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Abstract: The model-based controllers generally suffer from the lack of precise dynamic models.
Making reliable analytical models can be evaded by soft modeling techniques, while the consequences
of modeling imprecisions are tackled by either robust or adaptive techniques. In robotics, the
prevailing adaptive techniques are based on Lyapunov’s “direct method” that normally uses special
error metrics and adaptation rules containing fragments of the Lyapunov function. The soft models
and controllers need massive parallelism and suffer from the curse of dimensionality. A different
adaptive approach based on Banach’s fixed point theorem and using special abstract rotations was
recently suggested. Similar rotations were suggested to develop particular neural network-like
soft models, too. Presently, via integrating these approaches, a uniform adaptive controlling and
modeling methodology is suggested with especial emphasis on the effects of the measurement noises.
Its applicability is investigated via simulations for a two degree of freedom mechanical system in
which one of the generalized coordinates is under control, while the other one belongs to a coupled
parasite dynamical system. The results are promising for allowing the development of relatively
coarse soft models and a simple adaptive rule that can be implemented in embedded systems.

Keywords: adaptive control; soft computing; Banach space; Banach’s fixed point theorem; iterative
control; Lyapunov function

1. Introduction

The “Model Predictive Controller (MPC)” takes into consideration often contradictory
requirements by minimizing a composite cost function under the constraints that precisely
describe the dynamic model (i.e., the “abilities”) of the controlled system. The mathe-
matical background of this approach corresponds to optimization of functionals for the
implementation of which the computationally very greedy “dynamic programming” was
suggested in the 1950s [1,2]. By the application of a finite time grid and Lagrange’s “reduced
gradient method” [3] referred to as “nonlinear programming”, the “Receding Horizon
Controller (RHC)” [4] was introduced in 1978. Though the resolution of the grid must
be fine enough to allow Euler integration over it, RHC normally needs considerably less
computational resources than dynamic programming. It was successfully applied for the
control of relatively slow processes as e.g., crystallization [5], and biomedical processes
in the artificial pancreas [6]. The increase in computational power of modern computers
later allowed various fields for its application (e.g., [7–9]); however, in robotics, where
normally fast motion of the robot arms is required, the optimal control framework was
found to be too complicated, and the available dynamic model of the robot was directly
applied for computing the necessary driving torque in the “Computed Torque Control
(CTC)” approach (e.g., [10–12]). In the 1990s, it became clear that it is difficult to obtain
precise dynamic robot models (e.g., [13]). The friction effects that are not very well modeled
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by classical mechanics generally mean problems in model identification even with the
relatively simple Striebeck model [14], while more sophisticated friction approaches as the
“LuGre” model have to introduce new, dynamically coupled system variables [15].

Since the CTC controller can guarantee asymptotically zero tracking error for arbitrary
initial conditions only in the possession of exact dynamic model, to achieve precise tracking,
more sophisticated methods were developed. The fundamental idea came from Lyapunov’s
Ph.D. thesis [16,17] in which he considered the stability of the equilibrium points of
certain physical systems that were described by coupled nonlinear systems of ordinary
differential equations. Since these equations of motion normally do not have closed form
analytical solutions, their subtle details were not discovered; however, by Lyapunov’s
ingenious method it became possible to define and prove various stability properties for
these equilibrium points. In control applications, the “zero tracking error” was placed in
the role of the equilibrium point, and in the 1990s, the first paradigms as the “Adaptive
Inverse Dynamics Controller (AIDC)” and the “Slotine–Li Adaptive Robot Controller”
appeared [18]. This approach works with the introduction of a special metric tensor in
the space of the tracking error, its time-derivative and time-integral, by the use of which
the Lyapunov function as a square of an error metrics can stagnate, monotonically or
strictly monotonically decrease, or asymptotically converge to zero. This metric tensor
depends on the feedback gains applied in the control rule. If the exact dynamical model is
available, it is possible to prove that this special metrics converges to zero by solving the
Lyapunov equation. In this case, the “arbitrary components” of this metric tensor are not
present in the control law. If the available dynamical model is imprecise, in the adaptive
feedback, the arbitrary components of this metric tensor appear, too. The result normally
is not a particular, but rather a whole set of stable adaptive controllers the elements of
which produce different error relaxation features. Since in several applications as e.g., in
life sciences, the pure fact of stability cannot guarantee the avoidance of “lethal states”,
complementary tuning of the parameters of the stable solutions became necessary as
e.g., in [6]. The main problem is that only the original components of the tracking error have
clear phenomenological interpretation and physical significance, as a result, guaranteeing
the behavior of these components would be really significant; however, by guaranteeing the
decrease of the norm obtained by the use of the particular metric tensor cannot guarantee
the decrease of the physically interpreted error components because they are “mixed” in
this metric. In the practice, the decrease of the individual components would be desirable.

