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Abstract: Diagnosis of skin diseases by human experts is a laborious task prone to subjective
judgment. Aided by computer technology and machine learning, it is possible to improve the
efficiency and robustness of skin disease classification. Deep transfer learning using off-the-shelf
deep convolutional neural networks (CNNs) has huge potential in the automation of skin disease
classification tasks. However, complicated architectures seem to be too heavy for the classification
of only a few skin disease classes. In this paper, in order to study potential ways to improve the
classification accuracy of skin diseases, multiple factors are investigated. First, two different off-the-
shelf architectures, namely AlexNet and ResNet50, are evaluated. Then, approaches using either
transfer learning or trained from scratch are compared. In order to reduce the complexity of the
network, the effects of shortening the depths of deep CNNs are investigated. Furthermore, different
data augmentation techniques based on basic image manipulation are compared. Finally, the choice
of mini-batch size is studied. Experiments were carried out on the HAM10000 skin disease dataset.
The results show that the ResNet50-based model is more accurate than the AlexNet-based model.
The transferred knowledge from the ImageNet database helps to improve the accuracy of the model.
The reduction in stages of the ResNet50-based model can reduce complexity while maintaining good
accuracy. Additionally, the use of different types of data augmentation techniques and the choice of
mini-batch size can also affect the classification accuracy of skin diseases.

Keywords: image classification; skin diseases; transfer learning

1. Introduction

Artificial intelligence (AI), which has profoundly changed our everyday lives, has
been extensively studied for several decades [1–4]. Some prominent applications are: AI-
empowered autonomous driving, which has been employed in numerous electric vehicles
from various automakers such as Tesla and Ford [5]; AlphaGo developed by Google using
artificial neural networks [6]; and the prevailing TikTok app, which has succeeded greatly
due to its recommendation algorithms [7].

An important aspect of AI is machine learning. Artificial neural networks, especially
convolutional neural networks (CNNs), are extending the reach of machine learning to
a broad range of applications [8,9]. CNNs are particularly useful for analyzing visual
imagery. The convolution kernels used in CNNs are extremely useful for the extraction of
image features. Classifying images is a challenging task. However, with the aid of powerful
graphic processing units, the classification of images has become efficient using deep CNN
architectures. Numerous off-the-shelf architectures are available for use and can be easily
adjusted to suit new tasks by using deep transfer learning [10,11].

Training deep CNNs usually requires large annotated image datasets. However, in
specific areas such as the medical image domain, a large volume of publicly available
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datasets is not always available, and collecting and annotating samples can also be difficult
and costly. Therefore, a data augmentation technique has been extensively studied.

In this paper, multiple factors are studied for potential improvement in the classifica-
tion accuracy of skin diseases using deep transfer learning. Due to the good generalization
ability of deep CNNs, the off-the-shelf architectures AlexNet and ResNet50 are compared
for use in the building of transfer learning models for skin disease classification. These deep
CNN architectures are initially trained to classify 1000 classes in the ImageNet database.
However, as only a few classes are needed for classification in the skin disease dataset,
complex deep CNNs seem too heavy. Therefore, the effects of trimming the depths of deep
CNNs to reduce the complexity and number of parameters in the networks are evaluated.
Comparison is made between using transfer learning and training from scratch. Addi-
tionally, different image manipulation techniques for data augmentation are compared.
The choice of mini-batch sizes is also discussed. The aforementioned factors are studied
through experiments on the HAM10000 skin disease dataset.

2. Related Work

Skin diseases are common types of illness worldwide. It is of importance to diagnose
and treat skin disease early, as some severe skin diseases might cause death [12]. With
the help of deep neural networks, skin disease classification has been actively studied. A
multiclass skin disease classification scheme was proposed using pretrained AlexNet for
feature extraction and error-correcting output codes for support vector machine as the clas-
sifier and achieved 86% accuracy on five skin lesion categories [13]. However, the dataset
was not balanced for each class, and further work is needed. Research on the combination
of four popular machine learning algorithms, namely artificial neural networks, linear
discriminant analysis (LDA), naïve Bayes, and support vector machines (SVMs), with two
feature sets, namely color and texture, was explored [14]. It was found that LDA and SVMs
show better accuracy. Automatic classification of clinical skin disease images was proposed
using high-level position information [15]. Instead of hand-crafted features, the work used
high-level position information to generate better deep visual features and outperformed
state-of-the-art clinical skin disease classification methods. A methodology of using the
rough set method to extract the best features and feedforward neural network to predict
the existence of skin disease was proposed [16]. Morphological- and wavelet-based fractal
texture features were used along with stacked auto-encoder-based features to classify four
skin diseases [17]. The combined feature set used greatly improved the accuracy of identi-
fying melanoma, nevus, basal cell carcinoma, and seborrheic keratosis diseases, with at
least 96% accuracy. A survey of skin disease classification from images was conducted [18].
Traditional techniques and deep learning-based skin disease classification were compared,
and it was concluded that the deep learning approach is more efficient and faster for
extracting features.

