin θ

]
R dθdz. (21)

Then substituting Equation (15) above leads to

HXX = HYY = −πR2
L/Dˆ

0

ψXc(z)

p0(z)
dz; HXY = −HYX = −πR2

L/Dˆ

0

ψYC (z)

p0(z)
dz. (22)

The exact solution for the first-order fields is as follows: Let ψX =
[
ψXc ψXs

]T ,
then Equation (16) has the general solution

ψX = ψX P1 cosh(γz) +ψX P2 + ψX H (23)

where the coefficients of the particular solution are

ψX P1 = −
[
A− Iγ2

]−1
C1 = − 1

∆

[
1 + iΛω −ΛΩ

ΛΩ 1 + iΛω

][
i 2Λω − 3 γ2

−2ΛΩ

]
1

cosh
(

γ L
D

) ψas
c

(24)

ψX P2 = −A−1C2 = − 1
∆γ

[ (
1 + γ2)+ iΛω −ΛΩ

ΛΩ
(
1 + γ2)+ iΛω

][
i 2Λω

−2ΛΩ

]
p2

S
c

(25)
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with ∆ =
[
1 + iΛω

]2
+ ΛΩ

2 and ∆γ =
[(

1 + γ2)+ iΛω

]2
+ ΛΩ

2 as determinants of the

system of equations. ψXH =
_
ψHesz, the homogenous solution of Equation (16), satisfies[

I s2 −A
]_
ψH = 0 (26)

whose roots are x1,2 = (s1,2)
2 =

(
1 + γ2)+ i

(
Λω ±ΛΩ

)
, and with corresponding eigen-

vectors
_
ψH1

=
[

1 i
]T ,

_
ψH2

=
[

1 −i
]T . Thus,

ψXH =
_
ψHesz = d1c

_
ψH1c

cosh(
√

x1z) + d2c
_
ψH2c

cosh(
√

x2z). (27)

Satisfying the end condition ψX(z= L
D ) = 0 leads to

[
d1c
d2c

]
= −

 cosh
(√

x1
L
D

)
cosh

(√
x2

L
D

)
i cosh

(√
x1

L
D

)
−i cosh

(√
x2

L
D

) −1[
ψX P1 cosh

(
γ

L
D

)
+ψX P2

]
. (28)

Finally, the exact solution is

ψX =
[
ψXc ψXs

]T
= ψX P1 cosh(γz) +ψX P2 + d1c

[
1
i

]
cosh(

√
x1z) + d2c

[
1
−i

]
cosh(

√
x2z). (29)

Equation (22) implements the functions above, and using symbolic mathematical
software, produces the force coefficient in a very short time (fractions of a second). In 1979,
Gargiulo [5] produced a nearly identical analysis, albeit he used an influence coefficient
method to obtain the solution of the ordinary differential equations (the authors were un-
ware of the original solution in [5] until later in their work when searching for examples to
validate their FE and analytical models. There is no excuse for the ignorance of past work).

5. PGB Aerostatic Operation

It is of interest to quantify the bearing operation under aerostatic conditions (without
shaft speed), in particular to predict the PGB static stiffness (KS). Let Ω = ω = 0, then
ΛΩ = Λω = 0, and Equation (16) reduces to

d2

d z2

[
ψXc
ψXs

]
−
(

1 + γ2
)[

ψXc
ψXs

]
=

[
−3 γ2

0

]
ψas

c
cosh(γz)

cosh
(

γ L
D

) (30)

whose solution is

ψXc(z) =
3
c

γ2
(

p2
a − p2

S

) cosh(γz)

cosh
(

γ L
D

) − cosh
[(

1 + γ2)0.5z
]

cosh
[
(1 + γ2)

0.5 L
D

]
, ψXs = 0. (31)

Since ψX = 2p0 pX ; ψY = 2p0 pY, then

pX =
1

2p0

[
ψXc(z) cos θ

]
, pY =

1
2p0

[
ψYs(z) sin θ

]
. (32)

Substitute into Equation (21) to obtain the static stiffnessKS = KXXS = KYYS , and
KXYS = KYXS = 0.

6. Experimental Estimation of Porous Material Permeability Coefficient (κ)

Figure 2 displays a photograph of a cylindrical PGB with physical dimensions listed
in Table 1. The table also details the conditions for measurement of the supplied flow rate
and estimation of κ. A product specification sheet is available in [27].



