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Abstract: Spreading rumors in social media is considered under cybercrimes that affect people,
societies, and governments. For instance, some criminals create rumors and send them on the
internet, then other people help them to spread it. Spreading rumors can be an example of cyber
abuse, where rumors or lies about the victim are posted on the internet to send threatening messages
or to share the victim’s personal information. During pandemics, a large amount of rumors spreads
on social media very fast, which have dramatic effects on people’s health. Detecting these rumors
manually by the authorities is very difficult in these open platforms. Therefore, several researchers
conducted studies on utilizing intelligent methods for detecting such rumors. The detection methods
can be classified mainly into machine learning-based and deep learning-based methods. The deep
learning methods have comparative advantages against machine learning ones as they do not
require preprocessing and feature engineering processes and their performance showed superior
enhancements in many fields. Therefore, this paper aims to propose a Novel Hybrid Deep Learning
Model for Detecting COVID-19-related Rumors on Social Media (LSTM–PCNN). The proposed
model is based on a Long Short-Term Memory (LSTM) and Concatenated Parallel Convolutional
Neural Networks (PCNN). The experiments were conducted on an ArCOV-19 dataset that included
3157 tweets; 1480 of them were rumors (46.87%) and 1677 tweets were non-rumors (53.12%). The
findings of the proposed model showed a superior performance compared to other methods in terms
of accuracy, recall, precision, and F-score.

Keywords: rumor detection; deep learning; twitter analysis; convolution neural networks; LSTM;
pretrained model; word embedding

1. Introduction

One of the cybercrimes that has recently occurred is the spreading of rumors on
social media. According to [1], people help criminals spread false rumors due to the
the insufficient credibility of governments and mainstream media. Some web media
use attractive titles and some even spread unconfirmed rumors so that people cannot
clearly distinguish between facts and rumors. For example, during pandemics, rumors
often spread on social networks in terms of those who are suspected of infection [2].
Currently, several infectious diseases and pandemics have so far emerged and they are
by nature rapidly evolving. In this context, COVID-19 is considered as one of the rapidly
spreading pandemics through which almost all countries around the world have been
infected. In Saudi Arabia, since the first outbreak of COVID-19 epidemic on 2 March 2020,

Appl. Sci. 2021, 11, 7940. https://doi.org/10.3390/app11177940 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7172-8224
https://orcid.org/0000-0002-7974-7638
https://orcid.org/0000-0002-2822-1708
https://orcid.org/0000-0003-2133-0757
https://doi.org/10.3390/app11177940
https://doi.org/10.3390/app11177940
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11177940
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11177940?type=check_update&version=2


Appl. Sci. 2021, 11, 7940 2 of 17

the competent health authorities recommended a set of preventive and precautionary
measures originating from their keenness to protect people’s health and ensure their safety.
Based on the World Health Organization’s (WHO) statistics, even with such stringent
precautionary measures adopted by the kingdom, the number of infections in Saudi Arabia
was doubling every 6 days. However, this exponential growth in the total number of
infected cases with COVID-19 has been reported by several countries. Therefore, with the
exponential growth of the number of infected people and the rapid spread of the virus
in different countries, users with different professions as well as laypeople can post and
circulate any related news. This piece of medical news might cause a manic situation in a
population as well as market disorder. To avoid this situation, competent health authorities
and other government authorities issued several rules to criminalize posting and sharing
any fake information on social media. To solve this issue, there is a need to propose an
intelligent way to detect health-related COVID-19 information automatically on social
media. Although a few intelligent methods have been used to detect rumors on social
media, obtaining a high detection rate is still a large challenge, especially if the rumors are
written in languages such as Arabic.