3. Skin Disease Classification

In this section, the multiclass skin disease dataset studied in this paper is first intro-
duced. Then, the potential ways to improve the classification accuracy of skin diseases are
discussed, including the choice of the network architecture, the depths of the deep network,
the use of transfer learning, the types of data augmentation techniques, and the selection
of mini-batch size.

3.1. Skin Disease Dataset

The skin disease dataset used in this paper is from the HAM10000 dataset [19]. It
includes a representative collection of important diagnostic categories of pigmented lesions.
It is a collection of dermatoscopic images of pigmented skin lesions released to tackle
the lack of diversity and small size of available dermatoscopic image datasets to train
neural networks for automated classification. The goal of this paper is to classify four skin
disease classes, namely basal cell carcinoma, benign keratosis, melanoma, and melanocytic
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nevi. The images are of size 650 × 450 pixels. Each class contains 500 images. The image
examples of the dataset are shown in Figure 1.
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sification task and achieves 3.57% error on an ImageNet test set. ResNet introduces a 

Figure 1. Sample images from the skin disease dataset.

3.2. Choice of Network Architectures

Using off-the-shelf deep networks, which have been proven effective in massive and
challenging datasets, is common practice in image classification. In this paper, two network
architectures, AlexNet and ResNet50, were used to construct our models for skin disease
classification.

AlexNet [20] is a well-known CNN that won the ImageNet contest in 2012. It achieves
37.5% top-1 error rates and 17.0% top-5 error rates on test data. It consists of five convolu-
tional layers and three fully connected layers, as shown in Figure 2. It has over 60 million
parameters and 65,000 neurons. The network uses ReLU nonlinearity to accelerate the
training and employs various techniques to prevent overfitting, such as using dropout and
data augmentation.
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Figure 2. Architecture of AlexNet.

ResNet [21] is a very deep residual learning framework developed to reduce the
effort of network training. It is easy to optimize and can gain accuracy from increased
network depth. The original ResNet with 152 layers won first place in the ILSVRC 2015
classification task and achieves 3.57% error on an ImageNet test set. ResNet introduces a
shortcut connection technique to overcome the degradation problem, i.e., the accuracy gets
saturated and degrades rapidly when the network depth increases.
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A smaller version of ResNet50 consists of four stages, as shown in Figure 3. It was
initially trained to classify 1000 classes on the ImageNet dataset and has a fully connected
layer with a size of 1000.
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3.3. Transfer Learning

The approach of using already pretrained off-the-shelf deep networks as the starting
point to construct a model for a new task, and transfer the learned features from the
ImageNet database to the new task, is known as transfer learning. It is highly effective and
easier to train, as only a small number of training images is required, while training the
network completely from scratch with randomly initialized weights is much harder.

In this paper, AlexNet architecture is used first. The 1000-way fully-connected (FC)
layer is replaced with only four ways for the classification of four skin diseases. The
constructed model is named Model I. Similarly, the original ResNet50 model is modified
by replacing the last FC layer as well, as shown in Figure 4a. This four-stage ResNet50
Network is denoted by Model II.
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3.4. Network Depth

Even though ResNet50 is largely simplified from ResNet152 by largely reducing the
number of layers, it is still a complex network. The above Model II built directly from
ResNet50 is still seemingly heavy for tasks that only require classifying four different skin
diseases. Therefore, we reduced the layers by removing the last stage, and Model III was
constructed with only three stages, as shown in Figure 4b. Further, we constructed Model
IV with only two stages, as shown in Figure 4c.

3.5. Data Augmentation Techniques

Data augmentation is commonly used in deep learning when there are limited data. It
includes various techniques that can enhance the size and quality of the training dataset. It
is highly useful to mitigate the overfitting problem. Through data augmentation, more in-
formation can be extracted from the original dataset. Basic image manipulation techniques
for data augmentation include geometric transformations, color space transformations, and
kernel filters, etc., which are applied to images in the input space. Deep-learning-based
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augmentation techniques are also widely studied. A typical example is the generative
adversarial network, which can generate plausible new images from original images. In
this paper, multiple image manipulation techniques, including random scale, random
rotation, random reflection, random shear, and a combination of different techniques, are
compared for skin disease image classification.

