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Abstract: Strain-softening analyses were performed around a circular bore in a Mohr–Coulomb rock
mass subjected to a hydrostatic stress field in cross section and out-of-plane stress along the axis of
the bore. Numerical procedures that simplify the strain-softening process in a step manner were
employed, and on the basis of the theoretical solutions of the elastic–brittle–plastic (EBP) medium,
the strain-softening results of the displacements, stresses and the plastic zones around the circular
bore were obtained. The numerical solution was validated based on the fact that the strain-softening
process became EBP when the softening slope was very steep and elastic-perfectly plastic (EP) when
the softening slope was near zero. The results illustrated that the stresses and displacements in the
rock mass surrounding the bore were affected by axial stress and that a proper consideration of
out-of-plane stress was necessary. Moreover, the presented results can be used for the verification of
numerical codes.

Keywords: strain-softening analyses; axial stress; circular bore; Mohr–Coulomb criterion

1. Introduction

Many analytical solutions are presented while the excavation of circular and spherical
cavities is considered in pre-stressed fields. Different yield criteria (including Mohr–
Coulomb (M–C) and Hoek–Brown (H–B) criteria) are employed, and the corresponding EP,
EBP and strain-softening constitutive relations are taken into account.

For elasto plastic and elastic–brittle–plastic constitutive relations, Brown et al. [1],
Detournay [2], Ogawa and Lo [3], Wang [4], Carranza-Torres [5], Carranza-Torres and
Fairhurst [6], Yu [7], Park and Kim [8] and Sharan [9] presented analytical and semi-
analytical solutions for predicting the stresses and displacements around the cavities. Park
and Kim [8] commented on this kind of problem and derived closed-form solutions on the
basis of M–C and H–B yield criteria.The displacements obtained by different assumptions
were compared. Recently, Frikhaand Bouassida [10] presented an analytical model dealing
with an expanded cylindrical cavity in an elasto plastic medium with a variable plastic
potential of flow. Tran et al. [11] analysed the earth pressure around the cylindrical shafts in
soft ground by means of experimental and numerical method and discussed the shaft-soil
interaction.

With consideration of the strain-softening behavior of geomaterial, Alonso et al. [12],
Guan et al. [13], Park et al. [14], Lee and Pietruszczak [15] and Wang et al. [16] presented
different forms of solutions for the circular bore in M–C and H–B rock and ground reaction
or response curve (GRC). Their results were in good agreement with each other. Zhou and
Randolph [17] studied the shear bands ahead of the advancing cylindrical and spherical
penetrometers. Chen et al. [18] predicted the evolution of the plastic region around a
wellbore in Drucker–Prager rocks.
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Normally, the problem is treated as an axisymmetric plane strain to derive analytical
or semi-analytical solutions. The geostress is presumed to be hydrostatic and the geo-
material isotropic. The out-of-plane stress is assumed to be the second principle stress with
σz = ν(σx + σy) .

Reed [19] studied the abovementioned axisymmetric plane strain problem in which
the initial stress was of equal magnitude in three axes, and he found that the axial stress
did not remain the intermediate one The effect of the out-of-plane stress on the cavity wall
displacement was significant for geomaterial with a large drop in strength at yield.

Lu et al. [20] analyzed the circular bore with different magnitudes of the out-of-plane
stress. The numerical analyses show that the results are much influenced by the out-of-
plane stress.

Wang et al. [21] presented the theoretical solution for predicting stresses and displace-
ments around a circular bore in M–C rock mass, subjected to a hydrostatic stress field in
the cross section and out-of-plane stress along the axis of the bore. The EBP relationship
with a non-associated flow rule was used in the analysis. The comparison of the results
illustrated that the effect of the out-of-plane stress on the displacements and plastic zones
cannot be ignored.

As an extension of the brittle–plastic solution of the circular bore [21], the strain-
softening analysis is performed and the corresponding solutions were obtained. Numerical
schemes were presented and verified, and the results obtained by different constitutive
relationships were compared.

2. Problem Definition and Analytical Method
2.1. Problem Definition

A long circular bore with radius r0 excavated in a homogeneous, infinite isotropic rock
mass can be considered to be an axisymmetric problem if the far-field stress is uniform as
shown in Figure 1.

Figure 1. (a) The axi-symmetrical problem of excavation of a cylindrical bore, (b) the far-field stress.

During bore excavation, the internal pressure (pin) is gradually reduced, and displace-
ment and stresses are only the functions of radius r when gravity is ignored. In the initial
stage, the medium is elastic and the solution is

σr = σ0 − (σ0 − pin)(r0/r)2

σθ = σ0 + (σ0 − pin)(r0/r)2

σz = q
(1)

u =
1

2G
(σ0 − pin)r0

2/r (2)
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Since the problem is axisymmetric, σz, σθ and σr are the three principle stresses. It
should be noted that compression stress is taken to be positive in this paper. When the
internal pressure continues to decrease, a plastic zone appears around the bore.

