
applied
sciences

Article

SecureVision: An Open-Source User-Customizable Image
Encryption Program

Mehrdad Shahmohammadi Beni 1,2, Hiroshi Watabe 1 and Kwan Ngok Yu 2,*

����������
�������

Citation: Shahmohammadi Beni, M.;

Watabe, H.; Yu, K.N. SecureVision:

An Open-Source User-Customizable

Image Encryption Program. Appl. Sci.

2021, 11, 7915. https://doi.org/

10.3390/app11177915

Received: 11 July 2021

Accepted: 24 August 2021

Published: 27 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University,
6-3 Aoba, Aramaki, Aoba-ku, Miyagi, Sendai 980-8578, Japan; ben.sh@my.cityu.edu.hk (M.S.B.);
watabe@cyric.tohoku.ac.jp (H.W.)

2 Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
* Correspondence: peter.yu@cityu.edu.hk; Tel.: +852-3442-7812

Abstract: Data security has become indispensable, with a view to keep sensitive information confi-
dential. One important method is through image encryption, upon which features in an image would
no longer be visible. The original image with its features could only be restored upon decryption us-
ing a set of keys. There are prestigious works in the literature regarding image encryption. However,
there is a lack of easy-to-use, GUI-based, user-customizable computer programs for image encryption.
In the present work, we developed a GUI-based image encryption and decryption program with
server file transfer support, namely, SecureVision. A custom-made random number generator using
the equation of an ellipse was developed to randomly shuffle the pixel positions. SecureVision was
found to be robust, user-friendly and fast in both encryption and decryption. The program was
highly sensitive to the supplied keys, which prevented brute-force attacks. SecureVision provided
full user control, where users could modify the program modules to match their desired applications,
which was particularly desirable for pedagogical purposes in that interested parties had the freedom
to explore the concept of image encryption and decryption. SecureVision is distributed under a
GPLv3 license, which would allow everyone to use, modify and distribute the program without
any restriction.

Keywords: image encryption; data protection; open-source program; software; random numbers

1. Introduction

Data security and protection have become indispensable, with a view to keep sensi-
tive and personal information confidential. There are myriad ways to protect data, and
an important one is through encryption. Broadly speaking, encoding information from
plaintext to ciphertext format would be referred to as data encryption. This would be very
useful when storing or sending information over the network, as the ciphertext format of
the transferred information would be effectively meaningless to an unauthorized person.
The encrypted data could then be decrypted to view the plaintext (i.e., original contents)
by an authorized user.

Through this concept, one can encrypt images to protect their contents. One main
and important application of image encryption is in the field of medical imaging. In fact,
the popularity of digital medical imaging [1–3] has rendered patients’ confidential images
at risk, so it is well-justified to encrypt images with algorithms which are difficult to be
deciphered by unauthorized individuals. Generally speaking, the positions and values
of pixels will be altered in an encrypted image, in which the features will no longer be
recognizable [4–9]. Only with the use of correct keys would it be possible for one to
restore the original image [10–14]. Many image encryption algorithms were developed by
previous investigators [1,15]. For example, an image encryption algorithm using Arnold
transform coupled with random strategies was proposed [16]. On another front, the block
shuffling technique was introduced [17], where the image was divided into overlapping

Appl. Sci. 2021, 11, 7915. https://doi.org/10.3390/app11177915 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6257-7735
https://doi.org/10.3390/app11177915
https://doi.org/10.3390/app11177915
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11177915
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11177915?type=check_update&version=1

Appl. Sci. 2021, 11, 7915 2 of 16

blocks which were then shuffled to encrypt the image. In another study [18], an interesting
approach using a skew-tent chaotic map was used for image encryption, without the need
of changing the pixel information. The pixel bit method based on the chaotic map was
previously investigated [19], which used a single chaos map to evenly distribute the pixel
values from 0 to 255. The algorithm was found promising in terms of large key space
and hiding ability. In another study, Alawida et al. [20] introduced an enhancement to
the tent map by hybridizing it with the deterministic finite state machine, which aimed to
maximize the diffusion and confusion properties of the encryption technique. The random
scrambling of pixel data through position shuffling was also studied [21], and the results
were found promising. Recently, Liang et al. [22] used the elliptic curve cryptography
(ECC) to develop a public key image encryption method, which was shown to be highly
secured against statistical analysis attacks. In another recent study [23], an improved AES
algorithm based on the use of synchronized dynamic keys was introduced. Conventional
AES cryptosystems used a static key that should be kept private. Upon introducing the
synchronization concept, a dynamic and random key would replace the traditional static
key, which significantly enhanced the security of encrypted images. Li et al. [24] introduced
a novel chaos-based image encryption method through the use of DNA-encoding and
plaintext permutations. This work proposed an interesting concept in which the plain
image was encoded into a nucleotide sequence. The authors demonstrated an assuring
security performance of their proposed method that could enhance the digital image
security. Apart from these studies, various other methods were proposed, and interested
readers are referred to References [25–27] and references therein for more information.
Many conventional encryption techniques such as the AES algorithm are very useful.
For example, Reddy and Rao developed a GUI-based image encryption program on the
secured TFTP protocol and employed the AES algorithm for encryption [28]. However,
many of these techniques are sophisticated, which presents a challenge for students and
young researchers in the field. The open-source program described in this manuscript used
custom-built modules, so the users would not be restricted to conventional methods and
algorithms and could focus on exploring and experimenting with the concept of image
encryption, which presents an advantage from the pedagogical perspective.