The adaptive controllers can be divided into two big subsets: the “parameter adaptive
approach” as in [18] utilizes the ab ovo exactly known formal properties of the dynamic model
and realizes continuous refinement of the model parameters. In the “signal adaptive ap-
proach” as in the “Model Reference Adaptive Controller (MRAC)” [19] fast complementary
control signals are applied that make the behavior of the controlled system identical to
that of the reference model. This reference model normally can be chosen as a stable
“Linear Time-Invariant (LTI)” system that easily can be controlled. This approach also uses
the Lyapunov function in its design. Though for different problem classes, appropriate
“candidate Lyapunov functions” are available (e.g., [20]), this approach is mathematically
very difficult and needs well educated, innovative control designers. The failure of find-
ing an appropriate Lyapunov function to a given particular problem does not mean any
conclusion for its stability.

To tackle the problem of the “transient behavior” of the controlled system that is not
clearly addressed in the approaches that guarantee only the stability of the solution, in [21]
a novel iterative controller was suggested in which the task of computing the appropriate
control signal was transformed to finding the fixed point of a contractive map. Its structure
for a second-order physical system is sketched in Figure 1.

It is a “flexible framework” that can be filled in with various particular contents.
In the “Kinematic Block”, an arbitrary tracking strategy can be formulated that can drive the
trajectory tracking error to 0 as t→ ∞. For instance, in a “Proportional, Integral, Derivative
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(PID)” design the following quantities can be introduced with a positive constant Λ in (1).
Its stability can be proved without the use of any Lyapunov function.

e(t) := qN(t)− q(t) trajectory tracking error (1a)

eInt(t) =
∫ t

t0

e(ξ)dξ integrated tracking error (1b)(
Λ +

d
dt

)3
eInt(t) ≡ 0 leading to (1c)

q̈Des(t) = q̈N(t) + Λ3eInt(t) + 3Λ2e(t) + 3Λė(t) (1d)

  

Nominal Trajectory

qN (t )
Kinematic Block

q̈Des
Deformation

q̈Deform

Delay

Delay

q̈

Q

Control Force

System’s Response

q (t 0)+∫
t 0

t

q̇(x )dx q̇ (t 0)+∫
t 0

t

q̈(x )dx

Realized Trajectory

The integration is realized by the Physics of the controlled system

q̇(t )

q(t )

Figure 1. The structure of the fixed point iteration-based adaptive controller for a second-order
dynamical system (after [21]).

It is evident that ∀k ∈ {0, 1, 2, . . .} the functions gk(t) := (t− t0)
k exp(−Λ(t− t0))

have the property in (2) (
Λ +

d
dt

)
gk(t) = kgk−1(t) , (2)

therefore the linear space of the general solution of the LTI system in (1c) can be spanned
by three basis functions of which each converges to 0 if t→ ∞ in the form given in (3)

eInt(t) =
2

∑
`=0

c`g`(t) , (3)

in which the constants {c0, c1, c2} are determined by the arbitrary initial conditions. The ba-
sis function g0 is mapped to zero by the operator

(
Λ + d

dt

)
, g1 is mapped to zero by(

Λ + d
dt

)2
, and finally g2 is mapped to zero by

(
Λ + d

dt

)3
. It is evident that not only

eInt(t) converges to zero: e(t) and ė(t) also have to converge to zero because a sequence
of implications can be obtained that “after a while” (practically a few times Λ−1) various
components will become 0 as in (4)(

Λ +
d
dt

)3
eint(t) ≡

(
Λ +

d
dt

)[(
Λ +

d
dt

)2
eint(t)

]
≡ 0 implies that (4a)

(
Λ +

d
dt

)2
eint(t) ≡

(
Λ +

d
dt

)[(
Λ +

d
dt

)
eint(t)

]
≡ 0 implies that (4b)(

Λ +
d
dt

)
eint(t) ≡ 0 implies that (4c)

eint(t) = 0 “after a while” . (4d)
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Evidently, (4b) can be rewritten in the form of (5) that corresponds to a stable inhomo-
geneous system in which due to (4d) the inhomogeneous “driving term” will vanish after
a while, therefore e(t)→ 0 as t→ ∞(

2Λ +
d
dt

)
e(t) = −Λ2eInt(t) . (5)

In similar manner (4a) can be rewritten as (6)(
3Λ +

d
dt

)
ė(t) = −Λ3eInt(t)− 3Λ2e(t) , (6)

that again is a stable inhomogeneous LTI system in which the inhomogeneous driving
terms vanish after a while, therefore ė(t)→ 0 as t→ ∞.

In the case of digital controllers, the box “Delay” normally corresponds to the cycle
time δt of the digital controllers. In the box “Deformation”, the “Response Function” of the
system can be introduced as q̈ = f

(
q̈De f orm(t), q̇(t), q(t)

)
≈ f

(
q̈De f orm(t), . . .

