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Abstract: This study presents an innovative methodology for preform design in metal forging pro-
cesses based on the convolution neural network (CNN) algorithm. The proposed approach extracts
the features of inputted forging product geometries and utilizes them to derive the corresponding
preform shapes by employing weight arrays (filters) determined during the convolutional oper-
ations. The filters are progressively updated during the training process, emulating the learning
steps of a process engineer responsible for the design of preform shapes for the forging processes.
The design system is composed of multiple three-dimensional (3D) CNN sub-models, which can
automatically derive individual 3D preform design candidates. It also implies that the 3D surfaces
of preforms are easily acquired, which is important for the forging industry. The proposed preform
design methodology was validated by applying it to two-dimensional (2D) axisymmetric shapes,
one-quarter plane-symmetric 3D shapes, and two other industrial cases. In all the considered cases,
the design methodology achieved substantial reductions in the forging load without forging defects,
proving its reliability and effectiveness for application in metal forging processes.

Keywords: forging process; preform design; convolution neural network (CNN); CNN sub-models

1. Introduction

The utilization of the preforming step is important in metal forging processes because it
avoids the manifestation of forging defects [1,2], reduces the forging load [3,4], and extends
the die life [5,6]. However, preform design is conventionally performed by trial-and-
error approaches based on an engineer’s experience and know-how [7]. Thus, systematic
preform design methods have been studied in recent decades.

By synthesizing the design rules in the reported literature and the experts’ know-
how, an empirical equation for H-shape forging [8], a knowledge-based system for rib-
web type forgings [9], and an expert system for gear forgings [10] were developed to
suggest the preform shapes. Although these approaches are sufficiently good for cer-
tain simple forgings, they are not practical because the guidelines are insufficient for
complex geometries.

To overcome this limitation, Park et al. [11] introduced the backward tracing scheme
(BTS) method to determine a proper preform design by using the H-shapes and their
boundary conditions and inversely tracing the loading path. In two-dimensional (2D)
axisymmetric forging cases, Kim and Kobayashi [12] applied the BTS method to closed-die
forging, and obtained good results in terms of the metal flow for the predicted preform.
Gao et al. [13] extended this methodology to the preform design of three-dimensional (3D)
blade forging by considering a non-uniform deformation. However, the BTS methodology
requires a user’s initial guess for the preform design, which means that the result of this
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method is user-biased. Moreover, a designed preform is also influenced by the number of
iterations and the loading path, which are not included in the design requirements.

Badrinarayanan and Zabaras [14] introduced a linear sensitivity analysis (LSA)-based
preform design method for axisymmetric forging. LSA approaches consider the change in
the node position and compute the finite-dimensional gradients of the objective functions.
Zhao et al. [15] designed a preform for H-shaped forging considering the sensitivities of the
objective functions and nodal velocities. However, because the governing equations in LSA
approaches are strongly related to the forging shape, they become overcomplicated in the
case of complex geometries. More recently, Lu et al. [16] applied evolutionary structural
optimization (ESO) by considering progressive element elimination during the procedure
and applied it to the preform design of H-shaped geometry. Shao et al. [17] and Yang
et al. [18] considered a bidirectional ESO method in which the elements eliminated in
a certain step could be recovered in subsequent steps. However, this ESO method also
requires an initial guess for the preform geometry, which becomes user-biased and is
affected by aleatoric uncertainty.

To suggest a preform design shape without any initial design guess, Roy et al. [19]
utilized an artificial neural network (ANN) algorithm for H-shape forging. The ANN-based
model utilizes the weight vectors and links the values of the forging geometry image to
those of the preform image in a one-to-one relationship. Pathak et al. [20] also applied the
ANN method to a cylindrical billet upsetting process to reduce the barreling at the free
surface of the workpiece. However, as the ANN method assigns the weight considering
a one-to-one relationship for the user-defined training data, this method yields a poor level
of detectable details and becomes impracticable for untrained complex forging shapes.

In contrast, a convolutional neural network (CNN) algorithm can extract the geomet-
rical features of input data arrays through convolutional operations with weight arrays
(filters) [21]. As this algorithm does not require a one-to-one link between data, it has been
widely employed in several engineering problems [22,23]. After the convolution operation,
an array is defined as a feature map, where the extracted features of the input data are
stored. The extracted feature maps are connected to an output data array by multiplying
them by weights. All the utilized filters can be considered as a cumulative experience for
engineers to infer appropriate output data from the input data.