Considering the importance of data protection and security, it is pertinent to have a
versatile and easy-to-use tool that can encrypt and decrypt images in a secured manner.
In addition, it would also be beneficial to have a highly customizable program which
allows users to modify the program modules. To the best of our knowledge, there are
currently no image encryption tools that provide such full control, robustness, stability
and ease of use. In the present work, a versatile open-source computer program for image
encryption, named SecureVision, was developed. The present computer program gives full
control to users in all encryption and decryption steps. This also provides an additional
advantage from the pedagogical point of view. One main advantage of the present work is
its simplicity when compared to Salsa20 or ChaCha stream ciphers, which could hopefully
ease the challenging tasks of teaching and learning image encryption and decryption.

SecureVision randomizes pixel positions and shuffles pixel values to encrypt images.
It also has server support to securely transfer encrypted images through a secured shell
(SSH) protocol to a designated server. In the present work, we introduced, discussed
and benchmarked SecureVision. The executable program, source codes and all numerical
examples presented in this paper were made available publicly under a GPLv3 license,
which would allow everyone to use, modify and distribute without any restrictions.

2. Materials and Methods
2.1. Random Number Generator

A custom-made random number generator based on the equation of ellipse was
developed. This was needed because the random sequences needed to be reproducible
upon image decryption, when the user input the correct keys used for image encryption.
In this method, the keys were actually the x-coordinate, and major and minor axes of an

Appl. Sci. 2021, 11, 7915 3 of 16

ellipse, where the decimal part of the y-coordinate would be used (see Figure 1). As shown
in Figure 1, for a specific major axis a, minor axis b and x-coordinate, there would be a
specific y-coordinate value. The equation to determine the y-coordinate value is:

y =

√
b2 − b2

a2 x2 . (1)

Figure 1. Schematic diagram showing an ellipse with major and minor axes, centered at the origin of
the Cartesian coordinate system.

The obtained y-coordinate was then multiplied with the remainder of y and deno,
which could be represented as mod(y,deno). The value of deno itself is another user-defined
key that requires the user to input.

The program changed the minor axis b of the ellipse according to the width and height
of the image loaded into the program for encryption. The decimal part of the y-coordinate
value multiplied by the modulo operation as discussed above was used as a random
number between 0 and 1. It is remarked that the absolute value was taken. To assess
the randomness of our generated results, we compared these with the built-in uniform
random number generator in FORTRAN90 programming language (see Figure 2). The
results shown in Figure 2 were for 1000 iterations. The random numbers generated from
our model were compared against those generated by FORTRAN90, and the randomness
of both sets of random numbers were similar. Moreover, we evaluated the distribution
of differences between the random numbers generated by our model and those from the
standard FORTRAN90 routine, which is shown in Figure 3.

Figure 2. Graphical comparison between random numbers generated using our model (black squares)
and the FORTRAN90 compiler (blue circles) for 1000 iterations.

Appl. Sci. 2021, 11, 7915 4 of 16

Figure 3. Distribution of differences between random numbers generated from our model and the
standard FORTRAN90 routine for 1000 iterations, with a bin size of 0.1 for the differences.

Figures 2 and 3 show that the pseudo-random numbers generated from our model and
the standard FORTRAN90 routine were similar. The peak of the distribution of differences
lay in the bin with a range from 0 to 0.1. The mean of the differences was found to be
−7.55 × 10−3, which was very close to zero.