If the M–C criterion is employed, it is written as

F(σ1, σ3, η) = σ1 − α · σ3 − Y = 0 (3)

2.2. Critical Pressure

In consideration of axial stress, there will be 3 cases. In the first case, the axial stress is
the major principle stress at the bore wall, i.e., σz > σθ > σr. The critical pressure is

pc1 = (q − Y)/α (4)

This means that the plastic zone begins to develop in the surrounding rock if the
internal pressure pin ≤ pc1.

As the internal pressure is reduced, σz decreases and σθ increases. At a certain stage,
σθ = σz at the bore wall. Thereafter, the plastic region is as shown in Figure 2. In the inner
part of the plastic region, σθ = σz > σr, whereas in the outer part σθ > σz > σr . As the
inner pressure decreases, strain-softening continues until residual strength is reached. An
interface (indicated by radius Rs) between strain-softening and the residual strength zone
will appear.

Figure 2. Evolution of plastic type I (a) plastic zone with σz > σθ > σr ; (b) inner plastic zone with σz = σθ > σr and
outer plastic zone with σz > σθ > σr .

If σθ > σz > σr , the critical pressure ( pc2) can be obtained.

pc2 = (2σ0 − Y)/(1 + α) (5)

In this case, when pin = pc2, σr = pin = (2σ0 − Y)/(1 + α) and σθ = 2σ0 − pin =
(2ασ0 + Y)/(1 + α) at r = r0. Denote q1 = (2σ0 − Y)/(1 + α) and q2 = (2ασ0 + Y)/(1 + α).
We know that the out-of-plane stress is the intermediate principle stress when q2 > q > q1.

When the internal pressure pin ≤ pc2 and continues to decrease, the plastic region is
as shown in Figure 3.
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Figure 3. Evolution of plastic type II. (a) plastic zone with σθ > σz > σr ; (b) inner plastic zone with σθ = σz > σr and
outer plastic zone with σθ > σz > σr .

In the third case, the critical internal pressure is

pc3 = 2σ0 − α q − Y (6)

When the internal pressure pin ≤ pc3 and continues to decrease, the plastic region is
as shown in Figure 4.

Figure 4. Evolution of plastic type III. (a) plastic zone with σθ > σr > σz ; (b) inner plastic zone with σθ > σr = σz and
outer plastic zone with σθ > σr > σz .

3. Strain-Softening Analyses and Solution Procedure
3.1. Strain-Softening Process

Figure 5 shows a typical stress–strain curve for strain-softening geomaterial. It con-
sists of a linear part ‘OP’, strain-softening part ‘PB’ and residual part ‘BC’. During the
strain-softening stage, the strength parameters decrease as the softening parameter in-
creases. Here, the shear plastic strain η = ε

p
1 − ε

p
3 is used as the softening parameter. The

strength parameters are equal to their residual values as η ≥ η∗. (η∗ is the limit of shear
plastic strain).
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Figure 5. Schematic simplification of strain-softening process.

To avoid an egative slope, the strain-softening part is divided into manysegments
such as ‘PA2’, ‘A2A4’, ‘ A4A6’ and ‘A6B’ shown in Figure 5. Each segment is simplified [16].

Equation (7) describes the parameter evolution:

ω(η) =

{
ωp − (ωp − ωr) · η

η∗ 0 < η < η∗

ωr η ≥ η∗ (7)

In Equation (7),ω can represent one of c, ϕ or ψ. η = ε
p
1 − ε

p
3.

3.2. Solution Procedures

As pin is lower than critical pressure (pc), the plastic region will develop in the
surrounding rock mass. Assuming that the inner pressure reduces gradually from pc to pin,
the pressure decrease will be divided into n steps and denoted by ∆pk(k = 1, n). After the

n steps of the pressure decrease, the internal pressure pin(n) = pc −
n
∑

k=1
∆pk.

If the inner pressure changes from pc to pin(1) = pc − ∆p1, a plastic annulus with
thickness r1−r0 appears as shown in Figure 6a.

Figure 6. The plastic annulus (a) from pc to pin(1); (b) from pin(1) to pin(2); (c) from pin(j−1) to pin(j).

If the pressure decreases further from pin(1) to pin(2) = pc − ∆p1 − ∆p2, plastic defor-
mation will continue in the first plastic annulus (with thickness r1−r0). Meanwhile, a new
plastic annulus with thickness r2−r1 will appears as shown in Figure 6b.
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By analogy, when the pressure decreases to pin(j) = pc −
j

∑
k=1

∆pk, there will be j annuli

in the surrounding rock mass. The jth annulus, adjacent to the elastic zone and with inner
radius rj−1 and outer radius rj, is illustrated in Figure 6c. Plastic deformation will go on
in the other j−1 plastic annuli until the residual strength is reached during the pressure
decrease.

In each of the plastic annuli, incremental stress, displacement, et al. will be obtained,
and the solution process will be discussed in detail later.

Now, the ith load increment (or the ith pressure decrease ∆pi) is to be considered, I
which ∆σr(i) and ∆σθ(i) are the corresponding incremental radial and tangential stresses
respectively, and σr(i−1) and σθ(i−1) are the stress components at the end of the i−1th load
increment.