Therefore, a new preform design approach based on the CNN algorithm is introduced.
As the implemented CNN algorithm imitates the preform design process of the forging
experts, the trained filters are expected to act as a sort of cumulative experience, utilized
for the prediction of the preform shapes. Through the convolution operation with the
filters, the feature maps relevant to the inputted forging shapes are identified, and the
appropriate preform design is automatically determined by applying them to transform
the forging geometry. Because the design of a 3D preform shape is normally a complicated
and trial-and-error task, it is intended to be able to obtain multiple 3D preform candidates
based on the capability of trained CNN sub-models for estimating 3D geometries. During
the training procedure, filters were constructed based on the characteristics of the specified
design requirements. Accordingly, we intended to derive a preform satisfying the design
criterion considered in the corresponding training database. Even if different design criteria
are considered during the construction of the training database, the proposed procedure
can still be directly applied following the logic presented in this paper.

2. Preform Design Methodology

A flowchart of the CNN-based preform design model is presented in Figure 1. The
training database consisted of forging products and relevant preform shapes. The training
materials should be designed to satisfy design requirements without user bias to eliminate
the limitations that appeared in the literature survey. The product geometry was converted
into a 3D digital data array (voxel array), and the preform candidates were derived from the
various trained CNN models. The derived 3D data arrays of the preform candidates were
converted into 3D modeling geometries. To select the best preform among the candidates,
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each candidate was evaluated by a finite element method (FEM) simulation. Based on
the FEM results, one shape was easily selected as the preform that satisfied the design
requirements of the input forging product.
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2.1. Convolution Neural Network Model Structure

The CNN model utilized in this paper is based on the U-shape architecture [24]. The
model is composed of nine convolution blocks with two convolutional layers and eight
pooling layers, as shown in Figure 2. For the application of 3D geometries, the convolution
operation is conducted in 3D digital volume space (voxel array).
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Figure 2. CNN model overall structure.

The voxel array input to each layer is (h · w · d · c). h, w, and d are the height, width
and depth of the array, respectively, and c is the number of channels that signifies the
information of the array. The convolution operation is conducted as the filters move in the
h, w, and d directions of the input array. In this study, 128 voxels were considered for the h,
w, and d values in the voxel array of the 3D forging and preform geometries through the
conversion processes, summarized in Appendix A. For the filter array, six voxels for each of
the three axes were considered. Those values are the trade-off for the training convergence
and computational efficiency.

The feature recognition process for the i-th convolution layer begins from the input
data array n× n× n× ci−1 (ci−1 is the number of the filters of the previous layers). To avoid
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dimension loss during the convolution operation, zero values are padded to the outside of
an input array, resulting in (n + 2)× (n + 2)× (n + 2)× ci−1. After the convolution with
ci filter arrays of 6× 6× 6× ci−1, the output array is n× n× n× ci (feature maps). The
procedure in the first convolution layer is illustrated in Figure 3 where n is 128, ci is 32 and
ci−1 is 1.

Appl. Sci. 2021, 11, 7948 4 of 19 
 

each of the three axes were considered. Those values are the trade-off for the training con-
vergence and computational efficiency. 

The feature recognition process for the i-th convolution layer begins from the input 
data array 1in n n c −× × ×  ( 1ic −  is the number of the filters of the previous layers). To 
avoid dimension loss during the convolution operation, zero values are padded to the 
outside of an input array, resulting in 12 2 2 in n n c −+ × + × + ×( ) ( ) ( ) . After the convolution 
with ic  filter arrays of 16 6 6 ic −× × × , the output array is in n n c× × ×  (feature maps). 
The procedure in the first convolution layer is illustrated in Figure 3 where n is 128, ic  is 
32 and 1ic −  is 1. 

 
Figure 3. Procedure in the first convolutional layer. 

The in n n c⋅ ⋅ ⋅  array is reduced in half the size of 2 2 2 in n n c⋅ ⋅ ⋅  by the red ar-
rows in Figure 2 which represent a max-pooling operation. After that, by doubling the 
number of filter arrays, the features recognized in the previous convolution block are 
“zoomed in”. After the 4th convolution block, the size of the considered image is increased 
to derive the preform shape in the original dimensional scale. In this upgoing sampling 
procedure following the green arrows, the feature maps are mapped to the considered 
preform design, starting from small features (convolution block 5) to large features (con-
volution block 9). By concatenating the number of features in the down-sampling and the 
up-sampling operation, any loss of information concerning the positions of the feature 
positions in both the forging and preform shapes is avoided. 

