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Abstract: Reliable meteorological forecasts of temperature and relative humidity are critically impor-
tant to take necessary measures to avoid potential damage and losses. An operational meteorological
forecast model based on the Weather Research and Forecast (WRF) model has been built in Xinjiang.
Numerical forecasts usually have significant uncertainties and errors due to imperfections in models
themselves. In this study, a straightforward automated machine learning (AutoML) approach has
been developed to post-process the raw forecasts of the WRF model. The method was implemented
and evaluated to post-process forecasts from 13 stations in northern Xinjiang. The post-processed
temperature forecasts were significantly improved from the raw forecasts, with average RMSE values
in the 13 stations decreasing from 3.24 ◦C to 2.34 ◦C by a large margin of 28%. As for relative
humidity, the mean RMSE at 13 stations decreased from 19.54% to 11.54%, or it showed a percentage
decrease of 41%. Meanwhile, biases were also significantly decreased, with average ME values being
reduced from around 2 ◦C to ~0.33 ◦C for temperature and improved from−15.6% to ~0% for relative
humidity. Moreover, forecast performance values after post-correction became much closer to each
other than raw forecast performance values, improving forecast applicability at regional scales.

Keywords: post-correction; AutoML; WRF

1. Introduction

With continuous developments in numerical weather forecasting technologies, nu-
merical weather models have become a major tool for operational weather forecasting [1].
Model forecasting accuracy is also directly related to weather forecasting accuracy and
further affects the effectiveness of meteorological services [2,3]. At present, much research
work is being carried out on numerical models such as the Weather Research and Forecast
(WRF) model, including the optimization of physical parameterization schemes, the appli-
cation of multi-source observation data, and improvements in assimilation algorithms [4].
However, because the initial and model boundary conditions, the physical process, the
static surface data, and the mathematical description of the model framework all contain
uncertainties, which bring errors into the numerical model, the output forecast is also
subject to errors.

To further improve forecast accuracy, post-processing techniques have been widely
used to reduce errors in operational forecasting applications [5]. These techniques include
N-day running average correction [6], N-day Kalman filter post-processing techniques [7],
and analog-based bias-correction methods [8]. These relatively straightforward methods
often work with a small amount of data for bias correction. For example, bias-corrected
models can gauge air temperature, relative humidity, and other surface meteorological
variables from a WRF model with only eight previously selected forecasts [5]. The model
output statistics (MOS) technique has also often been used to fuse previous model forecast
errors with large amounts of data. For example, Kang et al. [9] improved air temperature
forecast accuracy in a WRF model with an updated MOS method.
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Recently, the development of machine learning methods has made it possible to di-
gest even larger amounts of data with relatively high accuracy [10]. The most popular
machine learning models include random forest [11], gradient boosting [12], and deep
neural networks [13]. For example, Eccel et al. [14] used a multivariate machine learning
model to post-process temperature forecasts. Machine learning models have also exhibited
competitive capabilities in a wide range of prediction research works [15,16]. Studies have
proven that the ensemble use of these models outperforms the use of each model alone [17].
Therefore, there is a need for ensemble models to improve model performance. However,
this usually requires many trial-and-tests and various forms of expertise to tune up hy-
perparameters in order to determine how to construct an ensemble model from multiple
candidate methods. To solve this tuning problem, in recent years, automatic an machine
learning (AutoML) framework has been developing rapidly in the discipline of data science.
Even though this approach is popular in model optimization [18], computer visions [19],
and other areas, its application in MOS to improve model forecasting performance has
been scarce.

In Xinjiang, a regional meteorological forecast model, which has run operationally at
the Xinjiang Meteorological Bureau since 2018, was developed by the Institute of Desert
Meteorology in the China Meteorological Administration in collaboration with the National
Center for Atmospheric Research (NCAR), and it uses the Advanced Research WRF (ARW)
research model and WRF data assimilation (WRFDA), version 3.8.1. Precipitation in
Xinjiang has obvious terrain-dependent characteristics. The frequency of precipitation in
the mountainous areas is highest where there are good forecast skills and fewer humans.
Greater numbers of people from the oasis economic zone pay attention to the weather
forecast in relation to temperature and relative humidity, both of which are important for
travel and agricultural irrigation. Differences in topographic features between reality and
the forecast model affect a forecast’s precision. Forecast revision is still required.