The equilibrium equation for the incremental stresses is,

d(∆σr(i))

dr
+

∆σr(i) − ∆σθ(i)

r
= 0 (8)

but Equation (8) can be rewritten as

∆σθ(i) = r
d(∆σr(i))

dr
+ ∆σr(i) (9)

3.3. σz: 1st Principle Stress

When σz > σθ > σr, the yield criterion is formulated as

σz(i−1) + ∆σz(i) = αi · (σr(i−1) + ∆σr(i)) + Yi (10)

Equation (10) can be rewritten as

∆σz(i) = αi∆σr(i) + αiσr(i−1) + Yi − σz(i−1) (11)

and the condition of compatibility is taken into account,

∆εr = d∆u/dr
∆εθ = ∆u/r

(12)

so we have
d∆εθ(i)

dr
+

∆εθ(i) − ∆εr(i)

r
= 0 (13)

Assuming that the plastic potential uses the same formula as the yield criterion,

G(σz, σr, η) = σz − β · σr (14)

the incremental radial and axial plastic strain are written as

∆ε
p
r(i) + βi∆ε

p
z(i) = 0 (15)

The incremental plastic part of tangential strain is

∆ε
p
θ(i) = 0 (16)

where βi =
1+sin ψi
1−sin ψi

and ψi is the dilation angle corresponding to the ith load increment.
The strains are usually divided into elastic and plastic parts:

∆εr(i) = ∆εe
r(i) + ∆ε

p
r(i) (17)
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∆εθ(i) = ∆εe
θ(i) + ∆ε

p
θ(i) (18)

∆εz(i) = ∆εe
z(i) + ∆ε

p
z(i) (19)

With ∆ε
p
θ(i) = 0 and ∆εz(i) = 0 considered, we have

∆εr(i) = ∆εe
r(i) + βi∆εe

z(i) (20)

∆εθ(i) = ∆εe
θ(i) (21)

The incremental elastic strains should obey Hooke’s law, and they are in the follow-
ing form

∆εe
r(i) =

1
E [∆σr(i) − ν(∆σθ(i) + ∆σz(i))]

∆εe
θ(i) =

1
E [∆σθ(i) − ν(∆σz(i) + ∆σr(i))]

∆εe
z(i) =

1
E [∆σz(i) − ν(∆σr(i) + ∆σθ(i))]

(22)

By substituting Equation (22) into Equations (20) and (21), and then into Equation (23),
the following equation is obtained:

r(
d∆σθ(i)

dr
− ν

d∆σr(i)

dr
− ν

d∆σz(i)

dr
) = −(1 + ν + νβi)∆σθ(i) + (1 + ν − νβi)∆σr(i) + βi∆σz(i) (23)

Equations (9), (11) and (23) will be used to get ∆σz(i), ∆σθ(i) and ∆σr(i).
Substitution of Equations (9) and (10) into Equation (23) produces a second-order

differential equation for incremental radial stress.

r2 d2∆σr

dr2 + f1r
d∆σr

dr
+ f2∆σr + f3 = 0 (24)

where f1 = 3 + ν(βi − αi), f2 = βi(2ν − αi) and f3 = −βi(αiσr(i−1) + Yi − σz(i−1)).
Solving thedifferential equation and the general solution is

∆σr(i) = Firn1 + Girn2 + H (25)

with n1 =
1− f1+

√
(1− f1)

2−4 f2
2 , n2 =

1− f1−
√
(1− f1)

2−4 f2
2 and H = − f3

f2
.

In Equation (25), Fi and Gi are determined by boundary conditions.
To get Fi and Gi, Equation (26) is used:

∆u(i)

r
= ∆εθ(i) = ∆εe

θ(i) =
1
E
[∆σθ(i) − ν(∆σz(i) + ∆σr(i))] (26)

From Equations (9) and (11), Equation (26) can be written as

∆u(i)

r
=

1
E
(r

d∆σr(i)

dr
+ f4∆σr(i) + f5) (27)

with f4 = 1 − ν(1 + αi), f5 = −ν(αiσr(i−1) + Yi − σz(i−1)).
By substituting Equation (25) into Equation (27), Equation (28) is obtained:

∆u(i) =
r
E
[Fi · (n1 + f4)rn1 + Gi · (n2 + f4)rn2 + f4H + f5] (28)

Equations (25) and (28) will be used to obtain incremental stress and displacement in
the plastic region.

For the ith load increment, the total number of the plastic annulus is i. In each plastic
annulus, Fi, Gi and the outer radius (ri = R) of the ith plastic annulus need to be solved.
Therefore, total number of unknown variables is 2i + 1.

The radial stress and displacement are continuous between the adjacent plastic annuli,
so there are 2(I − 1) equations. In addition, at r = r0, ∆σr(i) = ∆pi. At r = ri = R, σr = pc,
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u = uc. In the first case, pc = pc1, uc = uc1 = R
E (1 + ν)(σ0 − pc1). In total, there are 2i + 1

equations.
So far, we have the same number of equations as that of unknown variables. The

abovementioned equations form a set, and the unknown variables are solved by itera-
tive methods.

As the pressure pin decreases further, σz decreases and σθ increases. Once σθ = σz, the
plastic area is divided into two.