)
in which

the variables in the position denoted by the symbol “. . .” only slowly can vary while the
controller very quickly can modify q̈De f orm(t). The box contains the function q̈De f orm(t) =
G(q̈De f orm(t− δt), f (q̈De f orm(t− δt)), q̈Des(t)) or q̈De f orm(t) = G(q̈De f orm(t− δt), q̈(t− δt),
q̈Des(t)) that is so constructed that if q̈(t− δt) = q̈Des(t) then q̈De f orm(t) = q̈De f orm(t− δt),
that is, the solution of the control task is the fixed point of function G. For the construction of
G various proposals were put forward and investigated in [21–23] by the use of functions
in analytical form. For proving the convergence of the iteration Banach’s fixed point
theorem [24] was used according to which in a linear, normed, complete metric space B
(“Banach Space”) the iterative sequence created by the contractive mapping Ψ : B 7→ B
as {x0, x1 = Ψ(x0), . . . , xn+1 = Ψ(xn), . . .} converges to the unique fixed point of the
function x? = Ψ(x?) ∈ B. For this purpose the response function f

(
q̈Deorm) generally has

to meet the condition that the real part of each eigenvalue of
∂ f (q̈De f orm)

∂q̈De f orm must be negative
or positive simultaneously in the vicinity of the fixed point. In this case, it is possible to
introduce appropriate parameters in the function G that can guarantee its contractivity [25].
Though during one digital control step only one step of this iteration can be performed,
since q(t) and q̇(t) vary only very slowly in comparison with q̈(t), according to ample
simulation investigations, this method showed good convergence properties in many cases.
The proofs were based on Taylor series approximation of the function values in the vicinity
of the fixed point. By realizing similar deformation in the field of the control forces the
fixed point iteration-based method was found applicable in a novel design of MRAC
controllers [26]. It was shown that this novel technique could be interpreted from the point
of view of the Lyapunov function, too [27,28].

In [29] a simple, geometrically interpreted method was introduced. The arrays q̈Des,
q̈De f orm ∈ Rn can be so augmented to arrays XDes, XDe f orm ∈ Rn+1 that they obtain a
common Frobenius norm: ‖XDes‖ = ‖XDe f orm‖ = R > 0. If these vectors are not parallel
to each other they span a 2 dimensional hyperplane in Rn+1 that is also spanned by the
orthogonal unit vectors eA := XDes

‖XDes‖ and eB that is made of the component of XDe f orm that

is orthogonal to XDes. In this case the skew-symmetric matrix Ω := eAeT
B − eBeT

A and the
angle ϕ ∈ R determine an Orthogonal Matrix O(Ω, ϕ) that makes rotations in the Rn+1

space so that the “axis of rotation” is the n− 2 dimensional orthogonal subspace of the
vectors eA, eB

O(Ω, ϕ) = exp(ϕΩ) =
∞

∑
`=0

ϕ`Ω`

`!
= I + sin ϕΩ + (1− cos ϕ)Ω2 , (7)

that corresponds to the generalization of the Rodrigues formula [30] (this fact easily
can be proved by utilizing that Ω3 = −Ω). If ϕ is calculated from the scalar product
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as XDesT
XDe f orm = ‖XDes‖ · ‖XDe f orm‖ cos ϕ, O(Ω, ϕ) just rotates the augmented vector

XDe f orm into the other augmented vector XDes. Consequently, the physically interpreted
projection of XDe f orm, q̈De f orm is exactly transformed into q̈Des. By the introduction of an
interpolation factor λa ∈ [0, 1] the rotation with O(Ω, λa ϕ) makes q̈De f orm approach q̈Des.
When this function is applied in the block called Deformation, via setting a great value to
R and a small one to λa, the convergence of the iteration can be guaranteed if the angle
formed between δ f := f (x + δx)− f (x) and δx is acute. The steering systems of bicycles
and cars work accordingly: if the driver wishes to achieve “sharper turn” to the tune of
δ f , the necessary modification of the rotational angle of the steering wheel, i.e., δx, forms
an acute angle with δ f . In other words: if the driver wishes to turn to the left, the steering
wheel has to be turned to the left, too. This simple property can be well utilized in the
practice in the development of steering algorithms.

With regard to modeling issues, the pioneering discovery by Weierstraß has to be
mentioned. In a lecture in 1872 he gave the first example for an everywhere continuous
function that nowhere was differentiable [31]. He highlighted the fact that the class of
continuous functions is so complicated that we cannot even “imagine” the graph of a
general continuous function. We can “see” only the graphs of “smooth” functions the
derivatives of which may have some jumps at a few discrete points only. His discovery
anticipated difficulties in the field of approximation of continuous functions; however,
in his inaugural lecture at the Academy of Berlin in 1885 he has shown that polynomials
can be regarded as universal approximators of single variable continuous functions [32].
His theorem was extended from polynomials to other approximators by Stone in 1948 [33].
The approximation of multivariable continuous functions was found to be a more difficult
task. In around 1900, Hilbert in one of his conjectures “guessed” that it was impossible
to construct continuous multivariable functions by the use of single variable ones [34].
Though in 1927 Volterra introduced a series model [35] that is a sequence of approxima-
tions for continuous functions using a polynomial functional expansion [36] for dealing
with integro-differential equations, the first rigorous rebuttals of Hilbert’s conjecture were
published only in 1957 by Arnold for the functions of three variables [37], and by Kol-
mogorov for continuous functions of many variables [38]. Kolmogorov’s constructive proof
in the 1960s was simplified and made more elegant by Sprecher in 1965 [39] and Lorentz
in 1966 [40,41], and served as the mathematical background of the feedforward neural
networks that can be regarded as technical realizations of the universal approximators
that appeared in the 1990s [42,43]. In 1990, the idea of “Convolutional Neural Networks
(CNN)” was suggested for image recognition applications by Le Cun et al. [44] in which a
convolutional layer was the fundamental building block. The early convolutional layers
were linear systems: their outputs were affine transformations of their inputs. To take
into account nonlinear effects in face recognition, the Volterra polynomials appeared in
2009 in [45], and later were built in the CNNs [36], too. While the feedforward neural
networks can be taught by examples, Kohonen’s “self-organizing map” [46] was able to
automatically find categories in samples. For modeling dynamic effects, recurrent neural
networks appeared [47,48] and were introduced in the CNN’s convolutional layer [49], too.