Appl. Sci. 2021, 11, 7949 9 of 22

Figure 2. Photograph of a porous material cylindrical journal bearing.

Table 1. Dimensions of porous journal bearing and operating conditions.

Bearing Length, L = 1.17 D 88.8 mm (3.5 inch)

inner diameter, D 76.2 mm (3.0 inch)
outer diameter, Dout 99.5 mm (3.9 inch)

Carbon-graphite permeability, κ 8.2 × 10−16 m2

Porous layer radial thickness, tp 2.71 mm (0.11 inch)
Equivalent clearance for porous layer, cκ 3 µm

Supply pressure, pS 2–8 bar
Exit pressure, pa 1 bar
Temperature, T 294 K

Air density at (pa, T), ρa 1.2 kg/m3

viscosity at (pS, T), µ 18.3 × 10−6 Pa-s
gas constant, Rg 287.05 J/(kg·K)

Parameters For c = 0.010 mm

Feed flow parameter Λκ= 3 κ
tpc

(
D
c

)2
= 5.3

At pS = 6 bar, and Ω = ω = 22,618 rad/s (25 krpm)

Speed and frequency numbers ΛΩ= 6 µ Ω
pS

(
R
c

)2
= 7, Λω= 12 µ ω

pS

(
R
c

)2
= 14

Without a shaft installed in the bearing, measurements of the air supply pressure (pS)
and ensuing mass flow rate (

.
Mmax) deliver an estimation of the permeability coefficient

(κ) [20]. From Equation (11),

κ =

.
Mmax
c →∞

π D L
2 tp µ RgT
(pS

2 − pa2)
. (33)

In the measurements, the supply pressure (pS) increases from 2.4 bar to 6.5 bar (ab-
solute), and an accurate turbine type meter records the flow. Figure 3 shows

.
Mmax vs.

(pS
2 − pa

2), and the line fitting the data has a correlation factor R2 = 1.0. From the experi-
mental data, κ = 8.2 × 10−16 m2, which is typical for the product.
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Figure 3. PGB measured mass flow rate
.

Mmax vs. (pS
2 − pa

2) and a line fit (no shaft installed).

7. PGB Mass Flow Rate, Peak Pressure, and Aerostatic Stiffness vs. Clearance

From Equation (9), the pressure at the bearing mid-plane (z = 0) is

p(z=0) =

√
p2

S +
(

p2
a − p2

S
)[

cosh
(

γ L
D

)]−1
. For the PGB with geometry listed in Table 1

and e = 0, Figure 4 depicts the mass flow rate (
.

M),p(z=0)and the aerostatic stiffness
KS (= KXXs = KYYs) vs. clearance for the PGB supplied with air at pS = 6 bar. Note the
equivalent clearance for the porous layer cκ = (12 κ tp)1/3~3 µm.

The graphs include results from the exact solution and the FE computational model
(1872 elements = 72 circumferential × 26 axial). Note that shaft speed has no effect on
both parameters; see Reynolds Equation (7). The FE model flowrate is almost identical
to the exact solution (difference less than 1%). For small clearances (c < 0.040 mm),

.
M

decreases quickly, p(z=0) → pS, KS reaches a maximum (184 MN/m) at c = 0.010 mm, and

then sharply decreases as c→ 0. On the other hand, for c > 0.06 mm,
.

M→
.

Mmax
c→∞

= 0.73 g/s,

p(z=0) → pa, and KS → 0, i.e., a complete loss of load carrying capacity. Note c = 0.010 mm
(D/c = 7610) ~ 3.3 cκ , though appearing to be tight (too small bearing clearances increase
cost and make installation difficult), is quite appropriate for a gas bearing. Hence, the
selection of the PGB clearance is most important to both keep a low flow rate while also
providing enough load capacity and centering ability.

Having established the validity of the analytical solution versus a numerical solution,
Figure 5 depicts p(z = 0)/pa, mass flow rate, and the (centering) aerostatic stiffness (KS) vs.
clearance (c) for operation with supply pressure (pS) = 2, 4, 6, and 8 bar. The clearance
ranges from a thin c = 0.002 mm (D/c = 38,105) to c = 0.1 mm (D/c = 762). Clearly, the film
peak pressure, mass flow, and aerostatic stiffness increase with pS. As noted earlier, too
large clearances (c > 0.040 mm→ D/c < 1,900) produce no film pressure (p→ pa); hence,
the PGB leaks too much (→

.
Mmax
c →∞

) and is devoid of load capacity (KS→ 0). For a very tight

clearance (c < 0.005 mm), the mid-plane pressure pz=0 → pS, the flow (
.