3.6. Batch Normalization and Mini-Batch Size

In order to overcome the overfitting problem, where the network performs very well
in the training set but poorly in the test set, batch normalization layers are used. Batch
normalization can help train the network faster and in a more stable manner, less sensitive
to the initial random weights, and it is said to be able to solve the internal covariate shift
problem. In Models II, III, and IV, a batch normalization layer is attached to each of the
convolutional layers. The skip connection in ResNet50, as well as in Models II, III, and IV,
is used to mitigate the gradient explosion problem caused by using batch normalization.
In training the deep neural network, batch normalization standardizes the inputs to a layer
for each mini-batch. By transforming the data to have a mean of 0 and a deviation of 1, the
distribution of the inputs during the weight update will not change dramatically, and the
training of the network can be stabilized and accelerated. The generalization error can also
be reduced.

The choice of hyperparameter mini-batch size is also important. If the mini-batch size
is too small, the distribution of the mini-batches will be largely different from the actual
dataset. The differences in the standardized inputs between training and using the model
after training can result in noticeable differences in performance. In this paper, different
mini-batch sizes are compared for the evaluation of the deep networks on a skin disease
dataset.

4. Experimental Results and Discussion

In order to evaluate the effects of different factors on the classification accuracy of skin
diseases, experiments were carried out on the custom four-class HAM10000 dataset. The
four-fold cross-validation setup was used for all experiments to ensure less bias on the
estimation of models’ performance. Each fold contained 1500 images in the training set
and 500 images in the validation set.

The choice of the base architecture was first evaluated. The AlexNet-based Model I
was tested. The images were resized to 227 × 227 pixels to fit the input size of the AlexNet
input layer. The transferred layers were frozen by assigning small learning rates to ensure
only the newly added FC layer was trained and the features learned from the ImageNet
database could be appropriately transferred. For each fold of cross-validation, the Adam
solver was used to train the network for 10 epochs. A mini-batch size of 10 was used. No
data augmentation was applied during training. The obtained average cross-validation
accuracy was 0.7100, as listed in Table 1.

An experiment was carried out on Model I again with the same experimental setup as
above, except that all the weights in the transferred layers were removed, and the model
was trained from scratch. The average cross-validation accuracy obtained was 0.6640.

Table 1. Average cross-validation results of different models.

Model Architecture Training Data Augmentation Accuracy

I AlexNet-based Transfer learning No 0.7100
I AlexNet-based From scratch No 0.6640
II Four-stage ResNet50-based Transfer learning No 0.7640
II Four-stage ResNet50-based From scratch No 0.6605
III Three-stage ResNet50-based Transfer learning No 0.7700
III Three-stage ResNet50-based From scratch No 0.6415
IV Two-stage ResNet50-based Transfer learning No 0.7835
IV Two-stage ResNet50-based From scratch No 0.6960
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The ResNet50-based Model II was tested. The four-stage Model II was trained using
the Adam solver for 10 epochs for each fold, with a mini-batch size of 10. Transfer learning
was used to transfer the weights of ResNet50 pretrained on the ImageNet database. No
data augmentation techniques were used. The average classification accuracy for four folds
was 0.7640. The Model II architecture with all the pretrained weights removed was trained
from scratch and showed an average accuracy of 0.6605. Because the ResNet50-based
Model II clearly has higher accuracy than the AlexNet-based Model I when using transfer
learning, the former was chosen to be further studied for network depth reduction and
potential accuracy improvement.

The ResNet50-based models, III and IV, with different network depths were then
evaluated with the same four-fold cross-validation setup. Similarly, transfer learning was
applied to Model III and Model IV, and the average cross-validation accuracy values for
the two models were 0.7700 and 0.7835, respectively.