One of the main online social networking platforms is Twitter, which is currently used
by several health and governmental authorities as one of the main sources of information
and for announcing various information and awareness about emergency situations and
regulations issued. Despite these efforts, it is noted that Twitter has become a breeding
ground for several COVID-19 rumors. Thus, a broad number of researchers from different
scientific fields such as computer science, social science, and psychology sought the reasons
behind spreading rumors on social media platforms and for a way to combat rumors at
the early stages [3]. Detecting rumors on social media platforms as a classification task
has been addressed in several studies such as [3–10]. By analyzing the literature, the used
techniques for detecting rumors can be easily categorized either as traditional machine
learning-based (ML) or deep learning-based DL methods. The ML approaches require
several preprocessing and feature engineering processes. Oppositely, DL methods can
extract the informative features directly from the textual content without human assistance.
Among these studies, only few researchers have investigated the detection of rumors
that are written in Arabic on social media. The detection rate of the existing methods
still needs to be improved. Because of this research problem, this paper proposes a deep
learning based model to detect COVID-19-related rumors posted on Twitter using the
Arabic language. We investigated different deep learning architectures using the publicly
available dataset ArCOV-19 [11]. The proposed deep learning model connects long short-
term memory (LSTM) with three parallel and concatenated conventional neural networks
(PCNN). The experimental results showed that the proposed model outperformed all
the other investigated models and produced satisfied results in terms of accuracy, recall,
precision, and F-score.

The main contributions of this paper are:

• A new LSTM–PCNN architecture is proposed and extensive experiments are presented
to demonstrate the performance of the proposed model.

• The impact of word embedding layers is investigated in order to select the appropriate
scheme. For this purpose, we investigated the influence of static word embeddings
such as word2vec, GloVe, and FastText on the proposed model.

The organization of the paper is as follows: In Section 2, we review the state-of-the-art
techniques that address the rumor detection problem. Section 3 presents the architecture
of the proposed model. In Section 4, the methodology of this study is described; the
used dataset, preprocessing methods, evaluation metrics, and experimental design, and
evaluation were highlighted. Section 5 gives the details of the experimental results to
highlight our contribution. Section 6 concludes the whole paper by summarizing the
contributions.
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2. Related Studies

In the following subsections, we briefly present some of the notable works published
during the COVID-19 pandemic that used ML and DL methods to detect COVID-19 related
misinformation and rumors. We also report and summarize the results and limitations.
This section also gives the reader the necessary background to understand the main
characteristics of DL models that are investigated in this paper.

Rumor Detection Approaches

During the outbreak of COVID-19, especially when countries around the world began
implementing a ban and a full lockdown, a wave of panic spread rapidly among citizens.
Due to this, the WHO emphasized the need to fight against misinformation related to
the virus and the methods of treatment [12]. To achieve this, the health authorities paid
attention to debunking such rumors. However, verifying all these rumors required much
human effort. Some researchers suggested developing AI techniques to fight against
COVID-19 related misinformation/rumors on social media. Below are some of the notable
works that used this approach.

Chen [13] embedded the pre-trained model of BERT with TextCNN and TextRNN
models. The proposed model was trained on data with 3737 rumors collected from different
Chinese platforms. The results showed that the proposed BERT model outperformed the
other methods. In addition, all three models showed good results and could be used to
defeat the COVD-19 related rumors.

Alqurashi et al. [14] conducted an extensive experiment on a dataset of COVID-19
misinformation written in Arabic spread on Twitter. The n-gram TF–IDF, word level TF–
IDF feature representation, word2vec, and FastText word embedding were employed with
several traditional ML and DL methods. As traditional ML methods, the random forest
classifier, XGB, naïve Bayes, SGD, and SVM were investigated. In addition, the CNN, bi-
LSTM, and CRNN models were used as DL methods. The findings showed that the TF–IDF
word level performed well when employed with traditional ML methods comparing with
n-gram TF–IDF. The FastText produced better results with ML methods and the CNN. The
word2vec produced some improvement with CNN before optimizing the AUC score, while
the RNN benefits more after optimizing the AUC. In [15] Wang et al. suggested combining
text content [16], propagation patterns [17], and user feedback. They also analyzed the
influence of these combinations on a deep attention model. The proposed model was tested
on a set of publicly available datasets. They reported that when they tried to re-obtain the
contents of some tweets, about of fifteen percent Twitter data has been lost. The results
showed that this approach slightly improved rumor detection in the propagation cycle and
achieved a good result with 94.2% accuracy.

In [18], Alsudias and Rayson collected around one million Arabic tweets related to
COVID-19. Their aim was not only to detect rumors, but also to identify topics discussed
during the period and to find the source of such rumors. For conducting rumor detection,
the authors sampled only 2000 tweets and labeled them manually. After that, SVM, LR,
and NB classifiers were used to distinguish rumor tweets from non-rumors. The highest
achieved accuracy was 84.03%, which was achieved by LR with count vector and SVM
with TF–IDF. They also examined the influence of word2vec and FastText on the classifiers’
performance. They reported that applying the word embedding approaches did not impact
positively on the classifiers’ performance.