The general formulation of the convolution operation is defined in Equation (1). x is 
the inputted array, w is the filter array, and the bias b is added in computation. p, q, and r 
are the coordinates in the feature maps. The predicted value is calculated as the output of 
the activation function f. The weights in filters (w) are determined to minimize the loss 
between the true value y of the given preform shapes and of the CNN model. Since the 
inputted data have binary values, a binary cross-entropy loss function E, defined in Equa-
tion (2), is utilized. For the minimization process, an ADAM (Adaptive Moment Estima-
tion) optimizer [25] as defined in Equation (3) is utilized assuring the robust and quick 
weight update process by a two-moment vector, 1β  and 2β . For the activation func-
tion, a ReLU (Rectified Linear Unit) function in Equation (4) is utilized for all the convo-
lution layers except for the last one. Since the output of the ReLU function is ix  in the 

0ix >  domain, the / idE dw  in Equation (3) cannot become zero. (If it becomes zero, the 
relevant weight is no longer updatable.) Since the last layer is utilized to predict the binary 
values of the array for a predicted preform shape, the sigmoid function in Equation (5), 
whose range is 0 ( ) 1f x≤ ≤ , has been applied. 

The CNN algorithm is implemented in Python 3.7.4 (Python Software Foundation, 
Wilmington, USA) and Keras 2.3.1(Keras, Mountain View, USA) with the Tensorflow 
backend framework on an NVIDIA V100-SXM2 GPU and 180 GB RAM computer systems. 
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The n·n·n·ci array is reduced in half the size of n/2·n/2·n/2·ci by the red arrows in
Figure 2 which represent a max-pooling operation. After that, by doubling the number of
filter arrays, the features recognized in the previous convolution block are “zoomed in”.
After the 4th convolution block, the size of the considered image is increased to derive
the preform shape in the original dimensional scale. In this upgoing sampling proce-
dure following the green arrows, the feature maps are mapped to the considered preform
design, starting from small features (convolution block 5) to large features (convolution
block 9). By concatenating the number of features in the down-sampling and the up-
sampling operation, any loss of information concerning the positions of the feature posi-
tions in both the forging and preform shapes is avoided.

The general formulation of the convolution operation is defined in Equation (1). x
is the inputted array, w is the filter array, and the bias b is added in computation. p, q,
and r are the coordinates in the feature maps. The predicted value is calculated as the
output of the activation function f. The weights in filters (w) are determined to minimize
the loss between the true value y of the given preform shapes and of the CNN model.
Since the inputted data have binary values, a binary cross-entropy loss function E, defined
in Equation (2), is utilized. For the minimization process, an ADAM (Adaptive Moment
Estimation) optimizer [25] as defined in Equation (3) is utilized assuring the robust and
quick weight update process by a two-moment vector, β1 and β2. For the activation
function, a ReLU (Rectified Linear Unit) function in Equation (4) is utilized for all the
convolution layers except for the last one. Since the output of the ReLU function is xi in
the xi > 0 domain, the dE/dwi in Equation (3) cannot become zero. (If it becomes zero, the
relevant weight is no longer updatable.) Since the last layer is utilized to predict the binary
values of the array for a predicted preform shape, the sigmoid function in Equation (5),
whose range is 0 ≤ f (x) ≤ 1, has been applied.

The CNN algorithm is implemented in Python 3.7.4 (Python Software Foundation,
Wilmington, USA) and Keras 2.3.1(Keras, Mountain View, USA) with the Tensorflow
backend framework on an NVIDIA V100-SXM2 GPU and 180 GB RAM computer systems.
The hyperparameters utilized in the training procedure were determined through the
random search method consisting of 300 training steps, and are equal to ε = 10−8, β1 = 0.9,
β2 = 0.999, and η = 5·10−5.

ŷpqr = f

(
c

∑
m

6

∑
i=1,j=1,k=1

x(p+i)(q+j)(r+k),m·wijk,m + b

)
(1)
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E(yi, ŷi) = −
1
n

n

∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (2)

wi = wi−1 − η
m̂1,i√
m̂2,i+ε

where mn,i = βnmn,i−1 + (1− βn)
(

dE
dwi−1

)n
and m̂n,i = mn,i−1/(1− βi

n), n = 1, 2
(3)

f (x) =
{

0 f or x ≤ 0
x f or x > 0

(4)

f (x) =
1

1 + e−x (5)

Since the derived array of preform shapes had a range from 0 to 1, a threshold of
0.7 has been employed, meaning that if the output of the sigmoid activation function is
greater or equal to 0.7 the relevant position is considered as part of the preform, whereas
the position is neglected. The overall CNN-based preform design concept is summarized
in Figure 4. To enhance the understanding of the proposed methodology, the explanation
reported in Figure 4 is based on 2D images of the forging product and preform shapes.

Appl. Sci. 2021, 11, 7948 5 of 19 
 

The hyperparameters utilized in the training procedure were determined through the ran-
dom search method consisting of 300 training steps, and are equal to 810ε −= , 1 0.9β = , 

2 0.999β = , and 55 10η −= ⋅ . 