The above results are summarized in Table 1. It can be found that in the context
of transfer learning, the choice of architecture has a huge impact on the classification
accuracy of skin diseases, The ResNet50-based models outperform the AlexNet-based
model by at least 0.05, which shows the supremacy of ResNet50 over AlexNet in skin
disease classification. As for transfer learning versus training from scratch, no matter
which architecture is used, whether the AlexNet-based model or the ResNet50-based
model, transfer learning is evidently better than training from scratch, as compared in
Table 1. As for the ResNet-50-based models with different depths, using the transferred
weights learned from the large ImageNet database improves the accuracy by at least 0.08
compared with those trained from scratch. For the complexity of the ResNet50-based
network, by reducing the network depth, the classification accuracy is observed to be
increased. The two-stage Model IV with the shortest depth has the best accuracy, the
complete four-stage Model II has the least accurate result, and the three-stage Model III
ranks in the middle. All three transfer learning models had an accuracy above 0.76. This
suggests that complex networks do not necessarily mean better accuracy when it comes
to classification tasks on a simple skin diseases dataset with only a few classes. Instead,
it shows that simplifying the network can obtain enough accuracy and also reduce the
effort of training. The confusion matrix of Model IV with the best accuracy using transfer
learning and the confusion matrix of Model II with the worst accuracy without transfer
learning are shown in Figure 5.

Next, the effects of the types of augmentation techniques on the accuracy of skin
disease classification were evaluated using Model IV. With no augmentation techniques
applied at all, the model yields a 0.7835 accuracy. When a random scale with a factor from
0.6 to 1.4 is applied, an average accuracy of 0.7785 is obtained. When a random rotation
from 0 to 360 degrees is applied, the model shows 0.7620 accuracy. As for when random
reflection in the left–right direction and top–bottom direction is applied, the accuracy is
0.7735. An accuracy of 0.7765 is obtained when applying random horizontal and vertical
shear from 0 to 45 degrees. With all the above types of augmentation combined, the model
gives a 0.7430 accuracy. The comparison of augmentation types is summarized in Table 2.
It can be seen that the worst result of 0.7430 comes from using the augmentation techniques
combined, using no augmentation techniques at all yields the best accuracy of 0.7835, and
all other augmentation techniques used reduce the classification accuracy. The results
suggest that for skin disease classification, using basic image manipulation techniques for
data augmentation does not necessarily help in improving the classification performance
of the networks and should be used cautiously. In Table 2, confusion matrices of Model IV
without using data augmentation and using combined data augmentation are shown in
Figure 6.
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Table 2. Comparison of types of augmentation techniques.

Model Architecture Training Data Augmentation Accuracy

IV Two-stage ResNet50-based Transfer learning No 0.7835
IV Two-stage ResNet50-based Transfer learning Random scale 0.7785
IV Two-stage ResNet50-based Transfer learning Random rotation 0.7620
IV Two-stage ResNet50-based Transfer learning Random reflection 0.7735
IV Two-stage ResNet50-based Transfer learning Random shear 0.7765
IV Two-stage ResNet50-based Transfer learning Combined 0.7430

Experiments were carried out to compare the choices of different mini-batch sizes
ranging from 5 to 80, and the results are summarized in Table 3. It can be seen that the
smallest mini-batch size of 5 has the lowest accuracy of 0.7560, while a mini-batch size of
40 yields the best accuracy of 0.7905. The corresponding confusion matrices are shown in
Figure 7. The results show the accuracy can be minorly improved by choosing a proper
mini-batch size.

Table 3. Comparison of different mini-batch sizes.

Model Architecture Training Mini-Batch Size Accuracy

II Four-stage ResNet50-based Transfer learning 5 0.7560
II Four-stage ResNet50-based Transfer learning 10 0.7640
II Four-stage ResNet50-based Transfer learning 20 0.7765
II Four-stage ResNet50-based Transfer learning 40 0.7905
II Four-stage ResNet50-based Transfer learning 80 0.7855
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5. Conclusions

In this paper, potential approaches to improve the classification accuracy of skin
diseases are investigated based on deep learning. Transfer learning using off-the-shelf
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deep networks is common practice for image classification. However, the use of complete
off-the-shelf networks feels too complex and is not necessary. Multiple factors are studied
regarding the classification accuracy of skin diseases. Experiments were carried out using
the HAM10000 skin disease dataset. The results show that the choice of the network
architecture has a huge impact on accuracy. The ResNet50-based model largely outperforms
the AlexNet-based model. The model trained from scratch is much less accurate than that
using transfer learning and pretrained on the massive ImageNet database. In order to
reduce the complexity of the models, the depths of the networks were reduced, and
the two-stage model shows the best accuracy compared with the three-stage model and
the four-stage model, which suggests reducing the network depths does not necessarily
sacrifice accuracy in skin disease classification. Additionally, the use of different data
augmentation techniques actually lowers the accuracy compared with no augmentation
applied at all and should be used with caution. Furthermore, carefully choosing the
mini-batch size can also help in improving accuracy.
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