For the outer plastic zone with σz > σθ > σr , the solution for radial stress and
displacement increments was discussed above and can be obtained from Equations (25)
and (28).

In the inner plastic zone, σz = σθ > σr , and the yield criteria governing the inner
plastic zone are

σz = αr · σr + Yr (29)

σθ = αr · σr + Yr (30)

For the ith load increment, Equation (30) is written as

σθ(i−1) + ∆σθ(i) = αi(σr(i−1) + ∆σr(i)) + Yi (31)

The incremental stress components (∆σθ(i) and ∆σr(i)) can be obtained by the equilib-
rium Equation (8), yield criterion (31), and ∆σz(i) = ∆σθ(i). The solution processes for the
incremental stress components are the same as those in Wang et al. [16].

Because σz = σθ in the inner plastic zone, the stresses lie on the intersection of the two
yield surfaces (Equations (29) and (30)). The correct flow rule is obtained by summing the
contributions from the two plastic potentials [19].

G1(σz, σr, η) = σz − β · σr (32)

G2(σθ , σr, η) = σθ − β · σr (33)

The increments of plastic strain are formulated as

∆ε
p
r(i) + βi∆ε

p
θ(i) + βi∆ε

p
z(i) = 0 (34)

By using Equations (12) and (17)–(19), the differential equation for incremental dis-
placement in the inner plastic zone is given by

d∆u(i)

dr
+ βi

∆u(i)

r
= f (r) (35)

where
f (r) = ∆εe

r(i) + βi∆εe
θ(i) + βi∆εe

z(i) (36)

By means of Equations (22) and (31), we have

f (r) =
1
E
[T1∆σr(i) + T2] (37)

where T1 = 1 + 2(αiβi − βiν − αiν − αiβiν) and T2 = 2(αiσr(i−1) + Yi − σθ(i−1))
(βi − ν − βiν).

At present, the right hand side is known in Equation (35).
After ∆u(i) is obtained, the incremental displacement at the interface of the inner and

outer plastic zones becomes known and can be used as boundary condition for solving
Equation (35). Thus, ∆u will be easily determined by numerical integration.

So far, solution processes have been presented for the two plastic zones with σz >
σθ > σr and σz = σθ > σr .
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3.4. σz: 2nd Principle Stress

In the plastic zone with σθ > σz > σr , the plastic region governed by the M–C
criterion is

σθ(i−1) + ∆σθ(i) = αi · (σr(i−1) + ∆σr(i)) + Yi (38)

The solution for incremental stress (∆σθ(i) and ∆σr(i)) and displacement (∆u(i)) is
exactly the same as those in Wang et al. [16]. The incremental stress along the axis is
∆σz(i) = ν(∆σθ(i) + ∆σr(i)).

For the area with σθ = σz > σr , incremental stresses and displacement were obtained
in the last sub-section.

3.5. σz: 3rd Principle Stress

The yield criterion is

σθ(i−1) + ∆σθ(i) = αi · (σz(i−1) + ∆σz(i)) + Yi (39)

The plastic potential is
G(σθ , σz, η) = σθ − β · σz (40)

We also have
∆ε

p
z(i) + βi∆ε

p
θ(i) = 0 (41)

∆ε
p
r(i) = 0 (42)

Considering Equations (17)–(19), we have

∆εθ(i) = ∆εe
θ(i) +

1
βi

∆εe
z(i) (43)

∆εr(i) = ∆εe
r(i) (44)

By substituting Equation (22) into Equations (43) and (44), and then into Equation (13),
including equilibrium Equation (9) and yield criterion (39), we produce a second-order
differential equation for incremental radial stress.

r2 d2∆σr

dr2 + g1 r
d∆σr

dr
+ g2 ∆σr + g3 = 0 (45)

where g1 = (3 + 3
αi βi

− 4 ν
βi
− 2ν

αi
)/T, g2 = ( 1

αi βi
− 2 ν

βi
)/T, g3 = − 1

αi βi
(Yi + αiσz(i−1) −

σθ(i−1))/T and T = (1 + 1
αi βi

− ν
βi
− ν

αi
).

The solution for Equation (45) is in the same form as in Equation (25) with H = − g3
g2

,

n1 =
1−g1+

√
(1−g1)

2−4g2
2 and n2 =

1−g1−
√
(1−g1)

2−4g2
2 .

Fi and Gi in Equation (25) will be determined by boundary conditions.

By means of
∆u(i)

r = ∆εθ(i), Equations (22), (43) and (44), complex manipulations
produce

∆u(i) =
r
E
[Fi · (n1 + g4)rn1 + Gi · (n2 + g4)rn2 + g4H + g5] T (46)

with g4 = (1 + 1
αi βi

− ν − 2 ν
βi
− ν

αi
)/T and g5 = −( 1

αi βi
− ν

αi
)(Yi + αiσz(i−1) − σθ(i−1))/T.

In a manner similar to the solution process in Section 3.3, Fi and Gi can be determined
for all plastic annuli, and thenincremental radial stress and displacement can be obtained
by Equations (25) and (46).

In the plastic region, both σr and σθ decrease when the pressure pin decreases further.
Once σr = σz, there will be 2 plastic zones.