For the mathematically rigorous tackling of uncertainties of non-statistical nature in
1965, Zadeh introduced the concept of “fuzzy sets” [50]. By our time, the concept was
extended to “type 3” sets [51]. In the 1990s, it became clear that the fuzzy systems can be
regarded as universal approximators, too [52,53], in which the Weierstraß–Stone approxi-
mation theorem can also be used [54]. Practically satisfactory description of the physical
state of certain machines as e.g., turbojet engines, various parameters as temperature,
pressure, speed, and vibrations are used that can be revealed by complicated diagnostic
methods (e.g., [55–57]); however, for control purposes, only certain aspects of the “complete”
physical model can be used (e.g., [58,59]) in the form of very “incomplete” models.

From the point of view of function approximation, the various realizations of the
universal approximators can be regarded as huge structures that contain numerous free
parameters that have to be fitted. For this purpose, numerous methods, such as the gradient
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descent type “error backpropagation” [60] that can be made more efficient by using appro-
priate activation functions in the neurons, its combination with genetic algorithms [61],
other stochastic optimization methods as simulated annealing [62], memetic algorithms
and bacterial memetic algorithms [63–66], simplex algorithm [67–69], “particle swarm
algorithm” [70,71], etc., can be mentioned.

Rigorous theoretical investigations soon revealed the phenomenon called “curse of
dimensionality” due to which the “universal approximator” ability of the soft computing
tools was doubted at least from practical point of view (e.g., [72–74]). Much of these prob-
lems in terms of “nowhere denseness” stem from the “irregular nature” of the continuous
functions discovered by Weierstraß in [31]. It can be expected that the situation is not
so hard in the case of “smooth functions”. In this view, the idea of “polytopic models”
was introduced in 2006 [75,76] in which the function values were sampled over some
grid points of a multidimensional space (i.e., in the vertices of polytopes). By the use of
the higher-order generalization of Golub’s and Kahan’s “Singular Value Decomposition
(SVD)” [77] by Lathauwer et al. in 2000 [78], these models can be simplified by finding the
most important contributions belonging to the larger singular values, under well controlled
conditions. Further, by also taking into account control possibilities via “Linear Matrix
Inequalities (LMI)”, the controller design methodology of the “tensor product model”
was proposed in [79]. This approach renders the program announced by Boyd et al. in
1994 [80] generally applicable. By the use of LMIs a wide set of control problems can be
solved by a Lyapunov function-based design, for which efficient MATLAB packages were
developed [81]. In this approach, in each cell different metric tensor can be applied in
the Lyapunov function. Passing the cells’ limits can make certain problems arise that can
be tackled by the use of either “switching controllers” (e.g., [82–84]) or some redundant
system of coordinates can be used from the vertices of a polytope within a convex hull to
deal with a continuous problem (e.g., [85]).

To tackle the problem of the curse of dimensionality, to evade the need for massive
parallelism and sophisticated data synchronization in the learning and operating phases of
the traditional structures, in [86], a novel soft computing structure was suggested that is
more or less akin to a coarse resolution grid or a fuzzy model in which very approximate
and simple rules are applied for control purposes. It broke with the Lyapunov function-
based design that generally was present in the switching controllers and in the “Linear
Parameter Varying (LPV)” or “Quasi LPV” design by the application of simple smoothed
tracking of the jumps in the control force. At first, its modeling ability was checked for the
description of the behavior of the free and the controlled van der Pol oscillator [87] that is a
popular benchmark system. It makes nonlinear oscillations in a limit cycle. For modeling
the motion of the free system, the function R 3 q̈(q, q̇), and for control purposes, the
function R 3 Q

(
q, q̇, q̈Des), were approximated in a dynamic range that was “filled in”

during the control process. It had the main properties as follows:

1. For the free system, the two dimensional vectors [q̈, 0]T and [q, q̇]T were augmented to
three-dimensional ones of identical Frobenius norms [q̈, 0, D1]

T and [q, q̇, D2]
T exactly

as it was performed in the rotations-based abstract deformations applied in [29]. In the
case of the controlled model the three-dimensional vectors [Q, 0, 0]T and [q, q̇, q̈Des]T

were similarly augmented to produce the four dimensional ones of identical norms as
[Q, 0, 0, D1]

T and [q, q̇, q̈Des, D2] in which D1 and D2 were the “dummy components”
without any physical interpretation. Their role was to guarantee equal norms.