This study used an AutoML-based ensemble model framework to post-process WRF
temperature and relative humidity forecasts in the Urumqi-Changji-Shihezhi (UCS) region,
the core area of the oasis economic zone, in 2019.

2. Data and Method
2.1. Model and Configurations

The Advanced Research WRF (ARW) research model and WRF data assimilation
(WRFDA), version 3.8.1 [20], were used for deterministic numerical weather forecasting.
The fundamental configuration of WRF is listed in Table 1. There were two nested domains
in the model, as shown in Figure 1. Domain 1 covered most of the Central Asia region, with
a grid spacing of 9 km and 712× 532 grid points. Domain 2 was centered on Xinjiang, China,
with a grid spacing of 3 km and 832× 652 grid points. There were 50 vertical computational
layers with a pressure top of 10 hPa. Atmospheric and surface fields from the Global
Forecast System of the National Centers for Environmental Prediction (GFS) model forecasts
(the GFS forecasts) were introduced as the initial conditions. The physics schemes included
WSM6 microphysics, ACM2 PBL, Kain-Fritsch deep convection, the RRTMG shortwave
and longwave scheme, and the Unified Noah land-surface model. A three-dimensional
variational (3DVar) technique was used for data assimilation. Conventional observations in
6 h cycling assimilation provided the analysis fields, including SYNOP (surface SYNOPtic
observations, shown as the red points in Figure 1), METARs (METeorological Aerodrome
Reports, airport ground-based), AMDAR (Aircraft Meteorological DAta Relay), and RAOB
(RAwinsonde OBservations). In addition to conventional data, radial velocities from radar
observations were also assimilated in Domain 2. Ground-level (2m) temperature and
relative humidity were used as forecast variables in the post-processing procedures.
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Table 1. Experimental configurations of WRF model.

Model and Configurations

Model version ARWv3.8, nonhydrostatic=true

Domain 1 712 × 532, nominal 9 km
Domain 2 832 × 652, nominal 3 km

Vertical computation layers 50
Pressure top 10 hPa

Lateral boundary conditions GFS forecasts
Microphysics WSM6

Longwave radiation RRTMG scheme
Shortwave radiation RRTMG scheme

Land surface Unified Noah land-surface model
Deep convection Kain-Fritsch

Planetary-boundary and surface layer ACM2
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Figure 1. Forecast domains. The outside box indicates Domain 1 and the inner black box indicates
Domain 2. The red dots refer to SYNOP stations.

2.2. Ground Meteorological Observations

Hourly mean observation data from 13 stations in the UCS area were used to evaluate
the performance of the post-correction technique (Figure 2). The UCS area was selected
because it is the core area of the oasis economic zone, which has large population and
contains the Manas oasis agricultural area, the largest oasis agricultural area in Xinjiang.
Meteorological conditions have a great influence on travel and agricultural irrigation. The
meteorological variables included in this study were temperature and relative humidity.
Hourly data were obtained from the China Integrated Meteorological Information Service
System (CIMISS) of the China Meteorological Administration.
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2.3. AutoML Algorithm

The AutoML algorithm was developed from traditional ensemble models [21] by
automatically performing model selection and optimizing parameterization. For example,
in traditional ensemble models, several base models with fixed user-determined parameters
were combined into a meta-model to improve the performance of each single model [22],
as shown in the following equation:

Y = Mm(Mb1(X), Mb2(X), Mb3(X), . . . , Mbn(X)), (1)

where Y and X are, respectively, the response and explanatory data and Mm and Mbi
(i = 1, 2, . . . , n) are, respectively, the meta-model and the i-th base model. The base model
outputs were fed into the meta-model, which automatically determined the weights of
the base models according to predefined metrics (i.e., RMSE, NME). Generally, the base
models with lower error levels had larger contribution weights in the final ensemble model.
However, many experiments and trials are normally needed to determine a set of suitable
base models and their parameter settings. For example, to use a random forest model
(RF) as a base model, loss functions, the sampling approach, the number of trees, and
other parameters must be determined. Parameter tuning is an even bigger problem for
popular neural network models, which have many parameters that must be determined.
Traditionally, their model parameters are generally defined and decided through manual
tests or experienced expertise, which could be biased or limited in selecting the best
potential models.