M) is small, and the
direct stiffness is along a decreasing path. Independent of the supply pressure, the peak
aerostatic stiffness appears at the same (narrow) clearance, c ~ 0.010 mm = 3.3 cκ . At this c,
pz = 0/pa = 0.92 and

.
M/

.
Mmax = 0.37.
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Figure 4. PGB mass flow, pressure at bearing mid-plane, and aerostatic stiffness vs. clearance (c);
(a) Mass flow rate; (b) Pressure at mid-plane p(z = 0)/pa; (c) Static stiffness KS. Analytical and FE
predictions. Air supply pressure pS = 6 bar. Aerostatic operation at e = 0.
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Figure 5. PGB static pressure at mid-plane, mass flow rate, and aerostatic stiffness vs. clearance (c).
Air supply pressure ps = 2, 4, 6, and 8 bar; (a) Mass flow rate; (b) Pressure at mid-plane p(z = 0)/pa;
(c) Static stiffness KS. Aerostatic operation (Ω = 0) and null eccentricity (e = 0). Vertical lines denote
clearance c = 0.01 mm for largest stiffness.
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Although not shown for brevity, a dimensionless aerostatic stiffness scaled as
K = (KS c/W∗) clusters the data in Figure 5c. At c = 0.010 mm, K ~ 0.6 for all pS. Be-
ing of order (1), the parametrization of K allows one to quickly estimate the (maximum)
centering stiffness of any PGB having the same (κ/tp). The finding is nearly the same as
that reported by Mori et al. [11,12] in 1968, K ~ 0.7.

The PGB product specification sheet [27] recommends a PGB with clearance
c = 0.010 mm and, for operation with pressure supply pS = 5.15 bar [60 psig], quotes
a static stiffness KS = 159 MN/m and flow of 13.2 L per minute (LPM) at standard condi-
tions. For the same conditions, the current analysis predicts KS = 155.5 MN/m and a flow
rate equaling to 9.86 LPM. The agreement in stiffness is remarkable, while the difference
in flows indicates differing clearances. For example, for c = 0.012 mm (~20% larger), the
analysis predicts 13.2 LPM flow and KS = 149 MN/m. Since the porous layer is affixed
to the bearing housing using an adhesive, the manufacturer [27] specifies a maximum
operating supply pressure of 7.9 bar (100 psig).

8. PGB Force Coefficients vs. Rotor Speed (Synchronous Frequency Condition)

The analysis continues for the PGB with dimensions in Table 1 and for clearance
c* = 0.010 mm, the one providing the peak aerostatic stiffness (KS). The operating speed
range covers 0 to 30 krpm, with a mean operating speed (MOS) Ω* = 25 krpm (417 Hz);
hence the shaft surface speed ΩR = 120 m/s. The pressure supply pS = 2 bar → 8 bar,
and the ambient pressure pa = 1 bar. Note the feed flow parameter Λκ = γ2 = 5.3; and at
the lowest supply pressure and MOS, ΛΩ∗ = 6 µ Ω∗

pS

(
R2

c2

)
~21, thus indicating a moderate

aerodynamic effect will assist with the generation of load capacity.
Figure 6 depicts the PGB force coefficients vs. shaft speed (Ω) and four pS. The

coefficients are evaluated at a whirl frequency coinciding with shaft speed (ω = Ω),
namely a synchronous speed condition. Note that at the centered condition, KXX = KYY,
KXY =−KYX, CXX = CYY, and CXY =−CYX; see Equation (22). Effective force coefficients are

Keff = KXX + CXY ω, Ceff = CXX − KXY/ω. (34)