Apart from Coronavirus related rumors, a large amount of studies can be found
in literature that addressed rumor detection via social media in general such as [3,5].
The subsection below briefly presents some DL techniques that are intensively used for
detecting rumors via OSN.

A summary of the main existing methods on using machine learning and deep learning
methods for detecting rumors is shown in Table 1. The proposed model extends the existing
methods in the literature by proposing a new LSTM–PCNN architecture and conducting
extensive experiments to demonstrate the performance of the proposed model. In addition,



Appl. Sci. 2021, 11, 7940 4 of 17

this study investigated the impact of word embedding layers to select the appropriate
scheme such as the influence of static word embeddings (word2vec, GloVe, and FastText)
on the proposed model. As a result, the proposed model provided interesting results and
outperformed the other investigated models in terms of accuracy, recall, precision, and
F-score.

Table 1. Summary of Existing COVID-19 Detection Models.

Paper Dataset Dataset Size Technique
Applied

Feature
Representation Findings Limitation

[13]

Handcrafted
COVID-19

dataset
obtained from

Chinese
platforms

3737 rumor
related data

TextCNN and
TextRNN BERT model

BERT model
outperformed the other

models. BERT, TextCNN,
and TextRNN models all
reached more than 90%

The dataset is
not available
which makes
reconducting

the model
impossible.

[14]

Arabic
COVID-19

obtained from
Twitter

8786 Tweets ML and DL
methods

word2vec,
FASTTEXT,

TF–IDF, n-gram

TF–IDF word level was
suitable more for ML,
while FastText more

reliable for DL methods.
XGB classifier was the

best classifier for
identifying Arabic

misinformation

Preprocessing
limitation

[15]
Set of publicly

available
datasets

2313 rumor and
2351 non-rumor

samples

Attention-
based DL
method

Not reported

The user feedback
provided a clean signal

for determining the
trend of rumors

Need for
optimizing the
performance of

model and
reducing

training time

[18]

Handcrafted
COVID-19

dataset
obtained from

Twitter
platform

2000 Tweets ML methods word2vec,
FASTTEXT

The highest accuracy
was 84.03% which was

achieved by LR with
count vector and SVM

with TF–IDF

The annotation
process is not
clear enough

3. Methods
3.1. Deep Learning Techniques

Today, detecting rumors on OSN has gained a significant improvement due to apply-
ing DL. According to [19], the main advantage of DL-based techniques is that they do not
require any feature engineering. The DL classifier extracts and obtains the useful features
directly from the entered data during the training phase. Since there are many proposed DL
models, we focused on the models that will be used in this paper to present the proposed
model. First, we present an overview of the LSTM architecture and CNN. Then, the word
embedding that we used as text representation is also presented in this section.

3.1.1. Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a special class of recurrent neural
networks (RNNs). Since the original RNNs are unable to learn the dependency found in
input data especially when the gap is large, LSTM, due to the proposed gate functions,
could handle such a problem well [20]. In practice, the powerful learning capacity of the
LSTM method makes it one of the most used DL architectures and has been widely used
in many fields, such as sentiment analysis [15,21,22], question answering systems [23],
sentence embedding [24], and text classification [25].

A typical LSTM has three main gates: an input gate, a forget gate, and an output
gate. In addition to the gates, LSTM uses a cell memory state to decide which information
to save or discard. Figure 1 shows the original LSTM which was proposed by [26]. The
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original LSTM has been modified by several researchers. Variations include LSTM without
a forget gate, LSTM with a forget gate [27], LSTM with a peephole connection, the gated
recurrent unit (GRU) [28], Stacked LSTM [29], and Bi-LSTM [30].
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Figure 1. The original LSTM [20].