To solve this problem, an AutoML model was developed based on an ensemble learn-
ing framework by automatically optimizing the parameters of a group of pre-defined
alternative base models [23]. These candidate base models include an RF model, gradient
booster models (GBM), and a multiple layer perceptron model. The RF and GBM models
are both composed of a group of relatively simple classifiers (trees) to construct competi-
tive regression or classification capabilities, while they use different training strategies of
bagging and boosting, respectively. In the AutoML model selection and training procedure,
the automatic learning process achieved by the grid-search technique was implemented to
optimize the hyperparameters of the base models [24,25]. The grid-search optimization
technique used an exhaustive automatic “trial-and-error” method to select the best pa-
rameters from a pre-defined hyperparameter space. In other words, each hyperparameter
within a model was tested with a group of candidate configurations. The hyperparameters
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and corresponding model with best performances were determined as the final trained
AutoML model.

To combine these base models, a stacking ensemble method was used to merge the
selected base models to form an AutoML model. As shown in Figure 3, a previously
fitted historical dataset was used to train the AutoML model before the model was used to
post-process raw meteorological forecasts. Equation (2) shows how the temperature and
relative humidity forecasts were post-processed:

Yp = Mm

(
Mb1

(
RH f , Tf

)
, Mb2

(
RH f , Tf

)
, . . . , Mbn

(
RH f , Tf

))
, (2)

where Mm and Mbi(i = 1, 2, 3 . . . , n) have same meaning as in Equation (1). The RH f
and Tf are input explanatory variables of the raw forecasts of relative humidity and
temperature, respectively, and Yp is a post-processed meteorological variable, such as
relative humidity or temperature. In the AutoML model used in this study, the number
of base models was determined to be 15 after testing different numbers of base models to
balance efficiency and accuracy.
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2.4. Model Fitting and Evaluation

The hourly forecast data in August 2019 were used as independent assessment data to
evaluate the performance of post-correction techniques. Two AutoML models were fitted,
respectively, by the data from August in 2018, i.e., the same month to the evaluation period
in the previous year and the data from July 2019, i.e., the previous month of the evaluation
period; they were then compared.

For comparison, we used three other popular post-processing techniques for the bias-
correction of forecasts in August 2019. First, a moving error post-processing method was
used as the baseline model. Moreover, other MOS models of single linear regression (SLR),
multiple linear regression (MLR), and random forest (RF) were also adopted for comparison.
Furthermore, the confidence level that the AutoML model had a better performance than
other models was tested and evaluated with the bootstrap method. In this method, around
250 data items were sampled from the evaluation data in August 2019 in 200 iterations.
The sampling data in each iteration were evaluated with statistical metrics.

To evaluate post-correction performance, statistical metrics were reported, including
coefficient of determination (R-square), mean error (ME), mean absolute error (MAE),
normalized mean error (NME), and root mean square error (RMSE). Statistical metrics were
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defined in Equations (3)–(7), where yi and ŷi were, respectively, observation and forecast
data items with N, and y was the average of N observations.

R2 = 1− ∑i(yi − ŷi)
2

∑i(yi − y)2 (3)

ME =
1
N

N

∑
i=1

(yi − ŷi) (4)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (5)

NME =
1
N

N

∑
i=1

yi − ŷi
yi

(6)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (7)

3. Results and Discussion
3.1. Raw Forecast Performance

The raw forecast performances at the 13 stations in the UCS area were similar. The data
at station 51359 were used to analyze forecast performance as the correct data. As shown
in Figure 4, the raw forecast performance for temperature and relative humidity varied
temporally over the year. Generally, for temperature, the R-square values were lower in
winter (December–January–February), with a mean of 0.65. In comparison, mean R-square
values of temperature forecasts in summer was around 0.92. The larger RMSE values of
around 5 ◦C indicated a more significant error in winter. The forecasts underestimated
temperature during winter days, indicated by negative NME values of around −5 ◦C, and
slightly overestimated temperature in summer days, with small positive values around 2 ◦C.
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relative humidity. The x-axis refers to observation time.