In addition to the comparison shown in Figures 2 and 3, a more extensive benchmark-
ing using a numerical example was performed. Here, we computed the value of π by way
of Monte Carlo simulations using the two random number generators. The source code for
these Monte Carlo simulations can be found at: https://figshare.com/articles/software/
SecureVision_A_versatile_open-source_image_encryption_program_for_students/149460
54 (accessed on 21 August 2021). The variables were double-precision 8-byte real numbers
(i.e., real*8 type), and the code was written in standard FORTRAN90 and compiled using
Gfortran (GNU Fortran). From 106 iterations, the values of π were determined to be 3.1411
and 3.1416 respectively, using random number generators from our model and the standard
FORTRAN90 routine, which could be considered close. A computer routine in the C++
language, which is one of the commonly used programming languages, has been used to
provide data for comparing the randomness. From 106 iterations, the values of π were
determined to be 3.1424 and 3.1414 respectively, using random number generators from our
model and the standard C++ routine. Although the random number generator from our
model was not strictly comparable to that from the standard FORTRAN90 routine in terms
of applications, it was not a critical issue as our goal was to reproduce the randomness
upon entering the correct set of keys. However, using the random number generator from
our model for other applications which require absolute randomness is not recommended.
The frequency (monobit) randomness test of the random number generator was used in
the present work. Bits 0 and 1 are obtained for random numbers smaller and greater than
0.5, respectively. In this test, 104 blocks, each with a size of 104, were used. The p-value was
calculated as in [29]:

p-value = erfc
(
|diff|√

n
÷
√

2
)

(2)

where diff is the difference between the counted 0 and 1 bits, and n is the total number of
counts for each block. The obtained p-values and their interpretation with a significance
level of 0.01 are shown in Table 1. A p-value of 1 corresponds to a perfectly random tested
sequence, while a p-value of 0 corresponds to non-randomness [30].

https://figshare.com/articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/14946054
https://figshare.com/articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/14946054
https://figshare.com/articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/14946054

Appl. Sci. 2021, 11, 7915 5 of 16

Table 1. Results from the frequency (monobit) randomness test.

p-Value 0.0001–0.001 0.001–0.01 0.01–0.1 0.1–1.0

Count 7 83 904 8932

Results Non-random Non-random Random Random

2.2. Random Shuffling of Pixel Positions

The positions of pixels in an image were randomly shuffled using the random number
generator from our model. The width (w) and height (h) of the image were determined
from the image file, which was in a greyscale pgm format at the current stage. The random
pixel shuffling scheme is shown schematically in Figure 4.

Figure 4. Schematic diagram showing random shuffling of pixel positions using the random number
generator from our model.

The random numbers generated from our model and the standard FORTRAN90
routine were floating-point numbers between 0 and 1. Our main goal here was to shuffle
the pixels along both long and short edges of the image, so two columnar arrays for
random width and height positions should be generated by way of floating-point random
numbers (between 0 and 1) generated by the model. A 2-dimensional array named “INP”
was created with the pixel components of the original image, INP(i,j), as input elements,
where i and j are width and height positions of the original image. The generated random
numbers were used to shuffle the elements in INP to create a new array. It is remarked here
that conversion of floating-point random numbers to integers for the width and height
positions of the image could cause overlaps in the shuffled pixel positions. This issue will
be discussed and tackled in later parts of the present paper. Shuffling of pixel positions
would in effect hide the features in an image and therefore encrypt it. An example is shown
in Figure 5, where the original image has been encrypted only by way of shuffling the pixel
positions. The corresponding histograms showing the distribution of greyscale values of
the pixels are also shown, in which the x-axis represents greyscale values ranging from
0 (black) to 255 (white). The features in the original image could no longer be identified
upon random shuffling of pixel positions, and could only be restored upon decryption
using the set of keys employed for the encryption. The random number generator from
our model handled the decryption and generated the same set of random numbers for the
same set of keys. The possibility of a brute-force attack to decipher the private keys by an
unauthorized user would be reduced by employing longer keys during encryption, which
would in turn enhance the security of the encrypted images.

Appl. Sci. 2021, 11, 7915 6 of 16

Figure 5. Original and encrypted images with their respective histograms showing the distribution
of greyscale values of pixels. The x-axis in the histograms represents greyscale values ranging from 0
(black) to 255 (white).

A descriptive algorithm that describes part of the encryption method employed in the
present work is shown below, Algorithm 1.

Algorithm 1 Random Pixel Shuffling

1. Initialize the variables.
2. Read image size, width (w) and height (h).
3. Read the private keys: x, a, b (see Equation (1)), deno, izmax, delta, A (see Equation (3)).
4. Allocate 2 × 2 array, INP.
5. Read image components into INP.
6. Calculate the y-coordinate of ellipse based on private keys
7. Calculate modulo of the y-coordinate, deno.
8. Multiply the y value with the remainder of the division
9. Calculate the positive decimal value from step 8, obtain random number (z).
10. allocate two 2 × 2 arrays containing horizontal (pw) and vertical (ph) image coordinates
11. convert z into image coordinates and read into pw and ph.
12. Allocate 2 × 2 array, INPC.
13. shuffle the image pixels based on pw and ph.
14. store the shuffled pixel values in INPC array.
15. write out INPC into an image file.
16. deno + delta, then n = n + 1.
17. if (n < izmax), go to step 6, if (n > izmax), then terminate, maximum iterations (izmax) reached.