6

( )( )( ), ,
1, 1, 1

ˆ
c

pqr p i q j r k m ijk m
m i j k

y f x w b+ + +
= = =

 
= ⋅ + 

 
   (1) 

( ) ( ) ( )
1

1ˆ ˆ ˆ, log (1 ) log 1
n

i i i i i i
i

E y y y y y y
n =

= − + − −  (2) 

1,
1

2,

, , 1 , , 1
1

ˆ
ˆ

ˆ(1 ) / (1 ) , 1,2

i
i i

i

n
i

n i n n i n n i n i n
i

m
w w

m

dEwhere m m and m m n
dw

η
ε

β β β

−

− −
−

= −
+

 
= + − = − = 

 

 (3) 

0 0
( )

0
for x

f x
x for x

≤
= >

 (4) 

1( )
1 xf x
e−=

+
 (5) 

Since the derived array of preform shapes had a range from 0 to 1, a threshold of 0.7 
has been employed, meaning that if the output of the sigmoid activation function is 
greater or equal to 0.7 the relevant position is considered as part of the preform, whereas 
the position is neglected. The overall CNN-based preform design concept is summarized 
in Figure 4. To enhance the understanding of the proposed methodology, the explanation 
reported in Figure 4 is based on 2D images of the forging product and preform shapes. 

 
Figure 4. The preform design step during the implementation of the CNN algorithm. 

2.2. Training Database Definition 
A training database consisting of the forging shapes and the corresponding preform 

shapes should be constructed to avoid user bias. According to the preform shape, in the 
training database, satisfying the objective design criterion, the weight values of the filters 
can be set to meet the considered criterion. In this study, both the forging and preform 

Figure 4. The preform design step during the implementation of the CNN algorithm.

2.2. Training Database Definition

A training database consisting of the forging shapes and the corresponding preform
shapes should be constructed to avoid user bias. According to the preform shape, in the
training database, satisfying the objective design criterion, the weight values of the filters
can be set to meet the considered criterion. In this study, both the forging and preform
shapes for the training database were parametrically designed to avoid any bias. The
design criterion was defined as the reduction in the forging load and the avoidance of
metal flow overlapping and die unfilling.

Regarding the forging shape, a combination of four levels (0.24, 0.36, 0.48, and
0.6 D) at four heights (H1, H2, H3, and H4) was utilized to design all 96 geometries
with the same outer diameter D, as shown in Figure 5a. All cases had similar volumes in
the −2% ≤ V ≤ 2% range. An R = 5 mm filet radius was used to connect the four regions
for all cases. An example shape is shown in Figure 5b.

To define the preform shape geometries, three levels (0.3, 0.4, and 0.5 D) were con-
sidered for five heights from H1 to H5. A B-spline function was utilized to generate
240 preform geometries, as shown in Figure 6a. H6 was changed to match the volume
of the forging shapes. Two examples of preform shapes are shown in Figure 6b. The
parametric design procedure was implemented in SolidWorks 2016 (Dassault Systèmes
SolidWorks Corporation, Waltham, MA, USA) CAD software. To reduce the computation
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time, the forging shapes were considered as axisymmetric with a flat surface, and the
preform shapes were presented using B-spline in axisymmetric shapes.
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Among the 240 preform shapes, one shape satisfying the defined design rules was
selected as the preform shape of the corresponding forging shape based on the FEM simu-
lation results. The FEM simulations were implemented in the DEFORM 2D Version 11.0
(Scientific Forming Technologies Corporation, Columbus, OH, USA) software, as summa-
rized in Appendix B. The preform billet is defined as a deformable plastic considering
AA6061 aluminum alloy using the Ludwick-type flow stress in Equation (6), calibrated by
tensile test experiments on ASTM-E8 specimens at room temperature.

σ = 225.43ε0.257 + 144.79 [MPa] (6)

Although the AA6061 aluminum alloy was utilized in the implemented FEM model,
the proposed procedure is independent of the material, as will be shown in the re-
sults section. Because the objective of the FEM investigation is to compare the forging
load reduction and the plastic flow of the preform, and not a detailed investigation of
the stress distribution, all simulations were implemented under cold and isothermal
forging conditions.

2.3. Sub-Models Definition

By defining the multiple CNN sub-models, the filters have different values for each
sub-model. Thus, individual preform candidates can be derived according to each CNN
model. This subdivision strategy allows the final shapes that share similar geometrical
features to be grouped together, increasing the level of accuracy of the relevant CNN
sub-models.

In this study, six data groups were sorted by considering the geometrical characteristics
(H1, H2, H3, and H4) of the forging shape, as shown in Figure 7.
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According to the defined grouping criterion in Figure 7, one forging shape may belong
to one single group or two different groups, resulting in each group having either 28 or
32 levels. The subdivision of the database was utilized for six CNN sub-models, all with
the same CNN architecture. Six preform candidates were derived for an inputted forging
shape according to each sub-model and further evaluated through FEM simulations to
select the best preform that reduces the forging loads and avoids forging defects.