In general, the magnitude of the PGB force coefficients increases as the supply pressure
grows. For hybrid operation (aerostatic plus aerodynamic effects), the direct stiffness (KXX)
increases with rotor speed (Ω), whereas the direct damping CXX drops rapidly. At the top
speed (30 krpm), KXX is approximately two times larger than at the low speed (aerostatic)
condition. On the other hand, CXX reduces to ~1/5 in magnitude at low shaft speed. The
cross-coupled stiffness KXY (<<KXX) is peculiar, as it reverses sign at a certain shaft speed.
The larger pS is, the higher the speed at which KYX changes from positive to negative.
Note −CXY << CXX with a peak magnitude at a certain shaft speed. Since CXY < 0, then
Keff < KXX for all shaft speeds. At a low shaft speed condition, the effective damping is
~50% of CXX. On the other hand, at the high end of shaft speeds, Ceff is slightly larger than
CXX since KXY < 0.
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Figure 6. PGB (synchronous frequency) force coefficients vs. shaft speed: (a,b) stiffnesses (KXX, KXY), (c,d) damping
coefficients (CXX, CXY), (e,f) effective stiffness (Keff) and damping (Ceff) coefficients. Excitation frequency ω = Ω (synchronous
with speed). Supply pressure pS = 2 to 8 bar; MOS = 25 krpm.

9. PGB Force Coefficients vs. Excitation Frequency

Figure 7 displays the PGB force coefficients vs. frequency ratio (ω/Ω*) for the bearing
supplied with air at increasing pressures. In general, KXX grows (hardens) as the whirl
frequency increases, whereas the direct damping (CXX) quickly drops. The magnitude of
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all force coefficients increases with an increase in gas supply pressure. In addition, at the
cross-over frequency, ω = 1/2 Ω, half-frequency whirl, the effective stiffness (Keff) has a
dip, and the effective damping turns positive, Ceff > 0. Hence, the PGB has the identical
aerodynamic stability characteristics as a plain journal bearing. The predictions reveal that
the cross-coupled stiffness (KXY) reverses sign for ω > 1/2 Ω, this frequency increasing as
the supply pressure grows. Incidentally, for a low-pressure supply, pS < 4 bar, the direct
damping is negative, CXX < 0, at low whirl frequencies (ω << Ω*). This effect is remarkable
and a precursor to a pneumatic hammer; see [13].

Figure 7. PGB force coefficients vs. frequency ratio (ω/Ω). Mean operating speed Ω* = 25 krpm (417 Hz); (a,b) stiffnesses
(KXX, KXY), (c,d) damping coefficients (CXX, CXY), (e,f) effective stiffness (Keff) and damping (Ceff) coefficients. Supply
pressure pS = 2 to 8 bar.
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In sum, shaft whirl motions at super synchronous motions (ω > 1/2 Ω), produce
stiffness hardening and a marked reduction in effective damping. On the other hand, SSVs
are likely to occur at 1/2 frequency whirl since Ceff = 0.

10. Stability of PGB

The stability of a point mass rotor (Mr) supported on one PGB is derived from∣∣∣H(ω) − ω2Mr I
∣∣∣= 0 , where I is the 2 × 2 identity matrix. Following San Andrés [1],

the instability threshold occurs at frequency $s defined when the equivalent complex
stiffness He has its imaginary part Im (He) = 0 and its real part > zero. The equivalent
complex stiffness (He) is defined as

He(v)
=

1
2

(
HXX(v)

+ HYY(v)

)
−
[

1
4

(
HXX(v)

− HYY(v)

)2
+ HXY(v)

HYX(v)

]1/2
. (35)

Recall that at the centered condition (e = 0), HXX = HYY, HXY = −HYX. Hence, He
becomes

He(v)
= HXX(v)

− i HXY(v)
= (KXX + vCXY)(v) + i(vCXX − KXY)(v) = Ke f f(v)

+ i vCe f f(v)
(36)

Im
(

He(v)

)
= 0 → Ce f f

(v)
= 0 ; Re

(
He(v)

)
> 0→ Mcr =

Ke f f(v)

v2 . (37)

When v = 1
2 Ω → Ce f f

(v)
= 0 , and taking the operating speed as being the threshold

speed of instability (ΩT = Ω* = 2v), then the largest mass the rotating system can hold

is Mcr =
Ke f f

( 1
2 Ω T )

( 1
2 Ω T)

2 . Table 2 lists the critical rotor mass for operation at various supply

pressures and at MOS = 25 krpm. Mcr increases from 26.2 kg to 146.1 kg as pS = 2 bar→
8 bar. Note the weight of Mcr is much smaller than the PGB load capacity of ~(KΩ × c).

HereKΩ =
√

K2
XX + K2

XY is a hybrid mode operation stiffness evaluated at the MOS (Ω*)
and a zero whirl frequency (ω = 0).