2. Coarse resolution grids were introduced in R2 for the q, q̇ values, and in R3 for the
q, q̇, q̈Des values. In the center points of the grids, the appropriate q̈ and Q values
were computed from the available exact model of the van der Pol oscillator. Following
that, the abstract rotations defined in (7) were calculated that rotated [q, q̇, D2]

T into
[q̈, 0, D1]

T , and transformed [q, q̇, q̈Des, D2] into [Q, 0, 0, D1]
T , respectively. Each grid

cell was associated with a “neuron” that had the “activation function”. It executed
the rotations according to (7), and had the following parameters:
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• Its cell-limits as {qmin, qmax}, {q̇min, q̇max} for the free motion, and {qmin, qmax},
{q̇min, q̇max}, {q̈Des

min, q̈Des
max} for the controlled system, respectively;

• The orthogonal unit vectors eA and eB of which the generator Ω of the rotation
in (7) can be computed, and the angle of the necessary rotation, ϕ.

3. These neurons were arranged in a single layer in which each neuron obtained its input
value for the “teaching process” as {q, q̇, q̈} for the free system, and {q, q̇, q̈Des, Q}
for the dynamic model. If the input signal belonged to the “range of competence”
of the given neuron, eA, eB, and ϕ were computed. During the “normal operation”
the neuron used the input for the free system modeling as {q, q̇} and {q, q̇, q̈Des} for
“the use for control mode”. If the input data belonged to its range of competence, it
computed O(Ω, ϕ), computed the rotated vector O(Ω, ϕ)[q, q̇, D1]

T for the free system,
and O(Ω, ϕ)[q, q̇, q̈Des, D1]

T for the control application, and as its output, it provided
the first component of the rotated vector that corresponded to the modeled value of q̈
and Q, respectively.

4. The last layer of the novel neural structure consisted of a single neuron that summa-
rized the calculated outputs. Since the cells’ limits were determined in a way that the
model had only disjoint cells, the output of the summarizing layer was the result of
the “soft model”.

5. To reduce the effects of the jumps in the control signal Qm at the cell boundaries,
the really applied generalized force Qs was smoothed by the tracking rule based on a
positive constant λ > 0 in (8)(

λ +
d
dt

)
Qs(t) = λQm(t) , (8)

that, for a stationary “driving term" Qm ≡ const, has the stationary solution Qs ≡ Qm,
furthermore, for time-varying Qm(t), two different solutions of (8), i.e., Qs(t) and
Qs(t) + δQs(t), can differ from each other by δQs(t) that satisfies the differential equa-
tion

(
λ + d

dt

)
δQs(t) ≡ 0, that is, the differences can stem from the initial conditions

and converge to 0 as t→ ∞. Consequently, the smoothed signal tracks well the actual
Qm(t) if the variation of which is not significant during the time-interval of duration
λ−1, and “smooths well” the signals that have faster variation.

6. The data representation made it possible to apply real-time modification (“step-by-
step learning”) of the neuron’s previously learned parameters as the unit vectors eA,
eB and ϕ were refreshed according to a learning rule determined by the parameter
α ∈ [0, 1] as

ϕNew
to store = αϕOld

stored + (1− α)ϕNew
introduced , (9a)

eNew
A to store = αeOld

A stored + βeNew
A introduced , (9b)

S := ∑
`

eOld
A stored`

eNew
A to store` ∈ [−1, 1] , (9c)

β = −αS +
√

α2S2 + (1− α2) ≥ 0 , (9d)

eNew
B to store = αeOld

B stored + β̂eNew
B introduced , (9e)

Ŝ := ∑
`

eOld
B stored`

eNew
B to store` ∈ [−1, 1] , (9f)

β̂ = −αŜ +
√

α2Ŝ2 + (1− α2) ≥ 0 . (9g)

It must be noted that even if eOld
A stored and eOld

B stored were orthogonal to each other, the new
unit vectors eNew

A to store and eNew
B to store will not be exactly orthogonal ones. Consequently,

the new skew symmetric matrix ΩNew := eNew
A eNewT

B − eNew
B eNewT

A can generate rota-
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tions in the form exp
(

ϕNewΩNew), but, because ΩNew3 6= −ΩNew, instead of (7) we
can state only that

exp
(

ϕNewΩNew
)
≈ I + sin ϕNewΩNew + (1− cos ϕNew)ΩNew2

, (10)

i.e., by maintaining the right-hand side of (10) that is easy to compute, instead of
exact rotations, linear transformations can be used that are good approximations
of rotations.

In the present paper the above outlined idea is extended and it contains the novelties
as follows:

1. The controlled system is an underactuated two degree of freedom construction
in which the directly controlled subsystem is dynamically coupled with a non-
controllable one acting as “parasite dynamics”.

2. Instead of the simple CTC control and its robust variable structure/sliding mode-
based correction (e.g., [88–90]), the “fixed point iteration-based adaptive control
scheme” depicted in Figure 1 is applied to compensate the effects of the imprecisions
of the coarse grid-based model with the application of the rotations-based adaptive
controller announced in [29].