For the outer plastic zone with σθ > σr > σz, the solution for radial stress and
displacement increments is discussed above.
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For the inner plastic zone with σθ > σr = σz, the solution for radial and tangential
stresses is the same as those in Wang et al. [16]. The stress in the axis of the bore is σz = σr.

The solution for displacement in the inner plastic zone is presented as follows: In the
inner plastic zone, the yield criteria are

σθ = αr · σz + Yr (47)

σθ = αr · σr + Yr (48)

The flow rule is obtained by summing the contributions from the two plastic potentials:

G1(σθ , σz, η) = σθ − β · σz (49)

G2(σθ , σr, η) = σθ − β · σr (50)

In the ith load increment,

βi∆ε
p
θ(i) + ∆ε

p
r(i) + ∆ε

p
z(i) = 0 (51)

By using Equations (12) and (17)–(19), the differential equation is in the same form as
in Equation (35) with

f (r) = βi∆εe
θ(i) + ∆εe

r(i) + βi∆εe
z(i) (52)

By means of Equations (22) and (39), we have

f (r) =
1
E
[U1∆σr(i) + U2] (53)

where U1 = 2(1 + αiβi − ν − βiν − αiν) and U2 = (αiσr(i−1) + Yi − σθ(i−1))(βi − 2ν).
Now f (r) in Equation (35) is known.
After ∆u(i) is obtained in the outer plastic zone, the incremental displacement at the

interface of the inner and outer plastic zones becomes known and used as a boundary
condition for solving Equation (35). Here, it should be noted that f (r) in Equation (35) is
formulated with Equation (53) in this case. Then, ∆u will be easily determined by numerical
integration.

So far, solution processes have been discussed for the two plastic zones with σθ >
σr > σz and σθ > σr = σz.

4. Numerical Examples
4.1. Convergence of Numerical Solutions

While the numerical analysis is carried out, the internal pressure decrease from pin = pc
to pin = 0 is divided n times and each pressure decrease is ∆pi = (pc − pin)/n. First, the
influence of load step n on the numerical results is investigated.

A summary of the parameters is given in Table 1. Several values of n are used to
demonstrate the convergence of the numerical solutions as shown in Figure 7.

The dimensionless radial displacement at the bore wall uE/(σ0r0) = 5.298 for n = 500
and uE/(σ0r0) = 5.353 for n = 1000. The relative error is 1.0%(=|5.353 − 5.298|/5.353). The
dimensionless plastic radius in the plastic region R/r0 = 1.754 for n = 500 and that R/r0 =
1.761 for n = 1000. The relative error is 0.4%(=|1.761 − 1.754|/1.761). Numerical results
can be considered to be convergent when n = 500, and this load step will be used in the
following analysis.
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Table 1. Geometric and mechanical parameters.

Rock Parameter Value

Radius of bore, r0 (m) 3

Initial stress, σ0 (MPa) 30

Out of plane stress, q (MPa) 30

Internal pressure, pin (MPa) 0

Young’s modulus, E (GPa) 27

Poisson’s ratio, ν 0.22

cp (MPa) 1.5

ϕp (deg) 50.9

ψp (deg) 15.5

cr (Mpa) 0.7

ϕr (deg) 39

ψr (deg) 7.5

η* 0.004

Figure 7. Convergence of dimensionless displacement in plastic zone.

4.2. Numerical Analysis

When the parameters presented in Table 1 are applied, we learn that the out-of-plane
stress is the intermediate principle stress if q = 30 MPa and that it is the major principle
stress if q = 60 MPa.

4.2.1. Axial Stress: q = 30 MPa

For, q = 30 MPa, pc = 5.77 MPa, when the internal pressure is less than pc, the plastic
zone will develop in which σθ > σz > σr . While the internal pressure continues to
decrease, two kinds of plastic zones form at certain stages. After the support pressure
is completely released, the distribution of the stresses and displacement in the plastic
zones is displayed in Figure 8. Both plastic zones are observed. In the outer plastic zone,
σθ > σz > σr and the normalized plastic radius R/r0 = 1.754. In the inner plastic zone,
σθ = σz > σr . The normalized interface radius (R/r0) is 1.6. The dimensionless radial
displacement at the bore wall is 4.35.
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Figure 8. (a) Normalized radial displacement, (b) normalized radial, tangential and axial stress in the surrounding rock
mass in strain-softening model when q = 30 MPa and pin = 0.0 MPa.

To understand the differences among various constitutive models, the distribution of
the stresses and displacement in the plastic zones, which are obtained by means of the EBP
and EP models, are shown in Figures 9 and 10.

Figure 9. (a) Normalized radial displacement, (b) normalized radial, tangential and axial stress in the surrounding rock
mass in EBP model when q = 30 MPa and pin = 0.0 MPa.

Figure 10. (a) Normalized radial displacement, (b) normalized radial, tangential and axial stress in the surrounding rock
mass in EP model when q = 30 MPa and pin = 0.0 MPa.
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A contrastive analysis of the results presented in Figures 8–10 shows that the di-
mensionless radial displacement at the bore wall, the normalized plastic radius and the
normalized interface radius obtained by the strain-softening model fall between the EBP
and EP models.