Table 2. Aerostatic and hybrid stiffnesses for PGB at the centered condition and rotor speed Ω = 0 and 25 krpm. Air supply pressure
pS = 2, 4, 6, and 8 bar. Clearance c = 0.010 mm (Λκ = 5.3).

Pressure Aerostatic (Ω = 0) Hybrid Ω = 25 krpm Attitude Angle Critical Mass

pS KS KXX KXY KΩ β KΩKS Mcr
Bar MN/m MN/m MN/m MN/m degrees kg

2 bar 43 156 41 162 14.6 3.76 26.2
4 bar 116 271 96 288 19.6 2.48 68.8
6 bar 184 354 155 387 23.6 2.10 107.7
8 bar 250 418 201 464 25.7 1.85 146.1

KXY = 0

11. PGB Load Capacity and Attitude Angle

Predictions of the load carrying ability of the PGB for off-centered operation (e > 0)
follow. Figure 8 depicts the load (W) vs. eccentricity ratio (e/c) for aerostatic operation
(0 rpm) and at the mean MOS, Ω* = 25 krpm, and increasing magnitudes of air supply
pressure. The results from the FE computational model (1872 elements = 72 circumferential
× 26 axial), shown with dark symbols, reveal W increases with pS and is proportional to
journal eccentricity (e). The graphs include light-colored lines that represent an approximate
load derived from the product of the (exact) static stiffness at e = 0 times the journal
eccentricity, i.e., Wapprox = (KS × e) when Ω = 0 (left graph), and Wapprox= (KΩ × e) at the
MOS. Table 2 lists the magnitudes of the analytical force coefficients for the aerostatic
(Ω = 0) and hybrid (Ω*) conditions.
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Figure 8. FE model of PGB load (W) vs. journal eccentricity ratio (e/c) at 0 rpm and 25 krpm shaft speed. Air supply
pressure pS = 2, 4, 6, and 8 bar; (a) Load at 0 rpm; (b) Load at 25 krpm. PGB clearance c = 0.010 mm. (Light colored) straight
lines represent approximate load capacity derived from the exact solution at e = 0.

Note the remarkable agreement between the analytical solution and the FE numerical
solution for operation with journal eccentricity (e) as large as 70% of the bearing clearance.
In short, the load capacity of the cylindrical PGB is proportional to the journal displacement
(e). Furthermore, for the hybrid mode operating condition, the attitude angle (β) between
the eccentricity vector and the applied load vector remains constant. As seen in Table 2, β
increases from 14.6◦ to 25.7◦ as the supply pressure increases from two bar to eight bar.

The analysis and predictions demonstrate that the PGB is a linear mechanical element.
Presently, based on the results shown in Figure 8, an estimation for the bearing load capacity
equals W

W∗ =
W

(pS−pa)L D ∼
[
0.5 + 0.3 pa

pS

]
(1 + 0.13ΛΩ).

12. An Example of Validation for the Static Performance of a PGB

Li et al. [23] detailed an investigation of the static and dynamic performance of an
(in-house constructed) cylindrical PGB. As in the current paper, the authors of [23] built a
computational finite difference (FD) model for prediction of performance of simple PGBs
and to make pertinent distinctions for operation as purely aerostatic (Ω = 0), aerodynamic
(pS = pa), and hybrid (Ω > 0, pS > pa). Authors in [6] also detailed a handful of experimental
results for the measurement of applied load vs. journal eccentricity for a PGB with two
distinct clearances, small (16 µm) and large (31 µm). Table 3 details the geometry, porous
layer physical properties, and the operating conditions of the test PGB in [23]. Note that
the reference has many clerical errors including dubious captions in several of the figure
captions. In addition, the direct force coefficients presented in [23] follow trends not in
accordance with the theory, the direct stiffness not agreeing with one derived from the static
load (ω→ 0). The work also gives a cursory review of the cross-coupled force coefficients.

Figure 9 presents comparisons of the current analytical solution and FE model predic-
tions vis-a-vis those in [23], experimental and numerical. As Figure 9a shows, the analytical
solution and FE prediction of journal eccentricity (e) agrees well with the FD prediction [23]
for pS = 4.7 bar, c = 31 µm and three static loads, 5 N to 15 N. For the top load of 15 N,
the specific load W/(LD) = 0.1 bar; hence W/(LD)/(pS − pa) = 0.029, i.e., a very small
load. The model predictions are slightly larger than the experimental results (ref. [23] does
not report uncertainty or variability for the measured parameters nor variability for the
force coefficients).
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Figure 9. Predictions from current models (analytical and FE) compared to experimental results and
predictions reported in [23]. (a) Journal eccentricity (e) vs. static load (W); (b) eccentricity (e) vs. shaft
speed (Ω); (c) eccentricity (e) vs. supply pressure (pS).
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Table 3. Operating conditions and dimensions of a cylindrical PGB reported in Ref. [23].