3.1.2. Convolutional Neural Network

The CNN is another type of DL architecture that has gained more attention in the
last few years. The CNN is an unsupervised multilayer feed-forward neural network.
It consists of one input layer, one output layer, and the hidden layer that can include
any combination of the convolutional layer, nonlinearity, pooling layer, fully connected
layer, and regularization. Figure 2 illustrates a typical CNN architecture for binary rumor
detection.
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The CNN has been proven to perform effectively in image classification. Researchers
found it a powerful method also in the natural language processing field, such as text
classification [31–33]. In [3], authors investigated the influence of CNN on rumor detection
task. They found that the CNN can capture rumor features well when the hidden layer is
tuned gradually.
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− Convolutional layer: For textual data, a convolutional layer is connected to the input
layer for extracting features around a particular window, h, of words, w, referred to as
a filter. To capture the useful features, the filter slides across the data. The length of
the filter is called the kernel size or window size. Once the features are extracted, the
output is passed forward to the next layer.

− Nonlinearity: Here, the goal is to include nonlinear properties in the network. The
most used nonlinearity functions in CNN are tanh, sigmoid, and relu. Alsaeedi and
Al-Sarem [3] found that the tanh activation function yielded better results compared
to sigmoid and relu. Thus, in this paper, we followed their recommendation and
empirically assessed the results.

− Pooling layer: Often, the convolutional layer generates feature maps with high di-
mensionality. Thus, the role of the pooling layer is to reduce the dimensionality by
applying a function such as max pooling, average pooling, and stochastic pooling.

− Regularization layers: Similar to the traditional ML methods, the DL also suffers
from an overfitting problem. Regularization methods such as early stopping, dropout,
and weight penalties are type of techniques that are used for reducing the testing
error [34].

3.2. Word Embeddings

Word embedding (WE) is a representation technique of a text where the words with
the same meaning have a similar representation. Recently, there have been several word
embeddings widely used in ML and DL models. In the literature, there are many pre-
trained WEs that can be categorized into two groups [10]: static representation models and
contextual models. Word2vec, GloVe, and FastText are types of static WEs that can convert
a text into vectors of meaningful representation.

− Word2vec works as a language model [35], which is widely used for many NLP tasks.
In general, the word2vec embeddings can be obtained using either skip gram or
common bag of words (CBOW) [36]. The skip-gram model computes the conditional
probability of a word by predicting the surrounding context words given the central
target word. The CBOW does the opposite of skip-gram, by computing the conditional
probability of a target word give the context words surrounding it across a window of
size k [23]. Mathematically, both CBOW (Equation (1)) and skip-gram (Equation (2))
models are trained as follows:

J =
1
V

V

∑
t=1

log p(wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c) (1)

J =
1
V

V

∑
t=1

t+c

∑
i=t−c, i 6=j

log p(wi|wt) (2)

where J is the loss function, [−c, c] is the word context of the target word wt, and V-
vocabulary size. In this work, we used both models and the results of their influence
on the proposed model was examined. The pre-trained word2vec word embeddings
have 300 features which trained on 100 billion words.

− GloVe is an unsupervised training “count-based” model [23]. Opposite to word2vec,
the GloVe word embedding generates the embedding vector using word occurrences.
Formally, the space vector is computed using a weighted least-squares method
(Truşcǎ et al., 2020) as follows:

J =
V

∑
i=1

V

∑
j=1

f
(
Xij

)(
wT

i wj + bi + bj − log
(
Xij

))2
(3)

where V is the vocabulary size and f
(
Xij

)
is a weighting function. The smallest

package of the embedding is 822Mb, called “glove.6B.zip”. The GloVe model is
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trained on a dataset having one billion words with a dictionary of 400 thousand words.
There are different embedding vector sizes, with 50, 100, 200, and 300 dimensions for
processing. In this paper, we used the 100 dimensional version.

− Fast Text is an extension of the word2vec approach where the word embedding is
represented using n-gram [37]. Once the word has been represented using n-grams, a
skip-gram model or CBOW is trained to learn the embeddings. Today, the pre-trained
FastText word vector supports 157 languages. The main parameters that need to
be adjusted before using the FastText word embedding are the dimension and the
range of subwords size. By default, the size of 100 dimensions is used. However, it is
allowed to have a value in the 100–300 range. In this paper, we set the dimensionality
of word embeddings to 300.