The normalized plastic radii (1.82, 1.754 and 1.29), normalized interface radii (1.71,
1.60 and 1.14) and dimensionless radial displacements (4.52, 4.35 and 1.64) correspond,
respectively, to the EBP model, strain-softening model and EP model.

When the geomaterial behaves in an EBP manner, the plastic region in the surrounding
rock mass and the inward displacement at the bore wall are the largest. For EP media, the
plastic region and inward displacement are the smallest.

Two types of plastic zones (σθ = σz > σr and σθ > σz > σr ) around the bore
appear for the 3 models. Figure 11 shows the evolution of the radii of the elastic–plastic
and softening–residual interfaces, denoted by R and Rs, for different strain-softening slope.
Figure 12 shows the corresponding GRCs.

Figure 11. Evolution of (a) plastic radii R and (b) softening radii Rs (the radii between softening and
residual zones) in the strain-softening media with different softening slopes when q = 30 MPa.
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Figure 12. GRC in the strain-softening media with different softening slopes when q = 30 MPa.

It should be noted that η* is a parameter related to plastic strain and that it controls
the strain-softening slope, i.e., a different η* means a different strain-softening slope. The
larger the η*, the smaller the slope of the softening. When η* is large enough, the slope of
the softening is zero, and strain-softening model becomes the EP one. While it becomes
very small, the slope of the softening is infinite (i.e., the peak strength changes into residual
strength abruptly), and strain-softening model becomes EBP one.

In Figures 11 and 12, the results are very close to that of the EBP model when η* = 0.002.
It can be inferred that the results are close to those of the EP model when η* > 0.016.

Figure 11b shows that part of the plastic region is in the residual strength stage
and the other part is in the strain-softening stage when η* = 0.002, 0.004 and 0.008. The
strain-softening zone area becomes small as η* decreases.

4.2.2. Out-of-Plane Stress: q = 60 MPa

Here the geometric and mechanical parameters presented in Table 1 is used except
that q = 60 MPa.

While the internal pressure is less than pc (=6.5 MPa), the plastic zone first develops
when σz > σθ > σr . Only one plastic zone with σθ = σz > σr is formed in this case as the
support pressure is completely released. The distribution of the stresses and displacement
in the plastic zones is shown in Figure 13. The normalized plastic radius R/r0 = 1.85 and
the dimensionless radial displacement at the bore wall is 5.59.

Figure 13. (a) Normalized radial displacement, (b) normalized radial, tangential and axial stress in the surrounding rock
mass in strain-softening model when q = 60 MPa and pin = 0.0 MPa.
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Figures 14 and 15 show the distributions of the stresses and displacement in the plastic
zones, which are obtained by means of EBP model and EP model.

Figure 14. (a) Normalized radial displacement, (b) normalized radial, tangential and axial stress in the surrounding rock
mass in EBP model when q = 60 MPa and pin = 0.0 MPa.

Figure 15. (a) Normalized radial displacement, (b) normalized radial, tangential and axial stress in the surrounding rock
mass in EP model when q = 60 MPa and pin = 0.0 MPa.

A comparison of the results presented in Figures 13–15 indicates that the dimensionless
radial displacement at the bore wall and the normalized plastic radius obtained by the
strain-softening model fall between those of the EBP and EP models.

The normalized plastic radii are 1.88, 1.85 and 1.31, and the dimensionless radial
displacements are 5.6, 5.59 and 1.82, corresponding to the EBP model, strain-softening
model and EP model, respectively. For these 3 models, a similar phenomenon is observed
concerning the magnitude of the normalized plastic radius and the dimensionless radial
displacement at the bore wall.

Two types of plastic zone (σθ = σz > σr and σθ > σz > σr ) around the bore appear
only for the EP model. Figure 16 shows the evolution of the radii of the elastic–plastic
and softening-residual interfaces for different strain-softening slopes. Figure 17 shows the
corresponding GRCs.

In Figures 16 and 17, the results are very close to those of the EBP model when
η* = 0.004. However, we have the same curves as those obtained by EBP model if η* = 0.002.
This is a little different from the results shown in Figures 11 and 12 when q = 30 MPa and
η* = 0.002. It looks as though the influence of the out-of-plane stress is great.
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Figure 16b shows that part of the plastic region is in the residual strength stage and
the other part is in the strain-softening stage when η* = 0.004 and 0.008.

Figure 16. Evolution of (a) plastic radii R and (b) softening radii Rs (the radii between softening and
residual zones) in the strain-softening media with different softening slopes when q = 60 MPa.
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Figure 17. GRC in the strain-softening media with different softening slopes when q = 60 MPa.

Numerical results obtained from strain-softening analysis are summarized in Table 2
for q = 30 and 60 MPa. Obviously, both plastic radii and the inward displacement at the
bore wall increase when the out-of-plane stress ascends from q = 30 to 60 MPa.

Table 2. Comparison of results for different out-of-plane stress.