3. The effects of the measurement noises are investigated and reduced by a smoothing
technique that is similar to the solution published in [91].

4. The computation time of the controller was measured for the hardware and software
environment that was used in the simulations.

In Section 2, the dynamic model of the controlled system is discussed. Section 3
presents the rotational network-based soft model; in Section 4, simulation results are
presented. The paper is closed with Section 5 in which the results are discussed and further
possible research is outlined.

2. The Dynamic Model of the Controlled System

The controlled system is a wheel that is rotated around a horizontal axle. In one of its
spokes, a mass point is built in. It is located between two springs and its motion is damped
by viscous friction. The Euler–Lagrange equations of motion of this model are completed
with the friction term and are given in (11) that can be used for simulation purposes,

q̈1 =
Q1 − 2mq2q̇1q̇2 + mgq2 sin q1

Θ + mq2
2

, (11a)

q̈2 =
−mg cos q1 − k(q2 − r/2) + mq2q̇2

1 − dq̇2

m
, (11b)

in which q1 denotes the rotational angle of the wheel, q2 is the radial distance of the mass
point along the spoke, measured from the rotational axle, r is the zero force position of
the spring connected the axle with the mass point, k is the spring constant, d denotes the
viscous damping coefficient of the mass point as it moves along the spoke, m is its inertia,
and Θ corresponds to the inertia momentum of the wheel, Q1 denotes the driving torque.
For control purposes, the necessary control torque can be obtained by rearranging (11a) as

Q1 =
(

Θ + mq2
2

)
q̈Des

1 + 2mq2q̇q q̇2 −mgq2 sin q1 . (12)

The numerical data used in the simulations are given in Table 1.
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Table 1. The dynamic parameters of the controlled system.

Parameter Measurement Unit Numerical Value

Inertia momentum of the wheel Θ
[
kg ·m2] 100.00

Inertia of the mass-point m [kg] 1.5
Spring constant k

[
N ·m−1] 1000.0

Spoke length r [m] 1.0
Gravitational acceleration g

[
m · s−2] 9.81

Damping constant along the spoke d
[
N · s ·m−1] 10.0

3. The Rotational Neural Model Structure Tailored to the Controlled System

The structure of the rotational neural model is outlined in Figure 2.

  

+

Input Layer

q1

q̇1

q̈1

q2

q̇2

Q1 For Teaching

Node 1

Node 2

Node K

Central Layer Ouput Layer

Q1
Model

⋮⋮

⋮

Figure 2. The structure of the suggested rotational neural network.

The nodes corresponded to 11 elements grids as follows: q1 ∈ [−π, π] rad with the
grid width δq1 = 2π/10 ≈ 0.628 rad, q̇1 ∈ [−10.0, 10.0] rad · s−1 with the grid width
δq̇1 = 2.0 rad · s−1, q̈Des

1 ∈ [−30, 30] rad · s−2 with the grid width δq̈Des
1 = 6.0 rad · s−2,

q2 ∈ [0.0, 2.0] m with the grid width δq2 = 0.2 m, q̇2 ∈ [−6.0, 6.0]m · s−1 with the grid
width δq̇2 = 1.2 m · s−1. For smoothing the torque signal obtained from (8) the parameter
λ = 10.0 s−1 was in use. The augmented vectors were rotated in R6 with the common
vector norm R = 106. The adaptive rotations in Figure 1 were achieved in the R2 space with
the common vector norm Ra = 106 and interpolation factor λa = 0.02. For incremental
learning purposes in (9) α = 0.9 was used. In the “Kinematic Block" of Figure 1 the PID term
with Λ = 0.7 s−1 was applied.

With regard to noise issues, it was assumed that q1 was measurable in each digital
cycle with a Gaussian noise of σ1 = 10−3 rad and q2 was measurable with a Gaussian noise
of σ2 = 10−3 m. For filtering the measurement noises, the measured noisy signal x was
tracked by the filtered one x̂ according to the tracking rule given in (13)

...
x̂ = λ3

n(x− x̂)− 3λ2
n ˙̂x− 3λn ¨̂x , (13)

and the filtered values x̂, ˙̂x, ¨̂x were used in the “Kinematic Block" and in the fixed point
iteration with the filtering parameter λn = 500.0 s−1. The operation of this filter can be
analyzed exactly as it was performed in the case of (8).

4. Simulation Results

Numerical simulations were performed by the use of the Julia language Version 1.5.1
(25 August 2020) working under the operating system Linux 5.10.53-1-MANJARO x86_64
21.1.0 Pahvo on a DELL inspiron 15R laptop using the program code that is available on
the Web given in Section “Sample Availability": “Wheel_Applied_Sciences_Noisy.jl”.
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4.1. Comparative Analysis of the Performances of the Neural and the Exact Models

In this subsection, the figures also contain simulation results obtained when the exact
dynamic model was in use to support comparative analysis. In Figure 3, two 2-dimensional
sub-spaces of the stored “soft dynamic model” in R5 are exemplified by giving the stored
abstract rotational angles of the rotations in the augmented R6 space. The non-adaptive
control corresponds to the simple CTC controller. In Figure 4, the trajectory tracking
properties can be compared.
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Figure 3. Examples of the abstract rotational angles stored in various grid points.
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Figure 4. Trajectory tracking for the maximal amplitude and circular frequency of the nominal
trajectory for which the adaptive controller was able to use only the originally learned data. (a): Non-
adaptive, (b): adaptive control.