2.3. Shuffling of Pixel Values

The pixel values would remain unchanged if only the pixel positions of an image
were shuffled (see Figure 5). In other words, the histograms of the original and encrypted
image would look almost identical, as shown in Figure 5. This was undesirable for image
encryption, as an unauthorized user could reconstruct the original image using the data
from the histogram. To avoid this, the histogram of the encrypted image should either be
very different from that of the original image or in ideal cases, be uniform and flat.

Appl. Sci. 2021, 11, 7915 7 of 16

In the present version of our program, we shuffled the pixel values through a cosine
function that generated pixel values which were then summed with the pixel values in the
encrypted image. This was mathematically represented as:

P(i, j) = 255× |A× cos(k)| k = 1, 2, . . . , w× h , (3)

where P(i,j) was an array with the same size as the encrypted image pixel array and A was
a user-defined variable that controlled the amplitude of the cosine function. The absolute
value of the product of the cosine function with A was then multiplied by 255 (i.e., the
largest pixel value in a greyscale image). In fact, as the present computer code is open-
source, users can experiment with different functions and variables to obtain their desired
level of encryption. We examined histograms of encrypted images for three different A
values, as shown in Figure 6. It could be noticed that the histograms were no longer similar
to the histogram of the original image shown in Figure 5. Therefore, the proposed pixel
value shuffling method worked satisfactorily.

Figure 6. Original and encrypted images with their respective histograms showing the distribution
of greyscale values of pixels. The x-axis in the histograms represents greyscale values ranging from 0
(black) to 255 (white).

3. Results and Discussion
3.1. Decryption and Merging

Decryption of the encrypted images should be relatively simple, considering that the
same set of keys used for encryption should be presented to the program. In fact, the
decryption step essentially returned the shuffled pixels back to their original positions and
restored their original values. However, as mentioned above, due to changes between
floating-point and integer variables, as well as random position shuffling, there could be
pixel overlaps during encryption. This pixel overlap led to a loss of data in some parts of
the encrypted image, which subsequently caused a loss of pixels in the restored image.
For example, decryption of the image shown in Figure 6 with A = 1.0 is shown in Figure 7,
where loss of pixels can be clearly seen.

Appl. Sci. 2021, 11, 7915 8 of 16

Figure 7. Restored image after decryption of the image shown in Figure 6 with A = 1.0. The black
lines in the image represent pixel loss regions.

To tackle this problem, we developed a module in our program that performed multi-
layer merging of decrypted images with different pixel offsets. In this module, multiple
encrypted images were produced with different deno and b values (see Section 2), which
led to small offsets for the shuffled pixel positions. The offset value was defined by the
user, which generated a small range of variations in the random numbers so that those
missing pixel positions could be reconstructed when different images with different offsets
were merged together. The offset value was one of the keys for image encryption and
decryption. The evolution of decryption and multi-layer merging is shown in Figure 8,
which demonstrates that our program can successfully decrypt and recover the original
image (see Figure 5 for the original image).

Figure 8. Evolution of image decryption with multi-layer merging. The associated histogram
showing the distribution of greyscale values of pixels for each decrypted image is also shown. The
x-axis in the histograms represents greyscale values ranging from 0 (black) to 255 (white).

Appl. Sci. 2021, 11, 7915 9 of 16

The requirement of the set of keys as well as the multiple encrypted image layers
to fully recover the original image in fact added an extra layer of security to the current
method. The multiple encrypted images could effectively be treated as public keys, while
the values used by the user to encrypt the image could be treated as private keys.

3.2. Graphical User Interface

A graphical user interface (GUI) was developed for the present computer program,
which facilitated users to encrypt, decrypt and transfer their images in a very efficient
and easy-to-use manner. The GUI implementation of any software leads to a user-friendly
working interface. The GUI can be broken down into three main sections, namely: (1) en-
cryption, (2) decryption and (3) transfer to server. A screenshot of the developed GUI is
shown in Figure 9.

Figure 9. The developed graphical user interface (GUI) for encryption and decryption images, and
for data transfer to server.

The encryption part of the program took eight (8) user inputs, namely, (1) filename of
the image that needed to be encrypted, (2) key 1, which was the x value for the random
number generator, (3) key 2, which was value of a for the random number generator, (4) key
3, which was value of b for the random number generator, (5) key 4, which was the value
of deno for the random number generator, (6) iteration number for multi-layer merging,
(7) delta value for pixel offset and (8) coefficient, which was the value of A in Equation (2)
for histogram shuffling. The GUI read the user inputs and executed the encoder program
to encrypt the images with the user input keys.