R
r0

¯
R
r0

2 u G/(σ0r0)

q = 30 MPa 1.754 1.60 4.35

q = 60 MPa 1.85 1.85 5.59

4.2.3. Influences of the Dilation Angle on Numerical Results

In plasticity theory, either an associative flow rule or a non-associative flow rule is
used to derive the incremental plastic strain. When the associative flow rule is used, the
plastic potential function is exactly the same as the yield function and the dilation angle
equals the internal friction angle in the M–C criterion, whereas, in the non-associative flow
rule, the plastic potential function is different from the yield function.

It is an observable fact that dilatancy is dependent on shear plastic strain [2,22].
Moreover, the dilation angle is not equal to the internal friction angle. According to Hoek
and Brown [22], the following relationships are recommended, and the dilation angle and
the friction angle are in the range ψ = ϕ/4 for good-quality rock and ψ = 0 for poor-quality
rock. This means that the dilation angle is much smaller than the internal friction angle
and that the non-associative flow rule is more appropriate for elasto plastic analysis.

Figure 18 shows GRC in the strain-softening media with η* = 0.004 and q = 30 MPa.
Different evolution laws of dilation angle are considered.

First, the associative flow rule was employed, and ψp = ϕp = 50.9◦ and ψr = ϕr = 39◦.
The dimensionless radial displacement increased as the internal pressure decreased. The
dimensionless radial displacement was 31.8 when the internal pressure was completely
released.
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Figure 18. GRC in the strain-softening media with different evolution of dilation angle when q = 30 MPa.

When ψp = 1/2, ϕp = 25.45◦, ψr = 1/2, and ϕr = 19.5◦, the flow rule was non-associative.
The dimensionless radial displacement was 8.3 when the internal pressure was zero. When
ψp = 15.5◦ and ψr = 7.5◦, the dimensionless radial displacement is 5.4. GRC was also
presented in Figure 18 for comparison. In this case, the flow rule was also non-associative.

Figure 19 shows GRC in the strain-softening media with η* = 0.004 and q = 60 MPa,
and similar analyses were carried out. When the associative flow rule was used, the
dimensionless radial displacement was 59.5. When the non-associative flow rule was
employed, the dimensionless radial displacement was 11.7 for ψp = 1/2 ϕp and ψr = 1/2
ϕr, and 7.2 for ψp = 15.5◦ and ψr = 7.5◦.

Figure 19. GRC in the strain-softening media with different evolution of dilation angle when.
q = 60 MPa.

The dimensionless radial displacements are summarized in Table 3 for different out-
of-plane stresses. The results indicated that the displacements obtained by the associative
flow rule were larger than those by the non-associative flow rule. When the dilation angle
was much smaller than the internal friction angle, the difference was huge.
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Table 3. Dimensionless radial displacement 2G(u/r0)/(σ0 − pci).

Case 1 Case 2 Case 3

q = 30 MPa 31.8 8.3 5.4

q = 60 MPa 59.5 11.7 7.2
Case 1: ψp = ϕp = 50.9◦ and ψr = ϕr = 39◦. Case 2: ψp = 1/2, ϕp = 25.45◦, ψr = 1/2 and ϕr = 19.5◦. Case 3:
ψp = 15.5◦ and ψr = 7.5◦.

When the out-of-plane stress increases, the difference between the displacements
obtained by associative flow rule and those by non-associative flow rule also increases.

4.3. Discussions of the Numerical Analysis

In last subsection, a set of parameters was used to study the influence of the out-of-
plane stress on bore stability. The plastic radius and the distribution of the stresses and
displacements were presented and compared for q = 30 and 60 MPa.

Figures 8 and 13 indicate that the axial in situ stress affects displacement, plastic radius
and type of plastic zone in the rock mass surrounding the bore in strain-softening analysis.
For the same ‘η*’, a comparison of Figures 11, 12, 16 and 17 show that the displacement
and plastic radius are larger when q = 60 than when q = 30 MPa.

Different evolutionary laws of the dilation angle were considered in the strain-
softening analysis, and the calculation results were presented in Table 3. In the first
case, the dilation angle (ψ) and the internal friction angle (ϕ) were equal and had the same
evolution law in the post-failure stage, and the displacements at the bore wall were the
largest. When the dilation angle was half of the internal friction angle and both evolved
in a similar manner, the displacements at the bore wall were much smaller than the dis-
placements in case 1.Case 3 showed displacements obtained by means of the parameters in
Table 1 and were the smallest.

When q = 30 MPa, the displacement in case 1 was about 4 times that of case 2, and
about 6 times that of case 3. When the out-of-plane stress increased to q = 60 MPa, the
displacement in case 1 was about 5 times that of case 2, and about 8 times that of case 3.
The differences were obvious for various evolution laws of the dilation angle. Moreover,
the ascending out-of-plane stress made the difference increase.

Normally, most engineering rock masses display neither in an elastic-perfectly plastic
nor in an EBP way. They behave in a strain-softening manner as shown in Figure 5. During
the strain-softening process, a progressive loss of strength occurs and the parameters
(cohesion c, internal friction angle ϕ and dilation angle ψ) will vary from their peak values
to residual ones. The EBP model overestimates the deformation and the plastic zone of
the geomaterials. However, the EP model underestimates the deformation and the plastic
region of geomaterials. If the strain-softening analysis is carried out, the numerical results
are more appropriate for practical use. When deep bores are excavated in hard rock masses,
high geostress occurs. In this situation, the influence of axial stress cannot be ignored when
the problem is treated as a normal plane strain.