Bearing Length, L 57 mm

Inner diameter, D 25 mm (*)
Radial clearance, c 16 µm, 31 µm

Porous layer radial thickness, tp 2.5 mm
permeability coefficient, κ 1.0 × 10−15 m2

Equivalent clearance porous layer, cκ 3.1 µm

Supply pressure, pS 4–6 bar (*)
Exit pressure, pa 1 bar

Ambient temperature, T 293 K

Air density at (pa, T), ρa 1.2 kg/m3

viscosity at (pa, T), µ 18.5 × 10−6 Pa-s

Parameters For c = 0.031 mm, pS = 4.7 bar, and
Ω = 2513 rad/s (24 krpm)

Feed flow parameter Λκ = 0.025
Speed number ΛΩ = 0.097

(*) Assumed since [23] has many clerical mistakes, as confirmed by one of the authors [28]. Ref. [23] also uses
gauge pressure to report ps.

As per the journal eccentricity (e) vs. shaft speed and a fixed load (W = 15 N) (see
Figure 9b), the current analytical and FE model predictions agree well with the experimental
result at the top speed of 24 krpm. For pure aerostatic operation (Ω = 0), the current model
predictions are ~32% smaller than the experimental result. Figure 9c displays eccentricity
(e) vs. supply pressure (pS) for operation at 24 krpm (ΛΩ = 0.097 at pS = 4.7 bar). For
pS = 5.5 and 6.3 bar, the current predictions match the experimental values, the difference
<2%. For pS = 4.7 bar, the models produce a slightly larger (e) than the measured one.

Comparisons of predictions of the experimental force coefficients are omitted. As fre-
quency grows, the test coefficients follow differing paths and have lower physical mag-
nitudes than the model predictions, current and those in [23]. Feng [28] attributes the
difference to the absence of a surface restrictive layer in the constructed PGB. Otsu et al. [18]
explain difference in the performance of PGBs with and without the said restrictive layer.
Interestingly enough, the current predictive model as well as that in [23] do not apply to
PGBs with restrictive layers.

13. Conclusions

Porous surface gas bearings (PGBs) have come of age to enable high-speed, near
friction free rotating machinery with improved reliability and availability. In the last
decade (2012 and onward), numerous computational analyses for calculation of PGB forced
performance, static and dynamic, have appeared. Most analyses, however, tackled the
flow physical equations by computer while ignoring the vast body of archival literature on
the subject.

The paper reviews the archival literature on PGBs and reproduces, using modest
analytical means, an exact solution to the flow field and forced performance of a cylindrical
PGB. This solution has been available since 1979 [5].

Predictions from the analysis serve to validate the results of a finite element compu-
tational model. Further comparisons to recent experimental results validate the analysis
results and serve to elucidate the effect of external pressure and shaft speed on PGB
performance. The learning from this work is as follows:

• For a given external pressure, the supplied flow rate increases quickly as the bearing
clearance enlarges and ultimately reaches a flow limit.

• There is a narrow clearance region that ensures the maximum centering stiffness
for a PGB. Selecting the appropriate clearance is necessary and rather difficult to
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achieve when also considering manufacturing costs and devising procedures for
easy installation.

• The load capacity of a PGB under aerostatic conditions is a fraction of the imposed
pressure difference and the bearing projected area (L × D). The bearing load is propor-
tional to the static eccentricity.

• Under aerodynamic conditions, i.e., operation with shaft speed, the PGB load capac-
ity still remains proportional to shaft eccentricity and can be much larger than the
aerostatic load. That is, shaft speed shear flow effects increase the PGB load capacity.

• For operation as the shaft speed varies from low (start-up) to the mean operating
speed (MOS = Ω*) and above, the PGB bearing shows synchronous excitation (ω = Ω)
force coefficients that increase in magnitude as pS increases. Most importantly, as the
shaft speed increases, Keff increases (hardens) while Ceff decreases rapidly.