3. Numerical Experiments

For each of the multiple CNN sub-models, a range of forging load reductions could be
achieved according to the corresponding training dataset, in comparison with a cylindrical
billet with the same volume of the forging shape. The minimum and maximum forging
load reductions for the data groups utilized for training the six CNN sub-models are
summarized in Table 1.

Table 1. Average forging loads reduction in six CNN sub-models.

CNN Sub-Model # CNN#1 CNN#2 CNN#3 CNN#4 CNN#5 CNN#6

Range of Forging
Loads Reduction 11.63–26.53% 10.32–27.89% 11.63–21.89% 9.64–26.53% 11.86–25.42% 9.64–27.89%

The proposed preform design model was applied to two 2D axis-symmetric forging
cases in Section 3.1, 1

4 plane-symmetric forging in Section 3.2, and grinding tool-like forging
in Section 3.3.

3.1. Two Axisymmetric Forging Cases

The CNN sub-models were utilized to derive preform shapes for the two axisymmetric
test parts, as shown in Figure 8 where the height features are listed in Table 2. The
dimensions of the two shapes were randomly designed to yield completely different
geometrical features.

The finite element forging simulation results for the preform candidates were acquired
from the 2D FEM model, summarized in Appendix B, by considering the 2D cross-sections
of the preform candidates as derived by 3D modeling shapes.

Based on the FEM results, for the test shape, as shown in Figure 8a, the preform
derived by the CNN#3 sub-model resulted in a maximum forging load reduction of 15.9%
(Figure 9). For the shape shown in Figure 8b, the CNN#4 sub-model derived a preform
resulting in a 16.5% forging load reduction (Figure 10).
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3.2. The One-Quarter Plane-Symmetric Forging

The CNN models were trained by utilizing 3D data arrays; thus, the trained models
could derive the 3D preform shapes for the 3D inputted forging geometries. However, the
training dataset used in this study was defined by considering axis-symmetric forgings.
Therefore, to investigate the capability of the CNN sub-models trained with axisymmetric
2D images, and to accurately derive the preform shape for the case of non-axisymmetric
shapes, two strategies were implemented for a 1

4 plane-symmetric simple forging, as shown
in Figure 11. The first consisted of directly inputting the 3D images into the CNN sub-
models. The second consisted of inputting separately the axisymmetric shapes of three
cross-sections along 0◦, 45◦, and 90◦.
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Figure 11. The1/4 plane-symmetric forging with cross-sections along 0◦, 45◦, and 90◦ directions.

Considering the first approach, the six shapes of the preform candidates are shown
in Figure 12a and Table 3 and the preform shape derived by CNN#2 ensured the highest
forging load reduction of 11.1% compared with that of a cylindrical billet (Figure 12b). The
FEM results presented in this section were acquired through a 3D thermo-mechanical FEM
model, as described in Appendix B.

Appl. Sci. 2021, 11, 7948 10 of 19 
 

The FEM results presented in this section were acquired through a 3D thermo-mechanical 
FEM model, as described in Appendix B. 

 

 

(a) (b) 

Figure 12. (a) Preform geometries for the symmetric forging and (b) forging force–punch patch comparison. 

Table 3. Height features of the derived preform shapes for the symmetric forging. 

Height [mm] CNN#1 CNN#2 CNN#3 CNN#4 CNN#5 CNN#6 
H0°, max 39.44 43.05 42.41 41.64 42.83 38.11 
H0°, min 30.43 30.11 31.36 28.39 32.55 31.79 
H90°, max 54.64 51.19 43.54 52.67 43.54 55.28 
H90°, min 30.43 30.11 35.21 28.39 36.01 33.64 

Regarding the second approach, the three preforms estimated for each of the three 
considered directions (0°, 45°, and 90°) were combined into a single image by a Boolean 
union and smoothed in the transition regions between the three angles. 

Considering the results reported in Figure 12b, the preform shape derived by CNN#2 
resulted in a maximum forging load reduction. For this reason, the preform shapes by 
inputting the 3D arrays to CNN#2 and by inputting the cross-sections at 0°, 45°, and 90° 
to CNN#2 were utilized in two forging simulations, and the relevant forging force versus 
stroke results are shown in Figure 13b. 

The comparison between the 0° and 90° cross-section dimensions of the two preforms 
derived through these two methods shows that they are remarkably similar in both the 
overall shape and dimensions. This indicates that although the training dataset was de-
fined by considering axis-symmetric forgings, the proposed method can be applied to 
forging geometries in which at least one symmetry plane can be identified. 