3.3. The Proposed Method

In this work, we propose a hybrid deep learning-based model LSTM–PCNN to detect
rumors on Twitter. The proposed model hybridizes LSTM architecture with three parallel
CNN models. The structure of the LSTM–PCNN model is shown in Figure 3.
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3.3.1. Input Layer

There are several publicly available datasets. Table 2 presents the existing available
publicly datasets. In this work, we used the ArCOV-19 dataset. The original dataset
contains 95,000 tweets; out of them, 3612 tweets were annotated (the full description of the
dataset is presented in Section 4.1). Since the maximum length of a tweet written in Arabic
is 280 characters, the input layer was set to cover the maximum length as shown in the
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input layer in Figure 3. Before feeding the tweet into the next layer, a set of preprocessing
techniques were applied. The complete process is discussed in Section 4.2.

Table 2. Publicly Available Arabic Datasets.

Dataset Name Size Dataset Purpose Link

ArCorona-ver1 8000

Understanding public
behavior, Sources of tweets,

Topics of interest, and
Requests from governments.

https:
//alt.qcri.org/~hmubarak/ArCorona-ver1.tsv

last access: 26 August 2021

COVID-19-FAKES 10,000 Fake information detection https://github.com/mohaddad/COVID-FAKES/
tree/COVID-FAKES-A (last access: 26 August 2021)

COVID-19-Arabic-Tweets-
Dataset 94,000 Sources of tweets and Topics

of interest

https://github.com/SarahAlqurashi/COVID-19
-Arabic-Tweets-Dataset

https://github.com/mohaddad/COVID-FAKES/
tree/COVID-FAKES-A (last access: 26 August 2021)

GeoCoV19 5.4 M Understanding public
reactions and sentiment

https://crisisnlp.qcri.org/covid19
(last access: 26 August 2021)

ArCOV-19 dataset 2.7 M Propagation networks, Fake
information detection

https://gitlab.com/bigirqu/ArCOV-19
last access 26 August 2021

3.3.2. Embedding Layer

As shown in Figure 3, we employed three different pre-trained embedding layers,
namely, word2vec, GloVe and Fast Text model. Each word embedding was fed separately
into the LSTM layer. Table 3 shows the tuned hyper parameters of each used model. It is
important to highlight that GloVe word embedding is a pre-trained model, while the other
models are trained from the training data.

Table 3. Configuration of the used Word Embedding.

Word Embedding Model Configuration

Word2vec Word vector dimension = 300, window = 3, min_count = 1, sg = {0,1}
GloVe Default

FastText Default

3.3.3. Long Short-Term Memory Layer

The output of the embedding layer was a vector with a predefined size in which
the words per tweet wt were embedded. However, before feeding the output to the
LSTM, we used a spatial dropout layer [38]. The spatial dropout layer has proven its
benefit for improving the performance of CNN architecture [39] and avoiding overfitting
in LSTM [40,41]. In this work, we suggest adding one spatial dropout layer before feeding
the output into the LSTM layer. Table 4 presents the layered architecture of LSTM model.

Table 4. LSTM Layered Architecture Layer.

Layer Input
Dimension

Output
Dimension

Activation
Function Dropout

LSTM 400 250 tanh 0.3

3.3.4. Convolutional Neural Network Layer

As shown in Figure 3, the LSTM layer was followed by three parallel CNN layers.
Each block generated a 150-dimensional vector Fi

t that indicated word features, where
i is the number of CNN block and Ft represents features obtained by each block. The
configuration of each CNN block is presented as shown in Table 5.

https://alt.qcri.org/~hmubarak/ArCorona-ver1.tsv
https://alt.qcri.org/~hmubarak/ArCorona-ver1.tsv
https://github.com/mohaddad/COVID-FAKES/tree/COVID-FAKES-A
https://github.com/mohaddad/COVID-FAKES/tree/COVID-FAKES-A
https://github.com/SarahAlqurashi/COVID-19-Arabic-Tweets-Dataset
https://github.com/SarahAlqurashi/COVID-19-Arabic-Tweets-Dataset
https://github.com/mohaddad/COVID-FAKES/tree/COVID-FAKES-A
https://github.com/mohaddad/COVID-FAKES/tree/COVID-FAKES-A
https://crisisnlp.qcri.org/covid19
https://gitlab.com/bigirqu/ArCOV-19
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Table 5. CNN Layered Architecture.