The decryption part of the program read the file which stored the user parameters for
encryption, with the filename (key name) specified by the user. In the current version of the
program, the key file is an ASCII data file with the “.dat” extension. This key file could be
further encrypted with standard encryption techniques and software such as GNU Privacy
Guard (commonly known as GPG) [31].

The last section of the GUI program concerned transfers of files, which employed
the secured file transfer protocol (through SSH connection) to copy the encrypted images
to a server or computer. The user was required to input the username, server IP address
and a directory in their home user folder. The Microsoft Windows version of our pro-
gram employed the PSCP protocol to transfer the encrypted images to the server. This
automatic function would be very useful for quick and secured file transfer to (1) backup
servers for further data protection or (2) servers for sharing data in a secured manner with
authorized users.

Appl. Sci. 2021, 11, 7915 10 of 16

3.3. Examples and Testing

To extensively check the present program, we performed a number of tests us-
ing images with different sizes and resolutions. Five (5) example images were tested,
each with different features and scenery. The original, encrypted and decrypted im-
ages are shown in Figures 10–14. In addition, the original, encrypted and decrypted
images with the key values that were used in the present program can be downloaded
from: https://figshare.com/articles/software/SecureVision_A_versatile_open-source_
image_encryption_program_for_students/14946054 (accessed on 21 August 2021).

Figure 10. A 960 × 1280 photograph example used for testing the present program. Original,
encrypted and decrypted images are shown.

Figure 11. A 1280 × 960 photograph example used for testing the present program. Original,
encrypted and decrypted images are shown.

Figure 12. A 960 × 1280 photograph example used for testing the present program. Original,
encrypted and decrypted images are shown.

https://figshare.com/articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/14946054
https://figshare.com/articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/14946054

Appl. Sci. 2021, 11, 7915 11 of 16

Figure 13. A 1280 × 960 photograph example used for testing the present program. Original,
encrypted and decrypted images are shown.

Figure 14. A 714 × 715 QR code image example used for testing the present program. Original,
encrypted and decrypted images are shown (The QR code was generated on 3 July 2021 that directed
to the main website of the City University of Hong Kong).

Figures 10–14 show that the present program can satisfactorily encrypt and decrypt
images. There were no significant losses of pixels or resolution in the decrypted images.
The QR code example shown in Figure 14 demonstrates that the present program can fulfill
stringent decryption requirements, since the restored QR code would not have worked in
case of incorrect pixel positions or significant pixel losses.

A comparative analysis between image encryption and decryption using our model
and those using previously developed methods has been performed. The results from the
previous works of Ye [19] and Hua et al. [1] were used in this comparison. The method
proposed by Ye [19] was based on pixel scrambling based on the chaotic map, while
Hua et al. [1] employed high-speed scrambling and pixel adaptive diffusion to encrypt
images. Comparisons between their results and the results from our model are shown in
Figures 15 and 16.

Figure 15. Comparison between the encrypted images from previous work of Ye [19] and our method.
The decrypted image using our method is also shown.

The encryption and decryption times for a number of images with different resolutions
are shown in Table 2. It is remarked that the reported duration is the overall time for
10 image layers (i.e., the program produces 10 encrypted images and merges these 10 image
layers during decryption).

Appl. Sci. 2021, 11, 7915 12 of 16

Figure 16. Comparison between the encrypted images from previous work of Hua et al. [1] and our
method. The histogram for every image is shown below each figure.

Table 2. Encryption and decryption times for different image resolutions (time shown is the total
time taken for 10 image layers).

Image Size Encryption Time (min:s:ms) Decryption Time (min:s:ms)

768 × 1024 00:05:53 00:07:39

1200 × 1600 00:13:42 00:17:95

2367 × 1957 00:32:56 00:43:06

2760 × 2184 00:42:67 00:56:92

3024 × 4032 01:29:20 02:00:32

Comparisons of some features (key space, GUI, speed and programming language) of
techniques used in selected previous investigations and in the present work are shown in
Table 3.

Table 3. Comparisons of some features (key space, GUI, speed and programming language) of
techniques used in selected previous investigations and in the present work.