Figure 5 reveals that the adaptive control evades the greater tracking errors.
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Figure 5. Trajectory tracking error for the maximal amplitude and circular frequency of the nominal
trajectory for which the adaptive controller was able to use only the originally learned data. (a): Non-
adaptive, (b): adaptive control.
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According to Figure 6, the adaptation makes the phase trajectory of the controlled
system “more canonical” and reduces the excitation of the coupled parasite dynamical
subsystem. According to Figure 7, the adaptive approach causes more even control torque
contributions in spite of the noisy signals. In the non-adaptive results, the effects of
changing the cell that is competent to fire can be identified. The dynamic range of the
adaptive control forces is considerably narrower than that of the non-adaptive control.
Figure 8 reveals the operation of the adaptive controller: due to the adaptive deformation,
the realized 2nd time-derivative values well approximate the desired ones. This effect can
be observed better in the lack of measurement noises in Figure 9.
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Figure 6. The phase trajectories for the maximal amplitude and circular frequency of the nominal
trajectory for which the adaptive controller was able to use only the originally learned data (note
that δq1 ≈ 0.628 rad, and δq̇1 = 2.0 rad · s−1). (a): Non-adaptive phase trajectory for the controlled
variable q1, (b): adaptive phase trajectory of the controlled variable q1. (c): Non-adaptive phase
trajectory of the coupled mass point. (d): Adaptive phase trajectory of the coupled mass point.
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Figure 7. The control torque Q1 for the maximal amplitude and circular frequency of the nominal
trajectory for which the adaptive controller was able to use only the originally learned data. (a): Non-
adaptive, (b): adaptive control.

To reveal the behavior of other cells, nominal motion of smaller amplitude and higher
circular frequency was investigated in Figures 10–13.

Finally, simulation results are displayed for nominal motion of small amplitude and
small circular frequency in Figures 14–16.
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Figure 8. The operation of the adaptive controller. (a): The desired, deformed, and realized 2nd
time-derivatives. (b): The angle of the adaptive abstract rotation.
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Figure 9. The operation of the adaptive controller in the lack of measurement noises. (a): The desired,
deformed, and realized 2nd time-derivatives. (b): The angle of the adaptive abstract rotation.
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Figure 10. Trajectory tracking for the small amplitude and high circular frequency of the nominal
trajectory for which the adaptive controller was able to use only the originally learned data. (a): Non-
adaptive, (b): adaptive control.
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Figure 11. Trajectory tracking error for the small amplitude and high circular frequency of the
nominal trajectory for which the adaptive controller was able to use only the originally learned data.
(a): Non-adaptive, (b): adaptive control.
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Figure 12. The control torque Q1 for the small amplitude and high circular frequency of the nominal
trajectory for which the adaptive controller was able to use only the originally learned data. (a): Non-
adaptive, (b): adaptive control.
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Figure 13. The operation of the adaptive controller for smaller amplitude and high circular frequency
of the nominal motion. (a): The desired, deformed, and realized 2nd time-derivatives. (b): The angle
of the adaptive abstract rotation.
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Figure 14. Trajectory tracking for the small amplitude and circular frequency of the nominal trajectory.
(a): Non-adaptive, (b): adaptive control.
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Figure 15. Trajectory tracking error for the small amplitude and circular frequency of the nominal
trajectory. (a): Non-adaptive, (b): adaptive control.
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Figure 16. The control torque Q1 for the small amplitude and circular frequency of the nominal
trajectory. (a): Non-adaptive, (b): adaptive control.

4.2. Estimation of the Computational Time of the Operations in the Control Cycles

Computational complexity of the suggested method and the duration of the necessary
computations within the control cycles is an interesting practical question. It cannot be
estimated by counting the necessary mathematical operations, because it depends on
various external factors, such as the operating system that manages the controller, and the
properties of the program that realizes the control task. Normally, a multitasking controller
is available that uses a single central processor unit. Its capacities are shared by various
cooperating processes. If the operating system is not definitely designed to manage real-
time tasks, the actual duration of a given computation depends on the other duties of the
computer. For instance, if during the calculation of the simulations some video player is in
use, its effects can be well observed in the duration of each actually executed computation.

In a similar manner, if the program language makes “garbage collection” in the stack,
such an activity may need considerably longer time than that of a “normal computation”
within the control cycle. These longer sessions, though not very frequently, sometimes ap-
pear during the simulation. The Julia language is a typical garbage collecting construction
that generates such effects.