Layer Input
Dimension

Output
Dimension Kernel Size Padding Activation

Function

Conv1D 250 150 1 valid relu
Conv1D 250 150 2 valid relu
Conv1D 250 150 3 valid relu

3.3.5. Concatenation Layer

As described earlier, each CNN block generated a 150-dimensional vector. So, we
concatenated each feature Ft obtained by each block. As a result, we obtained a 450-
dimensional vector F. Thus, the vector F is given by:

F = F1
t ⊕ F2

t ⊕ F3
t (4)

3.3.6. Output Layer

Finally, the vector F was passed into the output layer. Since, the rumor detection task
can be considered as a binary classification task, the vector F was passed into the Sigmoid
function, which can take a value of either 0 or 1 as follows:

p = Sigmoid(F) (5)

y =

{
0, p ∈ [0, 0.5)
1, otherwise

(6)

where p is the possibility that the tweet is a rumor or non-rumor. The y is the classification
result where y = 0 indicates that the tweet is non-rumor and y = 1 indicates a rumor tweet.

4. Experimental Design

In this paper, the experiments were conducted to evaluate the performance of the
proposed LSTM–PCNN model. Therefore, we implemented two baseline DL-based models:
(i) LSTM, and (ii) Parallel CNN. The experimental part of this work was performed on the
Keras 2.2.4 API with TensorFlow backend using Python 3.6 with Windows 10 operating
system. In addition, the used dataset, preprocessing methods, and the evaluation metrics
are presented and explained in this section.

4.1. Data Sets

The ArCOV-19 dataset is a collection of Arabic tweets about the COVID-19 pandemic,
considering the most common public dataset covering the period from 27 January to
30 April 2020. The Twitter API were used to collect the Arabic tweets based on manually-
entered queries targeting COVID-19 topics, including keywords such as “Corona,” hashtags
such as “#coronavirus,” or phrases such as “COVID-19 pandemic.” The search queries
were customized to remove all retweets, avoid duplicate tweets, and return Arabic tweets
only in chronological order. The ArCOV-19 dataset comprised 94K tweets. The original
dataset contained 3612 tweets (Last access was on 10 March 2021. Thus, the number
of collected tweets might have increased.). Since the ArCOV-19 dataset complied with
the Twitter content redistribution policy, only the tweet IDs were published publicly.
Therefore, the full object of tweets was obtained using the Hydrator tool to obtain tweets
in JSON format for the given tweets’ IDs. Due to the inaccessibility of some tweets (deleted
tweets or deactivated accounts), the total number of tweets we retrieved was reduced to
3157 tweets, including 1480 rumors (46.87%) and 1677 non-rumors (53.12%). The dataset
included several types of rumors related to COVID-19 such as social, political, health, and
religious rumors. The main motivations for distributing these rumors were to provide
health and social awareness and information about COVID-19. Some of these rumors were
political and used to distribute misinformation against specific countries, while others
tried to circulate rumors about the treatment of COVID-19 by taking the form of religious
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advice. By reviewing the rumors in this dataset, the majority of these rumors fell into the
sociological and political types. Table 6 shows examples of these rumors.

Table 6. Rumor Types and Examples.

Rumor in Arabic Translated Text Type of Rumor
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Several preprocessing steps were performed to prepare the tweets’ texts before feed-

ing them into the embedding layer and the proposed deep learning classification models. 
First, we handled URLs by replacing them with “رابط” meaning “hyperlink, mention char-
acter (@) removal, hashtag character (#) removal, handling words with repeating charac-
ters, numbers removal, and emoticon handling by replacing positive emoticons with 
a’إيجابي’ meaning ‘positive’ word and negative emoticons with a ‘سلبي’ meaning ‘negative’ 
word. In addition, we removed punctuation and additional white spaces. We also nor-
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and to strip both “tatweel” and “tashkeel”. In addition to the above steps, we performed 
the stemming process using the snowball stemmer and removed stop words from the text. 
Figure 4 shows an illustrative example of a tweet after applying some of the preprocessing 
techniques. 
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In addition, we removed punctuation and additional white spaces. We also normalized
non-Arabic letters by converting them into Arabic using manually crafted translator. After
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both “tatweel” and “tashkeel”. In addition to the above steps, we performed the stemming
process using the snowball stemmer and removed stop words from the text. Figure 4 shows
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4.3. Evaluation Metrics

To evaluate the performance of the proposed model, the following performance
measures were used: classification accuracy, precision, recall, and F1 score. In addition,
we present the confusion matrix per each fold (refer to Table 7 for more details). These
measures are commonly used by researchers to evaluate the performance of a rumor
detection system. In order to precisely assess the proposed method, all the conducted
experiments were validated using fivefold cross-validation.