Ref. No. Technique Key Space GUI Speed Programming
Language

[32] Bitplane decomposition
and Chaotic maps 0.25 × 1064 No Low Matlab

[30] Permutation and
interrelated chaos 10108 No Low -

[33] Dynamic random
growth technique >1096 No Moderate C++

[34] Swapping-based
confusion approach 0.18 × 1060 No Good C

[35] Arnold map >2100 No Moderate Matlab

[36] Logistic mapping 10112 No Moderate Matab

[19]
Scrambling encryption

algorithm based on
chaos map

>2100 No Moderate Matab

[28] AES on secured TFTP
protocol >2128 Yes Moderate Python

Our work Random pixel shuffling >10100 Yes Good Fortran

Appl. Sci. 2021, 11, 7915 13 of 16

3.4. Decryption Sensitivity to Keys

To ascertain the security provided by the present program, we assessed the resilience
of the method against brute-force attack by assessing the sensitivity of the program to
the keys supplied to the decryption module. For this assessment, we assumed all the key
values were obtained correctly through a brute-force attack, except one single key value
which slightly deviated from the correct value. The images in Figures 10 and 14 were used
as examples and the decrypted images are shown in Figures 17 and 18, respectively. It
was shown that even a slight deviation in a single key value would result in a total loss of
features in the decrypted image, which demonstrated the resilience of the method against
brute-force attack and ensured security of confidential images.

Figure 17. Decryption of encrypted image in Figure 10 using correct and wrong keys. The key values
used for each decrypted image are shown above the image, with the wrong key value shown in red.

Figure 18. Decryption of encrypted image in Figure 14 using correct and wrong keys. The key values
used for each decrypted image are shown above the image, with the wrong key value shown in red.

4. Conclusions

In present work, we developed an open-source image encryption program named
“SecureVision”. The program can encrypt and decrypt black and white images. The
developed GUI allows users to easily interact with the program and transfer data through

Appl. Sci. 2021, 11, 7915 14 of 16

a secured shell connection to a designated server. Random shuffling of pixel positions was
controlled by a random number generator with randomness controlled by user-defined
keys. Upon supplying the same keys to the decryption module of the program, the shuffled
pixels were restored to their original positions. In addition, the pixel values were shuffled
during encryption to further enhance the security. The present program was found to
be sensitive to the keys supplied by the user, which prevented brute-force attack by an
unauthorized user. The open-source nature of the program would allow users to modify
the code for their desired applications. In addition, the program would be a useful tool for
students and those parties who are interested in learning image encryption and decryption.
The obtained results were in good agreement with those obtained in previously published
studies. The randomness of pixel shuffling was statistically verified. The time taken for
encryption and decryption confirmed the good speed of the present method. The present
program and the introduced method were also valuable from the pedagogical point of view.
We aim to extend the present program to encrypt and decrypt color images through similar
shuffling of pixel positions and values (RBG components) in future works. Furthermore,
more server support features will be implemented so that users would have more control
in their data transfer and backup. In addition, we would like to investigate the possibility
of parallel implementation of the present method using MPI (Message Passing Interface)
or CUDA (Compute Unified Device Architecture).

Author Contributions: Conceptualization, M.S.B.; methodology, M.S.B. and K.N.Y.; software, M.S.B.;
validation, M.S.B. and K.N.Y.; formal analysis, M.S.B.; investigation, M.S.B.; resources, M.S.B., H.W.
and K.N.Y.; data curation, M.S.B.; writing—original draft preparation, M.S.B.; writing—review and
editing, H.W. and K.N.Y.; visualization, M.S.B.; supervision, K.N.Y.; project administration, H.W.
and K.N.Y.; funding acquisition, H.W. and K.N.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Special Grant for the Development of Virtual Teaching
and Learning (VTL), No. 6430120, from the University Grants Committee of Hong Kong SAR, and by
Grants-in-Aid for Scientific Research, No. 20H03615, from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Japanese Government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data supporting reported results can be found at https://figshare.com/
articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/
14946054 (accessed on 21 August 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

AES Advanced Encryption Standard
ASCII American Standard Code for Information Interchange
CUDA Compute Unified Device Architecture
GPG GNU Privacy Guard
GUI Graphical User Interface
IP Internet Protocol
MPI Message Passing Interface
PSCP PuTTY Secure Copy Client
QR code Quick Response code
RGB Red Green Blue
SSH Secure Shell
a Major axis of ellipse
b Minor axis of ellipse

https://figshare.com/articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/14946054
https://figshare.com/articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/14946054
https://figshare.com/articles/software/SecureVision_A_versatile_open-source_image_encryption_program_for_students/14946054

Appl. Sci. 2021, 11, 7915 15 of 16

x Cartesian x-coordinate
y Cartesian y-coordinate
deno Denominator for modulo operation
w Image width
h Image height
INP(i,j) Original image element array
A Cosine function amplitude controller

References
1. Hua, Z.; Yi, S.; Zhou, Y. Medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 2018,

144, 134–144. [CrossRef]
2. Zinger, S.; Ruijters, D.; Do, L.; de With, P.H.N. View interpolation for medical images on autostereoscopic displays. IEEE Trans.