  

Figure 12. (a) Preform geometries for the symmetric forging and (b) forging force–punch patch comparison.



Appl. Sci. 2021, 11, 7948 10 of 18

Table 3. Height features of the derived preform shapes for the symmetric forging.

Height [mm] CNN#1 CNN#2 CNN#3 CNN#4 CNN#5 CNN#6

H0◦ , max 39.44 43.05 42.41 41.64 42.83 38.11
H0◦ , min 30.43 30.11 31.36 28.39 32.55 31.79

H90◦ , max 54.64 51.19 43.54 52.67 43.54 55.28
H90◦ , min 30.43 30.11 35.21 28.39 36.01 33.64

Regarding the second approach, the three preforms estimated for each of the three
considered directions (0◦, 45◦, and 90◦) were combined into a single image by a Boolean
union and smoothed in the transition regions between the three angles.

Considering the results reported in Figure 12b, the preform shape derived by CNN#2
resulted in a maximum forging load reduction. For this reason, the preform shapes by
inputting the 3D arrays to CNN#2 and by inputting the cross-sections at 0◦, 45◦, and 90◦

to CNN#2 were utilized in two forging simulations, and the relevant forging force versus
stroke results are shown in Figure 13b.
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and 90◦ shapes and (b) Forging force vs. punch patch comparison for two preforms.

The comparison between the 0◦ and 90◦ cross-section dimensions of the two preforms
derived through these two methods shows that they are remarkably similar in both the
overall shape and dimensions. This indicates that although the training dataset was defined
by considering axis-symmetric forgings, the proposed method can be applied to forging
geometries in which at least one symmetry plane can be identified.

3.3. Grinding Tool-Like Forging

To test the reliability of the proposed approach, a literature case relevant to grinding
tool-like forging [26] was considered, as shown in Figure 14. In the considered geometry,
two symmetry planes were identified, as shown in Figure 14.
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The one-quarter models of the derived preform shapes are shown in Figure 15 and
Table 4. For the estimation of the forging load reduction, 3D plane-symmetric FEM simula-
tions were implemented in DEFORM 3D, as summarized in Appendix B, considering the
plasticine material reported in [27].
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Table 4. Height features of the derived preform shapes for the grinding tool-like shape.

Height [mm] CNN#1 CNN#2 CNN#3 CNN#4 CNN#5 CNN#6

Hx, max 11.40 11.20 10.90 11.10 11.30 11.50
Hx, min 7.94 8.77 10.48 7.63 9.98 8.50
Hy, max 10.80 10.60 11.20 10.80 11.10 9.84
Hy, min 7.37 6.51 7.44 6.04 7.80 9.13

As shown in Figure 16, all six preform shapes allowed a maximum forging load
reduction in comparison with the cylindrical preform, and the maximum reduction was
identified for the preform shape derived by the CNN#5 sub-model. In Figure 16c, the
comparison between the experimental results [26] and the authors’ FEM model results
for the cylindrical billet show a particularly good agreement, proving the reliability of
the implemented FEM model. However, the preform design derived by the proposed
methodology reduced the forging load and eliminated forging defects.
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4. Experimental Verification

To verify the applicability of the proposed preform design approach to a real in-
dustrial case, piston head forging (Figure 17) was considered. This forging component
is a one-quarter plane-symmetric shape characterized by thin walls and is designed for
weight reduction.

The piston head geometry was input to the trained CNN sub-models and the derived
preform shapes are shown in Figure 18 and Table 5. The derived preform shapes were
utilized in the 3D thermo-mechanical FEM simulations, as described in Appendix B. As
for the industrial manufacturing process, the preforming stage can prevent die failure by
reducing the die wear depth, which is significantly related to the forging load. Therefore,
for the piston head verification step, the die wear depth according to the preform shapes
was also estimated by the FEM investigations. Regarding the preform shapes derived
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by CNNs #4, #5, and #6, some features were considered too complicated to be obtained
during a preform-forging phase, resulting in folding defects during the piston-forging
phase, as highlighted in Figure 18. Therefore, these three candidates were excluded from
further investigation.
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Table 5. Height features of the derived preform shapes for the grinding tool-like shape.