Table 7. Confusion matrix.

Predicted Negative Predicted Positive

Actual Negative True negative (TN) False positive (FP)
Actual Positive False negative (FN) True positive (TP)

5. Experimental Results

The results shown in this section are the average value of each experiment that was
repeated, as stated earlier, five times independently.

5.1. Evaluation of the Embeddings

To choose the appropriate embedding extractor in the LSTM–PCNN model, we ap-
plied different static word embedding models: word2vec, GloVe, and FastText. The struc-
tures of the other parts in the DL models remain unchanged. Later, in the next section, we
examined the performance of adding more dense layers to the models under investigation.
The performance of baselines models with different embeddings is shown in Table 8.
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Table 8. The performance of baseline models with different embeddings.

Word Embedding Baseline
Classifier Accuracy Precision Recall F-Score

Word2Vec (CBOW)
PCNN 0.8209 0.8257 0.8209 0.8213
LSTM 0.8304 0.8334 0.8304 0.8295

Word2Vec (Skip-Gram) PCNN 0.8320 0.8319 0.8320 0.8319
LSTM 0.8526 0.8527 0.8526 0.8526

Fast Text (CBOW)
PCNN 0.8399 0.8405 0.8399 0.8401
LSTM 0.8352 0.8422 0.8352 0.8349

Fast Text (Skip-Gram) PCNN 0.8542 0.8569 0.8542 0.8545
LSTM 0.8447 0.8448 0.8447 0.8447

GloVe
PCNN 0.8542 0.8558 0.8542 0.8541
LSTM 0.8479 0.8494 0.8479 0.8478

It is important to report that we have trained all the word embedding models (without
finetuning) on AraCOV−19 data for the fairness of the experiment. As shown in Table 8,
FastText outperformed both word2vec and GloVe. The PCNN model benefitted more from
the Fast Text and GloVe embeddings compared to word2vec. However, LSTM showed an
improvement when the word2vec skip-gram model is used. Therefore, at this stage it was
difficult to decide which model we should use. For this reason, we investigated the impact
of these word embeddings on the proposed LSTM–PCNN model. As shown in Figure 5,
the proposed LSTM–PCNN, unlike expected, achieved the highest performance when the
word2vec skip-gram model was used. In addition, comparing the proposed model with
the other baseline models, LSTM–PCNN achieved the best result among all the models.
Figures 6 and 7 present the structure of LSTM and PCNN models, respectively.
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5.2. Evaluation of Adding more Dense Layers

Similar to what we completed in the previous section, the influence of adding dense
layers on the performance of the implemented DL models was investigated. Thus, to
evaluate the contributions of these layers to the models, we added them gradually in
turn to the model. Tables 9 and 10 show the median values obtained by adding more
layers to the proposed LSTM–PCNN. The rest of the results are in “Appendix A” (see
Tables A1 and A2).

Table 9. The Median Values Obtained using One Dense Layer.

Embedding Layers Accuracy Precision Recall F-Score

Word2Vec (CBOW) 85.10% 0.85093 0.85103 0.85097
Word2Vec (Skip-gram) 85.74% 0.86054 0.85737 0.85767

Fast Text (CBOW) 85.42% 0.85577 0.85420 0.85388
Fast Text (Skip-gram) 83.99% 0.84059 0.83994 0.83891

GloVe 85.42% 0.85584 0.85420 0.85449

Table 10. The Median Values Obtained using Three Dense Layers.