For relative humidity, the smaller R-square values were associated with weaker corre-
lations between forecasts and observations in winter. However, error levels indicated by
RMSE values were lower during winter days (around 15%), whereas the RMSE values in
summer and autumn days were generally higher than 20%. As for NME, it was positive
during winter days (around 10%), indicating an overestimation of relative humidity. Dur-
ing summer and autumn days, WRF underestimated relative humidity at this station, with
NMEs being around −25%.
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As shown in Figure 4, the values of forecast correlations and error levels changed
rapidly during seasonal transitions. This indicated that using the time-moving approach to
train the model for model forecast post-correction could have a good performance when
error levels change rapidly day by day. Therefore, the aforementioned first model, as
described in the last section, was expected to have a better performance in post-correction.

As shown in Figure 5, forecast metrics were evaluated at each forecast lead hour. For
temperature, the R-square values decreased slightly from around 1 at the first lead hour
to around 0.97 at the last lead hour. The R-square values linearly decreased in the first
40 lead hours before exhibiting periodic variations along the decreasing trend. The RMSE
of the temperature forecast also increased from less than 3 ◦C to around 4.5 ◦C in the final
lead hour. However, NME remained relatively stable for the first 40 lead hours before
starting to fluctuate in a downward trajectory. As for relative humidity, it had a similar
pattern to temperature, with a decreasing R-square, an increasing RMSE, and a fluctuating
negative NME.
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3.2. Post-Correction Performance

The base models, as automatically determined by the AutoML framework, are mostly
GBM with different parameters, with a small proportion of other models such as general
linear models. Within these models, GBM models usually have larger weights, which is
similar to findings in previous studies [17].

Forecast performance after post-correction with AutoML generally improved at all
13 stations compared to raw forecast. The mean RMSE of post-corrected temperature
forecast at the 13 stations was 2.34 ◦C, which was about 28% smaller than that of the raw
forecast (3.24 ◦C) (Figure 6a). After correction, RMSE values among stations were all at
similar levels, with a standard deviation of 0.34 ◦C, compared to 1.09 ◦C for raw forecasts.
The largest improvement occurred at station 51470, where the percentage improvement
was around 65% in terms of RMSE, from 6.02 ◦C to 2.11 ◦C. The smallest improvement
happened at station 51469, where the RMSE increased by only 1%. As for the bias of the
temperature forecasts, they were generally biased high, with an overestimation of 2.06 ◦C
for all stations. The largest bias occurred at station 51470, where the temperature was
overestimated by 5.68 ◦C. The smallest bias occurred at station 51469, with an MAE value
of 0.70 ◦C. After post-correction by the AutoML model, mean MAE values became much
smaller, with a mean of 0.33 ◦C, and the overestimation at most stations was less than 1 ◦C.

As for the relative humidity forecast, the mean RMSE of the raw forecast was 19.54%
for all 13 stations, with mean ME values being around−16.21%. After post-correction, mean
RMSE became smaller (11.54%), which was a 41% decrease. The greatest improvement
was at station 51359, where the RMSE improved from 29.31% to 12.53%, i.e., a decrease
of 57%. Similar performance was also achieved at stations 51368 and 51356, with RMSE
decreasing by 56% and 53%, respectively. As for MAE values, raw WRF forecasts greatly
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overestimated relative humidity at all 13 stations, with a mean ME of −15.41%. The most
significant underestimation of the raw forecast occurred at station 51359, which had an
ME of −26.3%. After correction, forecasts were generally unbiased, with the largest bias
(−3.52%) occurring at station 51365.
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It should be noted that, for both temperature and relative humidity, forecast biases
were much smaller in almost all stations. This revealed that the AutoML post-correction
model could substantially remove systematic errors in raw forecasts. At the stations where
bias values of raw forecasts were small, such as 51463 for temperature and 51468 for relative
humidity, the post-correction performance evaluated by RMSE improved less than other
stations. This indicated the post-correction models are relatively weak when it comes to
reducing random errors in raw forecasts.

Compared with the post-correction performance of the models fitted by data from the
previous month, the model fitted by data from August 2018 generally behaved better, as
shown in Figure 7. As for temperature, the post-correction performance of the latter model
also had a larger RMSE than the model of the previous month at most stations.