Height [mm] CNN#1 CNN#2 CNN#3

HA, max 0.48D 0.51D 0.51D
HA, min 0.30D 0.29D 0.32D
HB, max 0.38D 0.32D 0.34D
HB, min 0.24D 0.29D 0.31D

As shown in Figure 19, the remaining three CNN-based preforms enabled the complete
filling of the die, and the preform based on the CNN#3 model yielded the largest forging
force reduction, estimated to be 15.09%, and promoted a wear depth reduction, estimated
to be 16.05%, in comparison with the cylindrical billet.
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Based on the positive results obtained from the FEM investigation in Figure 19a,
two experiments were performed considering the CNN#3 preform design and the cylindri-
cal billet. For the hot forging process, the HKLP-800 press machine shown in Figure 20a
was utilized, and the set-up conditions for the process summarized in Appendix B were
utilized in the 3D FEM simulations. The top and bottom dies, relevant for the piston head
shape, are shown in Figure 20b.
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As the creation of the training database is a time-consuming process, certain simpli-

fications must be implemented, as performed in this study. Two-dimensional axisymmet-
ric geometries were considered in the definition of the training database for both forging 
and preform shapes. For comparison, the 2D axisymmetric simulations required an aver-
age of 10 min each, whereas the 3D thermo-mechanical simulation for the piston head 

Figure 20. (a) Experimental set-up and (b) punch and die utilized in the verification experiments.

Because the preform die has not been manufactured yet, the preform shape derived
by CNN#3 (Figure 21a) was obtained by machining from a cylindrical billet. In addition,
an experiment considering a cylindrical billet was performed for comparison. When com-
paring the experimental and numerical forging load–stroke curves for the cylindrical and
CNN#3-based preforms, as shown in Figure 21c, the deviation between the experimental
and FEM results was limited to 1.05% and 0.55% for the area beneath the curves and 1.95%
and 0.93% for the case of the maximum load, respectively. These limited errors indicate that
the implemented 3D thermo-mechanical FEM model can properly replicate the considered
forging process. In addition, the cross-section of the forged piston head (Figure 21b), cut
through computer numerical control machining, shows the high quality of the filling as
well as the absence of any overlap of the metal flow. This result proves the reliability of the
defined CNN-based preform design approach and the accuracy of the implemented 3D
thermo-mechanical FEM model in replicating the considered forging process conditions.
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5. Discussion

As the creation of the training database is a time-consuming process, certain simplifi-
cations must be implemented, as performed in this study. Two-dimensional axisymmetric
geometries were considered in the definition of the training database for both forging and
preform shapes. For comparison, the 2D axisymmetric simulations required an average of
10 min each, whereas the 3D thermo-mechanical simulation for the piston head forging
required approximately 2 h. For this reason, the ability to create a simplified, but still
reasonable, training database is important to achieve accurate results without consuming
excessive computational time. Moreover, the consideration of a cold-forging FEM can also
reduce the computational time. Although the material flow resistance is strongly influenced
by the forging temperature, this simplification does not alter the accuracy of the preform
design because the material flow itself is independent of the processing temperature.

As presented in Sections 3 and 4, the CNN sub-models automatically derived the
3D surface of the preform candidates by utilizing the trained filters. Considering the first
validation phases, relevant for the application of the trained CNN sub-models to two
additional axisymmetric forgings and a 1

4 plane-symmetric forging, the results of the FEM
investigations demonstrated the capability of the proposed preform design approach in
deriving a preform shape that allows a significant reduction in the forging load by at least
11.1%. Regarding the grinding tool-like forging, the comparison between the experimental
and FEM results validated the 3D forging FEM model implementation strategy and showed
an improvement in the preform shape compared to that proposed in the relevant reference
study [26]. Regarding the investigation of the piston head forging described in Section
4, the utilization of the preform shape derived by CNN#3 resulted in a reduction in the
forging load of 15.09% (FEM results) and 15.94% (experimental result), as well as in the
wear depth reduction estimated at 16.05%. Hence, the possibility of designing individual
preform shapes, regardless of the material, allows the user to choose among the derived
shapes based on the maximum force criterion and considering possible constraints for the
preform manufacturing process.

Although the present study was mainly focused on forging load reduction, additional
target parameters can be included as target functions for the training database definition.
For instance, damage or residual stress minimization can be added as a criterion for the
preform shape. However, the complexity of the resulting FEM model hinders its application
to complex geometries, owing to the unreasonable amount of computational time required
for the definition of the training database. This issue is critical for complex problem
solutions by means of machine learning algorithms and requires more work in the future.

Furthermore, the training phase in the current study was based solely on the results of
numerical simulations; however, it can also be linked to engineers’ experience by feeding
previously validated sets of preforms and final shapes along with the FEM results. This
combined approach is particularly interesting because the robustness of the training data
can be further extended without requiring any additional computation time.