Embedding Layers Accuracy Precision Recall F-Score

Word2Vec (CBOW) 84.79% 0.84762 0.84786 0.84760
Word2Vec (Skip-gram) 84.79% 0.84971 0.84786 0.84775

Fasttext (CBOW) 85.26% 0.85560 0.85261 0.85294
Fasttext (Skip-gram) 86.05% 0.86406 0.86054 0.86084

GloVe 85.10% 0.85553 0.85103 0.85136

6. Conclusions

The paper proposed a novel hybrid deep learning model for detecting COVID-19-
related rumors on social media based on a long short-term memory and concatenated
parallel convolutional neural networks (LSTM–PCNN). The conducted experiments used
three static word embedding models, which are word2vec, GloVe, and FastText. The
experimental results showed that the proposed LSTM–PCNN model achieved the highest
performance when the word2vec skip-gram model was used, and it outperformed the other
baseline models, where the obtained detection accuracy reached 86.37%. The experiments
also investigated adding more dense layers to the architecture of the proposed model leads.
It was found that, in most cases, this adding degraded the overall performance. Statistical
analysis was conducted using the Mann-Whitney-Wilcoxon test and the Wilcoxon signed-
rank test and the findings showed that adding more “Dense layers” did not improve the
performance of the proposed model. As the rumors have negative impact on the social
and political aspects of many countries, the proposed model can help the health and other
governmental authorities to automatically detect fake information about COVID-19 on
social media and mitigate this impact. In future work, other datasets with Arabic tweets
could be used, and other deep learning-based methods could be proposed and investigated
to enhance the detection of health-related rumors in Arabic and other languages.
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Appendix A

Table A1. The Median Values obtained using Various Classifiers with One Dense Layer.

Word Embedding Classifier Accuracy Precision Recall F-Score

Word2Vec-CBOW
LSTM-PCNN 0.851030111 0.850930411 0.851030111 0.850971622

PCNN 0.820919176 0.824961489 0.820919176 0.821206478
LSTM 0.839936609 0.839783925 0.839936609 0.839841079

Word2Vec -Skip grams
LSTM-PCNN 0.857369255 0.860538827 0.857369255 0.857674224

PCNN 0.82725832 0.829704392 0.82725832 0.827321158
LSTM 0.844690967 0.849820666 0.844690967 0.844944908

Fasttext-CBOW
LSTM-PCNN 0.854199683 0.855772847 0.854199683 0.853882674

PCNN 0.839936609 0.839878863 0.839936609 0.839905606
LSTM 0.838351823 0.8395801 0.838351823 0.838661839

Fasttext-Skip grams
LSTM-PCNN 0.839936609 0.840589106 0.839936609 0.8389057

PCNN 0.838351823 0.846783629 0.838351823 0.838476882
LSTM 0.841521395 0.841705837 0.841521395 0.840747605

Glove
LSTM-PCNN 0.854199683 0.855841279 0.854199683 0.854492222

PCNN 0.856369255 0.861367633 0.857369255 0.857680946
LSTM 0.852614897 0.86374224 0.852614897 0.85273262

Table A2. The Median Values obtained using Various Classifiers with Three Dense Layers.

Word Embedding Classifier Accuracy Precision Recall F-Score

Word2Vec-CBOW
LSTM-PCNN 0.847860539 0.847620683 0.847860539 0.847602354

PCNN 0.816164818 0.832481927 0.816164818 0.815732473
LSTM 0.851030111 0.85332578 0.851030111 0.851323063

Word2Vec -Skip grams
LSTM-PCNN 0.847860539 0.849708961 0.847860539 0.84775121

PCNN 0.846275753 0.857998622 0.846275753 0.84559449
LSTM 0.841521395 0.851922253 0.841521395 0.84144736

Fasttext-CBOW
LSTM-PCNN 0.852614897 0.855598804 0.852614897 0.852936834

PCNN 0.838351823 0.838488951 0.838351823 0.838411901
LSTM 0.851030111 0.853978739 0.851030111 0.851469463

Fasttext-Skip grams
LSTM-PCNN 0.860538827 0.864062368 0.860538827 0.860840177

PCNN 0.830427892 0.848173415 0.830427892 0.830666543
LSTM 0.836767036 0.846330271 0.836767036 0.836393332

Glove
LSTM-PCNN 0.851030111 0.855528458 0.851030111 0.851356306

PCNN 0.852614897 0.855580581 0.852614897 0.852399986
LSTM 0.844690967 0.844797684 0.844690967 0.8447358
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