Circuits Syst. Video Technol. 2011, 22, 128–137. [CrossRef]
3. Lacoste, C.; Lim, J.H.; Chevallet, J.P.; Le, D.T. Medical-image retrieval based on knowledge-assisted text and image indexing.

IEEE Trans. Circuits Syst. Video Technol. 2007, 17, 889–900. [CrossRef]
4. Chai, X.; Chen, Y.; Broyde, L. A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng.

2017, 88, 197–213. [CrossRef]
5. Zhang, Y.Q.; Wang, X.Y. A new image encryption algorithm based on non-adjacent coupled map lattices. Appl. Soft Comput. 2015,

26, 10–20. [CrossRef]
6. Ping, P.; Xu, F.; Wang, Z.J. Image encryption based on non-affine and balanced cellular automata. Signal Process. 2014, 105,

419–429. [CrossRef]
7. Chai, X.; Gan, Z.; Chen, Y.; Zhang, Y. A visually secure image encryption scheme based on compressive sensing. Signal Process.

2017, 134, 35–51. [CrossRef]
8. Li, X.W.; Lee, I.K. Modified computational integral imaging-based double image encryption using fractional Fourier transform.

Opt. Lasers Eng. 2015, 66, 112–121. [CrossRef]
9. Liu, H.; Wang, X. Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 2012, 12, 1457–1466.

[CrossRef]
10. Gong, L.; Liu, X.; Zheng, F.; Zhou, N. Flexible multiple-image encryption algorithm based on log-polar transform and double

random phase encoding technique. J. Mod. Opt. 2013, 60, 1074–1082. [CrossRef]
11. Wang, X.Y.; Zhang, Y.Q.; Bao, X.M. A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng.

2015, 73, 53–61. [CrossRef]
12. Zhou, N.; Hu, Y.; Gong, L.; Li, G. Quantum image encryption scheme with iterative generalized Arnold transforms and quantum

image cycle shift operations. Quantum Inf. Process. 2017, 16, 164. [CrossRef]
13. Zhang, Y.Q.; Wang, X.Y. A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf. Sci.

2014, 273, 329–351. [CrossRef]
14. Hua, Z.; Zhou, Y.; Pun, C.M.; Chen, C.P. 2D Sine Logistic modulation map for image encryption. Inf. Sci. 2015, 297, 80–94.

[CrossRef]
15. Tang, Z.; Yang, Y.; Xu, S.; Yu, C.; Zhang, X. Image encryption with double spiral scans and chaotic maps. Secur. Commun. Netw.

2019, 2019, 8694678. [CrossRef]
16. Tang, Z.; Zhang, X. Secure image encryption without size limitation using Arnold transform and random strategies. J. Multimed.

2011, 6, 202. [CrossRef]
17. Tang, Z.; Zhang, X.; Lan, W. Efficient image encryption with block shuffling and chaotic map. Multimed. Tools Appl. 2015, 74,

5429–5448. [CrossRef]
18. Zhang, G.; Liu, Q. A novel image encryption method based on total shuffling scheme. Opt. Commun. 2011, 284, 2775–2780.

[CrossRef]
19. Ye, G. Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recognit. Lett. 2010, 31, 347–354. [CrossRef]
20. Alawida, M.; Teh, J.S.; Samsudin, A. An image encryption scheme based on hybridizing digital chaos and finite state machine.

Signal Process. 2019, 164, 249–266. [CrossRef]
21. Prasad, M.; Sudha, K.L. Chaos image encryption using pixel shuffling. CCSEA 2011, 1, 169–179. [CrossRef]
22. Liang, H.; Zhang, G.; Hou, W.; Huang, P.; Liu, B.; Li, S. A Novel Asymmetric Hyperchaotic Image Encryption Scheme Based on

Elliptic Curve Cryptography. Appl. Sci. 2021, 11, 5691. [CrossRef]
23. Lin, C.H.; Hu, G.H.; Chan, C.Y.; Yan, J.J. Chaos-Based Synchronized Dynamic Keys and Their Application to Image Encryption

with an Improved AES Algorithm. Appl. Sci. 2021, 11, 1329. [CrossRef]
24. Li, Z.; Peng, C.; Tan, W.; Li, L. A novel chaos-based image encryption scheme by using randomly DNA encode and plaintext

related permutation. Appl. Sci. 2020, 10, 7469. [CrossRef]
25. Cao, X.; Huang, Y.; Wu, H.T.; Cheung, Y.M. Content and privacy protection in JPEG images by reversible visual transformation.