• For operation at a constant (high) speed, the bearing effective stiffness (Keff) decreases
at low whirl frequencies, reaches a dip or minimum at 1/2 whirl frequency operation
(ω = 1/2 Ω), and then increases (hardens) as the frequency approaches synchronous
speed (ω→ Ω) and surpasses it. The bearing effective damping coefficient Ceff < 0 at
low frequencies and equals zero at ω = 1/2 Ω. For larger ω, Ceff > 0 and reaches a peak
at a certain frequency; the larger the external pressure pS, the higher the frequency at
which Ceff is a maximum. For larger frequencies (ω >> Ω), Ceff → 0.

• Note a PGB operating with shaft rotation (hybrid mode) has the same stability restric-
tion as a plain cylindrical hydrodynamic bearing, i.e., a 50% whirl frequency ratio.
However, a rigid rotor–PGB system natural frequency is rather large, since the bearing
centering stiffness grows with both external pressurization and shaft speed. Hence,
the threshold speed of instability, equal to two times the system natural frequency, can
be tailored to exceed the system operating speed.

The authors hope other analysists, engineering students in particular, appreciate the
effort to obtain the solution, the one that exactly predicts bearing performance and allows
quick assessment of trends and selection of physical parameters. In a world ruled by
complex numerical models attacking physics with computers, fundamental mathematics
does bring meaning to an engineering endeavor as well as personal solace.
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Nomenclature

c Bearing radial clearance (m)
cκ (12 κ tp)1/3. Equivalent clearance for layer of porous material (m)
Ceff Ceff = (CXX − KXY/ω). Effective damping coefficient (N-s/m)
CXX, CYY Direct damping coefficients (N-s/m)
CXY, CYX Cross-coupled damping coefficients (N-s/m)
D 2R. Rotor diameter (m)
e Journal eccentricity (m)
(eX, eY) Components of journal eccentricity (m), e =

√
eX2 + eY

2

(FX, FY) Bearing reaction force components along X and Y directions (N)
He Equivalent complex stiffness at threshold speed of instability (N/m)
HXX, HYY Direct complex stiffness coefficients (N/m)
HXY, HYX Cross coupled complex stiffness coefficients (N/m)
h Film thickness (m)
KS PGB aerostatic (zero frequency) stiffness coefficient (N/m)
Keff Keff = KXX + CXY ·ω. Effective stiffness coefficient (N/m)

KΩ

√
K2

XX + K2
XY . PGB hybrid (zero frequency) stiffness coefficient (N/m)

KXX, KYY Direct stiffness coefficients (MN/m)
KXY, KYX Cross-coupled stiffness coefficients (MN/m)
L Bearing axial length (m)
Mr Mass of point rotor (kg)
Mcr Mcr = Keff/v2. Rotor critical mass (kg)

.
M Mass flow rate through a porous gas bearing (kg/s)
.

Mmax Maximum mass flow rate for a porous gas bearing as c→ ∞ (kg/s)
p Absolute pressure (bar)
pS, pa Supply and ambient absolute pressures (bar)
Rg Gas constant (J/(kg K))
T Supply/ambient temperature (K)
To Drag torque (Nm). Power loss = (To Ω)
tp Porous layer radial thickness (m)
W Applied load (N)
W* ((pS − pa) L D). Nominal load for aerostatic operation
x = Rθ, z Coordinate system on bearing surface
X, Y Cartesian coordinate system
β Attitude angle (deg)

Λκ = γ2 3 κ
tpc

(
D
c

)2
. PGB feed flow parameter

ΛΩ 6 µ Ω
pS

(
R
c

)2
. PGB speed number, ΛΩ = ΛΩ

(
pS
p0

)
Λω 12 µ ω

pS

(
R
c

)2
. PGB frequency number. Λω = Λω

(
pS
p0

)
κ Permeability coefficient for the porous material (m2)
µ Gas absolute viscosity (Pa-s)
ρ p/(RgT). Gas density (kg/m3)
θ Circumferential coordinate (-)
ω Whirl frequency (rad/s)
v =ωn = 1/2 ΩT. Whirl frequency = natural frequency at threshold speed of

instability (rad/s)
Ω Rotor speed (rad/s)
ΩT Threshold speed of rotor stability (rad/s)
Abbreviations
FE Finite element
FD Finite difference
LPM Liter per minute
MOS Mean operating speed
PGB Porous gas bearing
SSV Subsynchronous whirl vibration
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