5. Concluding Remarks

This paper discussed an approach for obtaining the solutions of the axi-symmetric
bore problem considering out-of-plane stress. Based on EBP analysis [21], incremental
formulations for strain-softening solution of the problem were presented.

The emphasis was put on the strain-softening characteristics of the surrounding M–
C rock masses, which were treated as an infinite isotropic media subject to a uniform
stress field (σ0) in the cross section of the bore and out-of-plane stress (q) in the axis. The
influences of the out-of-plane stress on displacement, stresses and plastic radius were
analyzed.

Strain-softening analyses were carried out for both q = 30 and 60 MPa. Numerical
results showed that the plastic radius and displacement at the bore wall obtained by
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q = 60 MPa were bigger than those for q = 30 MPa. The distribution of the displacement,
stresses and plastic zone were affected by the magnitude of the out-of-plane stress.

Different softening slopes (i.e., different critical shear plastic strains) were studied,
and it was shown that the strain-softening solution converged to the brittle-plastic solution
when the critical shear plastic strain was small enough and that converged to the EP
solution when the critical shear plastic strain was large enough. Meanwhile, the out-of-
plane stress influenced the numerical results.

Different evolutionary laws of dilatancy in the post-failure stage were considered,
and the corresponding results showed that the influence of out-of-plane stress on the bore
deformation increased when dilation angle increased. Normally, the bore deformation is
overestimated when the associative flow rule is used.

In reality, most rocks encountered in geotechnical engineering are neither ideally brittle
nor ideally plastic; they behave in strain-softening manner. Results obtained by strain-
softening analysis might be more appropriate for evaluating the stability of underground
structures.
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Nomenclature

A = −Yr/(αr − 1) constant
B = pin + Yr/(αr − 1) constant
c cohesion
cp peak cohesion
cr residual cohesion
E elastic modulus
G shear modulus
q axial in situ stress
r0 radius of the circular bore
r radial coordinate in the cylindrical polar coordinate system
ri the radius of the ith plastic annulus
R radius of the interface of the inner plastic zone and the outer plastic zone
Rs radius between softening and residual zones
R plastic radius
pc i the critical internal pressure. The out-of-plane in situ stress is the major principle stress for

i = 1, it is the intermediate principle stress for i = 2 and the minor principle stress for i = 3
pin the internal pressure
∆pk the kth pressure decrease
uc i the displacement at the interface of the plastic zone and the elastic zone. The out-of-plane

in situ stress is the major principle stress for i = 1, it is the intermediate principle stress for
i = 2 and the minor principle stress for i = 3. uc i = R(σ0 − pc i)/(2G)

uR the displacement at the interface of the inner plastic zone and the outer plastic zone
u radial displacement
∆u(i) incremental radial displacementat the ith load increment
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Y = 2 c cos φ/(1 − sin φ) constant
Yr = 2cr cos φr/(1 − sin φr) constant
α = (1 + sin φ)/(1 − sin φ) constant
αr = (1 + sin φr)/(1 − sin φr) constant
β = (1 + sin ψ)/(1 − sin ψ) constant
εr the radial strain
εe

r the elastic part of radial strain
ε

p
r the plastic part of radial strain

∆εr(i) the incremental radial strain at the ith load increment
∆εe

r(i) elastic part of the incremental radial strain at the ith load increment

∆ε
p
r(i) plastic part of the incremental radial strain at the ith load increment

εθ the tangential strain
εe

θ the elastic part of tangential strain
ε

p
θ the plastic part of tangential strain

∆εθ(i) the incremental tangential strain at the ith load increment
∆εe

θ(i) elastic part of the incremental tangential strain at the ith load increment

∆ε
p
θ(i) plastic part of the incremental tangential strain at the ith load increment

εz the axial strain
εe

z the elastic part of axial strain
ε

p
z the plastic part of axial strain

∆εz(i) the incremental axial strain at the ith load increment
∆εe

z(i) elastic part of the incremental axial strain at the ith load increment

∆ε
p
z(i) plastic part of the incremental axial strain at the ith load increment

ϕ friction angle
ϕp peak friction angle
ϕr residual friction angle
η parameter to indicate plastic strains
ν Poisson’s ratio
θ tangential coordinate in the cylindrical polar coordinate system
σ0 uniform in-plane in situ stress
σ1 major principle stress
σ2 intermediate principle stress
σ3 minor principle stress.
σr radial stress
σr(i−1) radial stress at the end of the i−1th load increment
∆σr(i) incremental radial stress at the ith load increment
σθ tangential stress
σθ(i−1) tangential stress at the end of the i−1th load increment
∆σθ(i) incremental tangential stress at the end of the ith load increment
σz axial stress
σz(i−1) axial stress at the end of the i−1th load increment
∆σz(i) incremental axial stress at the end of the ith load increment
σr(R) the radial stress at the interface of the inner plastic zone and the outer plastic zone
ψ the dilation angle
ψp peak dilation angle
ψr residual dilation angle
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