However, it offers a simple solution to measure the time that is needed for the operations de-
fined in a given command line. For instance, the command “a+=@elapsed b=myfunc(-12.1)”
adds to the content of variable “a” the computational time (in seconds) of the following
steps: the function “myfunc” is called with the input argument -12.1 and its output is
stored in variable “b”. The time-need of a bigger unit as e.g., “a+=@elapsed for...end”,
“a+=@elapsed while...end”, etc. can be measured in similar manner.

A program code “Wheel_Applied_Sciences_Noisy_Computing_Time_New.jl” that
utilizes this possibility (also available in the Web) was made in which the time needed for
the essential computations within each control cycle was summarized. In these investi-
gations, the parameter settings λa = 5× 10−2 and Λ = 0.9 s−1 were used, all the other
control and model parameters remained invariant. In this program, no computation was
made for the operation of the “exact system"-based control. The nominal trajectory had
time-dependent, increasing amplitude. During the calculations, only the console running
Julia was in operation, a text editor in which the program file was kept opened, and the
standard Internet connection was kept running. In the sequel, results obtained for the
adaptive and non-adaptive controllers are discussed. Figure 17 reveals a few huge peaks
that certainly cannot belong to the essential computations. The important information can
be seen in the “zoomed-in excerpts” of the graphs displayed in Figure 18.

It is evident that during one digital control step of duration of 1.0 ms the non-adaptive
computations needed less than 0.065 ms, while the adaptive ones consumed up approx-
imately maximum 0.1 ms. This observation indicates that the suggested method can be
implemented by the use of common hardware/software tools. Figures 19 and 20 com-
pare the trajectory tracking performances. In Figures 21 and 22 the phase trajectory of
the controlled and that of the coupled “parasite system” can be seen. These figures well
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reveal the effects of the necessary centripetal force that increases with the amplitude of the
nominal motion.
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Figure 17. The computational time of the control cycles. (a): Adaptive. (b): Non-adaptive.
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Figure 18. The computational time of the control cycles in ms units (zoomed in excerpts). (a): Adap-
tive. (b): Non-adaptive.
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Figure 19. The trajectory tracking. (a): Adaptive. (b): Non-adaptive.
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Figure 20. The trajectory tracking error. (a): Adaptive. (b): Non-adaptive.
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Figure 21. The phase trajectory tracking. (a): Adaptive. (b): Non-adaptive.
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Figure 22. The phase trajectory of the coupled mass-point. (a): Adaptive. (b): Non-adaptive.

Figures 23–25 reveal the details of the adaptation mechanism that worked according
to the expectations.
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Figure 23. The adaptively deformed 2nd time-derivatives. (a): Adaptive. (b): Non-adaptive.
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Figure 24. The control force. (a): Adaptive. (b): Non-adaptive.
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Figure 25. The adaptive abstract rotations. (a): Adaptive. (b): Non-adaptive.

5. Discussion

In this paper, the idea of “rotational neural networks” introduced in [86] was applied
to bring about a coarse grid-based soft dynamic model for control applications. The jumps
in the model output at the cell boundaries are smoothed by a first-order tracking controller,
and the effects of the model inaccuracies are compensated by a fixed point iteration-based
adaptive controller. Both the adaptive and modeling mechanisms are based on the same
mathematical background that applies simple rotations in higher dimensional spaces. It
was shown that the network is able to work in a “step-by-step” learning mode in which the
information stored in a visited cell can be refined depending on the fact that various parts
of the coarse resolution cells can be visited during the motion of the controlled system.

The suggested network has very simple topological structure and it is easy to simulate
it, too. It was shown that the modeling and control methods can be combined with simple
noise filtering techniques. The operation of this controller seems to be simpler than that
of the traditional fuzzy controller that has to compute ample number of “generalized”
maximum and minimum operations over wide ranges.

The most important advantage of this approach is that it breaks with the Lyapunov
function-based design in which the phenomenologically well interpreted error components,
their integrals and derivatives are “mixed” by the use of very special metric tensors so that
these metrics as they are do not have clear interpretation and physical meaning. In the
novel approach for each error component kinematically well interpreted behavior can
be prescribed.

The applicability of the suggested method was demonstrated in the case of a two
degree of freedom underactuated paradigm in which the control of the motion of a wheel
is perturbed by a directly not controllable, dynamically coupled parasite system within
one of its spokes. The sum of the duration of the necessary computations within each
control cycle was calculated for the hardware/software system that run the simulation.
It was concluded that at the level of our prevailing possibilities the suggested approach
is realistic.

In the simulations, special PID-like kinematic behavior was required that does not re-
sult in monotonic decrease of the error components; however, this method can be combined
with various fractional order derivatives-based kinematic requirements (e.g., [92–94]) that
can produce monotonic variation.

In the future, we wish to compare the operation of this idea with that of traditional
fuzzy controllers based on approximate and “coarse” rules. For this purpose an electrome-
chanical testbed was built and used for testing the operation of the traditional PID and CTC
controllers in [95]. The first successful preliminary results with regard to the implementa-
tion of the fixed point iteration-based adaptive controller using abstract rotations on the
same testbed were recently obtained by Árpád Varga. The planned future investigations
are based on this instrument.
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