Moreover, compared to three other MOS methods, our ensembled AutoML model also
had a better performance, as shown in Figures 8–10. For example, RF, MLR, and moving
error post-correction model, respectively, have larger RMSE values than the AutoML model,
with a mean difference of 0.11, 0.07, and 0.09 ◦C for temperature and 0.55%, 0.61%, and
1.12% for relative humidity. Besides, compared to the SLR model, the AutoML model
also showed a better performance than the MLR model, as exhibited in Figure 11. The
post-correction improvement due to AutoML compared to SLR was −0.17 ◦C and −1.54%
for T and RH RMSE values, respectively; this was more significant than the improvements
of of 0.04 ◦C and −0.56% caused by MLR.
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Results evaluated with the bootstrap method also indicated a better performance of
the AutoML in most stations, as indicated by Figures 12 and 13. However, it should be
noted that post-correction performance was evaluated with one month of data, which
could have limitations in terms of representing long-term performance, especially when in
relation to climate events such as the El Niño-Southern Oscillation.

3.3. Time-Series Analysis

The weather forecast model generates forecast results routinely four times per day at
UTC 0:00, 6:00, 12:00, and 18:00. Post-correction performance was significantly improved
from the original forecasts in almost all forecast processes, as shown in Figure 14 for station
51359. At this station, the RMSE of the raw temperature forecast was around 4 ◦C, with a
mean of 4.01 ◦C and a standard deviation of 1.2 ◦C. After post-correction, RMSE decreased
significantly, with a mean of 2.1 ◦C and a standard deviation of 0.57 ◦C. For relative
humidity, the RMSE of the raw forecast was relatively large, with a mean of 26% and a
standard deviation of 8%. This deviation indicated that raw forecasts have low stability
in relation to model performance, which will decrease users’ confidence when using their
data in applications. Specifically, RMSE decreased to much lower levels, with a mean of
13% and a standard deviation of 3%. The decreased mean RMSE indicated that the forecast
accuracies had improved for temperature and relative humidity. Meanwhile, the reduced
standard deviation of RMSE indicated an enhanced stability of forecast performance along
different forecast processes. Even though post-correction forecasts showed a deteriorating
trend along leading hours, a complete circle of forecasts was corrected all at once rather
than by each lead hour, as shown in Figure 15. Our approach will also improve public
users’ confidence in forecasts because the errors are stable.
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4. Conclusions

Meteorology forecasts from the raw WRF model have relatively high error levels.
Previous studies have demonstrated that forecast performance could be improved by
post-correction processes. In this aspect, this study built and tested a straightforward
and auto-optimizing AutoML model to bias-correct the raw forecasts. The AutoML is not
only strong in terms of modeling capabilities, but it is also easy to construct and fit due
to its automatic workflow. This method was implemented and evaluated to post-process
forecasts from 13 stations in northern Xinjiang. In general, forecast performances were
significantly improved over raw forecasts. For temperature, the average RMSE values
decreased from 3.24 ◦C to 2.34 ◦C, which was a large percentage decrease of 28%. As for
relative humidity, mean RMSE values at the 13 stations decreased from 19.54% to 11.54%,
or a percentage change of 41%. In addition, biases were also significantly decreased. The
post-processed forecasts also have a relatively enhanced performance stability, which will
help in forecast data applications.

Compared to three other MOS methods, the ensembled AutoML model also had a
better performance with lower error levels. RF, MLR, and moving error post-correction
models, respectively, have larger RMSE values than the AutoML model, with mean differ-
ences of 0.11, 0.07, and 0.09 ◦C for temperature and 0.55%, 0.61%, and 1.12% for relative
humidity. The post-correction performance was significantly improved from the original
forecasts in almost all forecast processes. A complete circle of forecasts was corrected all at
once rather than by each lead hour.

The model could be readily used in post-processing forecast field data by training
it with multiple stations within a region. It should also be applicable to other forecast
variables. In terms of limitations, the model is generally time consuming compared to a
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single model, since it needs to test many parameters. The post-correction model could be
updated on a weekly or monthly time scale.
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