6. Conclusions

In this study, a new preform design methodology based on a CNN was proposed and
investigated for a certain group of forging processes. The user-bias limitations highlighted
in previously published algorithms can be overcome by considering a parametric design
approach in the training database definition. The filters were successfully determined
during the convolutional operations or the so-called training procedures by extracting the
geometrical features of the forging product and linking them to the corresponding preform
shapes, such as the building of a human design experience. Based on the multiple 3D CNN
model strategies, multiple 3D preform design candidates for one inputted forging product
geometry were easily acquired. Therefore, it is possible to select the best one depending
on the design requirements and on the results of the forging simulation for the individual
preform candidates. Although the CNN sub-models were trained three-dimensionally
with 2D axisymmetric cases for simplicity, the results showed that they can be successfully
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extended to 3D complex forging shapes with symmetry planes. The filters were determined
according to the design rules defining the training database; thus, according to the consid-
ered training set, additional design rules can be included and considered in the design of
the preform geometry. It should be mentioned that the present method is a starting point
for the automatization of preform design. In conclusion, the proposed preform design
methodology is useful for deriving preform designs for general forging cases in the metal
forging industry. However, it is expected that further investigations should be performed
by including the effect of the number of training databases, the construction of a different
training database, and additional manufacturing or material-related parameters.
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Appendix A

The CAD modelling data utilized in the FEM simulation were STL mesh files; thus, in
order to carry out the matrix operations in the convolution calculation in Section 2.1, they
had to be converted into voxel data array in Binvox files [28,29].

For the conversion process, the array size should be determined; thus, in this research,
Binvox files were created considering 122 voxels for each of the three axes, a choice which
resulted in a volume loss which was lower than 1.15% in comparison to the original mesh
file. The scale factor, defined to convert the mm-based dimension into voxels, is calculated
between the voxel grid-scale and the longest length in the considered shape, as shown in
Figure A1. The defined scale factor is saved and utilized to fit the voxel grid-scale Binvox
file into a real scale in the post-processing procedure.
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After the training process, each trained CNN sub-model predicts a preform candidate
for the considered forging shape in the form of a voxel array that must be converted to
a CAD file and smoothed before being utilized for the setting of the forging FEM simulation.
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Firstly, the voxel array is converted to a millimeter scale of mesh shapes as a cubic
frame by the Marching cube algorithm [30]. For the sake of smoothing the edge of the
block-shape of the voxel, the Humphrey’s smoothing algorithm [31] is applied. Since
the smoothed shapes have 122 voxel diameter dimensions, the scale factor saved at the
pre-processing stages is applied to match the previous dimensions and the results of post-
processing as shown in Figure A2. In case of volume loss limited to less than 2%, the
overall height of the preform shape is increased to match the volume of the considered
forging shape.
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Appendix B

For the 2D axis-symmetric FEM model utilized in Sections 2.2 and 3.1, the preform
billet was meshed using axisymmetric four-node elements with an element mesh density
equal to 3 and average element side length equal to 0.41 mm. This parametric mesh allows
a finer mesh on the corners to be obtained in contrast to the coarser mesh in the more
uniform parts of the model, as shown in Figure A3a. The top die was modeled as flat and
was set to move with a 1 mm/s speed.

To evaluate the preform shapes for the literature forging case in Section 3.3, a total of
approximately 32,000 tetrahedral elements were utilized for the meshing of the preform.
The adaptive mesh was employed resulting in the regions of the model presenting small
details in having an average mesh size equal to 0.815 mm whereas the uniform regions
had an average mesh size equal to 2.004 mm. Both material properties and the plastic
behavior of the considered plasticine were acquired from the literature [27]. Thanks to the
symmetry of the forging shape, only one-quarter of the model was considered in all the 3D
simulations, as shown in Figure A3b. For the above two FEM simulation models, the top
and bottom dies were considered as rigid to focus on the metal flow of the preform shape.
The friction coefficient was set to 0.2.
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4 of the geometry.

For the definition of the FEM model for the piston head forging, a 3D thermo-
mechanical FEM model was implemented in DEFORM 3D by considering the same mesh
size utilized in the grinding tool-like shape model. The initial temperature of the preform,
the die temperature, and the friction coefficient were equal to 350 ◦C, 280 ◦C, and 0.3
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were those utilized in the real piston production. The AISI-H13 steel and the AA-6061
aluminum alloy were utilized for the modeling of the top and bottom dies and preform,
respectively. The temperature-dependent properties and plastic behavior for both materials
were acquired from the DEFORM material library and MATILDA® (Material Information
Link and Database Service), which is largely employed for the material properties acqui-
sition utilized in hot forging processes [32]. To determine the influence of the preform
geometries on the die wear, the Archard wear model in Equation (A1) was included in
the FEM simulation. The wear coefficients were calculated as 1.44 × 10−6 for K, 1.63 for a,
1.25 for b, and 1.76 for c based on the lab-scale pin-on-disc experimental results.

W =
∫

K
PaVb

Hc dt (A1)
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