Appl. Sci. 2020, 10, 6776. [CrossRef]
26. Wu, H.; Wang, J.; Zhang, Z.; Chen, X.; Zhu, Z. A Multi-Image Encryption with Super-Lager-Capacity Based on Spherical

Diffraction and Filtering Diffusion. Appl. Sci. 2020, 10, 5691. [CrossRef]

http://doi.org/10.1016/j.sigpro.2017.10.004
http://doi.org/10.1109/TCSVT.2011.2158362
http://doi.org/10.1109/TCSVT.2007.897114
http://doi.org/10.1016/j.optlaseng.2016.08.009
http://doi.org/10.1016/j.asoc.2014.09.039
http://doi.org/10.1016/j.sigpro.2014.06.020
http://doi.org/10.1016/j.sigpro.2016.11.016
http://doi.org/10.1016/j.optlaseng.2014.08.016
http://doi.org/10.1016/j.asoc.2012.01.016
http://doi.org/10.1080/09500340.2013.831139
http://doi.org/10.1016/j.optlaseng.2015.03.022
http://doi.org/10.1007/s11128-017-1612-0
http://doi.org/10.1016/j.ins.2014.02.156
http://doi.org/10.1016/j.ins.2014.11.018
http://doi.org/10.1155/2019/8694678
http://doi.org/10.4304/jmm.6.2.202-206
http://doi.org/10.1007/s11042-014-1861-1
http://doi.org/10.1016/j.optcom.2011.02.039
http://doi.org/10.1016/j.patrec.2009.11.008
http://doi.org/10.1016/j.sigpro.2019.06.013
http://doi.org/10.5121/csit.2011.1217
http://doi.org/10.3390/app11125691
http://doi.org/10.3390/app11031329
http://doi.org/10.3390/app10217469
http://doi.org/10.3390/app10196776
http://doi.org/10.3390/app10165691

Appl. Sci. 2021, 11, 7915 16 of 16

27. Saraiva, D.A.; Leithardt, V.R.; de Paula, D.; Sales Mendes, A.; González, G.V.; Crocker, P. Prisec: Comparison of symmetric key
algorithms for IoT devices. Sensors 2019, 19, 4312. [CrossRef]

28. Reddy, K.R.; Rao, C.M. GUI implementation of image encryption and decryption using Open CV-Python script on secured TFTP
protocol. In Proceedings of the AIP Conference, Secunderabad, India, 22–23 December 2017; AIP Publishing LLC: College Park,
MD, USA, 2018; Volume 1952, p. 020074. [CrossRef]

29. Zaman, J.K.; Ghosh, R. A review study of NIST statistical test suite: Development of an indigenous computer package. arXiv
2012, arXiv:1208.5740.

30. Wang, X.Y.; Zhang, H.L. A color image encryption with heterogeneous bit-permutation and correlated chaos. Opt. Commun. 2015,
342, 51–60. [CrossRef]

31. The GNU Privacy Guard. Available online: https://gnupg.org/ (accessed on 5 July 2021).
32. Xu, L.; Li, Z.; Li, J.; Hua, W. A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 2016, 78, 17–25.

[CrossRef]
33. Wang, X.Y.; Liu, L.T.; Zhang, Y.Q. A novel chaotic block image encryption algorithm based on dynamic random growth technique.

Opt. Lasers Eng. 2015, 66, 10–18. [CrossRef]
34. Chen, J.X.; Zhu, Z.L.; Fu, C.; Yu, H. A fast image encryption scheme with a novel pixel swapping-based confusion approach.

Nonlinear Dyn. 2014, 77, 1191–1207. [CrossRef]
35. Ye, G.D.; Wong, K.W. An efficient chaotic image encryption algorithm based on a generalized Arnold map. Nonlinear Dyn. 2012,

69, 2079–2087. [CrossRef]
36. Sethi, N.; Sharma, D. A novel method of image encryption using logistic mapping. Int. J. Comput. Sci. Eng. 2012, 1, 115–119.

http://doi.org/10.3390/s19194312
http://doi.org/10.1063/1.5032036
http://doi.org/10.1016/j.optcom.2014.12.043
https://gnupg.org/
http://doi.org/10.1016/j.optlaseng.2015.09.007
http://doi.org/10.1016/j.optlaseng.2014.08.005
http://doi.org/10.1007/s11071-014-1370-9
http://doi.org/10.1007/s11071-012-0409-z

	Introduction
	Materials and Methods
	Random Number Generator
	Random Shuffling of Pixel Positions
	Shuffling of Pixel Values

	Results and Discussion
	Decryption and Merging
	Graphical User Interface
	Examples and Testing
	Decryption Sensitivity to Keys

	Conclusions
	References

