
applied
sciences

Article

Automated Conditional Statements Checking for Complete
Natural Language Requirements Specification

Chun Liu 1,2 , Zhengyi Zhao 1, Lei Zhang 3 and Zheng Li 1,*

����������
�������

Citation: Liu, C.; Zhao, Z.; Zhang, Z.;

Li, Z. Automated Conditional

Statements Checking for Complete

Natural Language Requirements

Specification. Appl. Sci. 2021, 11, 7892.

https://doi.org/10.3390/app11177892

Academic Editor: Alberto Rodrigues

Da Silva

Received: 27 July 2021

Accepted: 21 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer and Information Engineering, Henan University, Kaifeng 475000, China;
liuchun@henu.edu.cn (C.L.); zzy@henu.edu.cn (Z.Z.)

2 Henan Industrial Technology Academy of Spatio-Temporal Big Data, Henan University,
Zhengzhou 450046, China

3 Institute of Spacecraft System Engineering, Beijing 100094, China; xxzhangleixx@126.com
* Correspondence: lizheng@henu.edu.cn

Abstract: Defects such as the duality and the incompleteness in natural language software require-
ments specification have a significant impact on the success of software projects. By now, many
approaches have been proposed to assist requirements analysts to identify these defects. Different
from these approaches, this paper focuses on the requirements incompleteness implied by the condi-
tional statements, and proposes a sentence embedding- and antonym-based approach for detecting
the requirements incompleteness. The basic idea is that when one condition is stated, its opposite
condition should also be there. Otherwise, the requirements specification is incomplete. Based on
the state-of-the-art machine learning and natural language processing techniques, the proposed
approach first extracts the conditional sentences from the requirements specification, and elicits the
conditional statements which contain one or more conditional expressions. Then, the conditional
statements are clustered using the sentence embedding technique. The conditional statements in
each cluster are further analyzed to detect the potential incompleteness by using negative particles
and antonyms. A benchmark dataset from an aerospace requirements specification has been used to
validate the proposed approach. The experimental results have shown that the recall of the proposed
approach reaches 68.75%, and the F1-measure (F1) 52.38%.

Keywords: software requirements specification; requirements quality; requirements analysis; natural
language; incompleteness detection

1. Introduction

It has been shown that the quality of software requirements specification has a signifi-
cant impact on the success of software projects [1]. The duality, repetition, and incomplete-
ness in a software requirements specification (SRS, or just “requirements specification”)
which is often written in natural language may lead to the failure of projects or affect the
dependability of the software systems developed.

To ensure the quality of software requirements specification, researchers have pro-
posed non-natural language approaches to specify software requirements, for example,
the formal languages of Z [2] and Petri Nets [3], the graphical languages of UML [4,5]
and SysML [6], the scenario-based [7] and the table-based [8] approaches. However, it is
not easy to apply these non-natural language approaches in practice. On the one hand,
requirements analysts and stakeholders need to familiarize themselves with these ap-
proaches beforehand. On the other hand, since natural language is what the requirements
analysts and the stakeholders use when thinking and communicating, applying these
non-natural language approaches requires analysts and stakeholders to switch between
these non-natural languages and the natural language. This makes it more difficult and
inconvenient to apply these approaches, and leads to the result that most software require-
ments specifications are still written in natural language in practice. The investigation of

Appl. Sci. 2021, 11, 7892. https://doi.org/10.3390/app11177892 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9055-8221
https://doi.org/10.3390/app11177892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11177892
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11177892?type=check_update&version=2

Appl. Sci. 2021, 11, 7892 2 of 14

Luisa et al. [9] has shown that 95% of software requirements in industry are described in
natural language or controlled natural language [10,11]. In this case, it is of great signifi-
cance for the methods which can assist requirements analysts to identify the defects in the
natural language requirements.

By now, many approaches have been proposed for this purpose by different re-
searchers. For example, Chantree et al. [12] proposed methods to discover the presence
of duality in natural language requirements; Gervasi et al. [13] proposed the method
which transforms the requirements into propositional logic to discover potential conflicts in
natural language requirements; Arora et al. [14,15] presented a method to detect whether
the requirements described in natural language conform to the qualified templates with
the natural language processing techniques; Misra et al. [16] proposed a series of methods
to detect terminological inconsistencies in the natural language requirements. Due to the
arbitrariness that requirements analysts use the natural language to describe software
requirements, existing methods tend to detect some specific types of requirement defects.

In this paper, we focus on detecting the requirements incompleteness implied by
the conditional statements. In domains such as aerospace, many software requirements
are often expressed in terms of conditional statements. For example, one requirement
expressed in terms of a conditional statement is: “When there are GPS events to report,
the communication system shall send a detailed report with event parameters to the
ground station.” For this requirement, the analysts need to specify at least one requirement
about what actions to be adopted when there are no GPS events to report. Otherwise, the
requirements specification is incomplete. This could lead to the result that the ground
station cannot judge the status of the communication system and the aircraft.

This paper proposes a sentence embedding- and antonyms-based approach for detect-
ing the requirements incompleteness implied by the conditional statements. The basic idea
is that when one condition is stated, its opposite condition should also be there. Otherwise,
the requirements specification is incomplete. Based on state-of-the-art machine learning
and natural language processing techniques, the proposed approach detects the potential
requirements incompleteness by clustering the conditional statements and finding the op-
posite of the words in the clusters. Firstly, the conditional sentences are extracted from the
natural language requirements specification. The sentences are parsed to elicit conditional
statements containing one or more conditional expressions. Then, the conditional state-
ments are clustered based on the sentence embedding technique. Finally, the conditional
statements in each cluster are analyzed to detect the potential incompleteness by using the
negative particles and the antonyms. A benchmark dataset from an aerospace requirements
specification has been used to validate the proposed approach. The experimental results
have shown its effectiveness in terms of precision, recall and F1.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction
to the related works. Section 3 describes the proposed approach in detail. Section 4 presents
the evaluation of the proposed method and provides a discussion of the experimental
results. Finally, Section 5 summarizes the paper and the future work.

2. Related Work

There are already many works that present different methods to detect defects in
the natural language requirements specification. In this section, we will give a brief
introduction to these works.

To find missing and conflicting requirements, Moitra et al. [17] described a tool
ASSERT™ which was developed by General Electric Company. This tool requires the
analysts to define the entities and variables involved in the requirements description using
Semantic Application Design Language (SADL) and then automatically validate them
using the ACL2 formalism. Filipovikj et al. [18] proposed the SMT formal approach to
detect requirement conflicts. This approach relies on a template-based tool [19] to convert
requirements described in natural language into a form acceptable to the formal approach,

Appl. Sci. 2021, 11, 7892 3 of 14

and the conversion process requires human intervention to determine how to format the
requirements based on the templates.

Gervasi and Zowghi et al. [13] converted requirements described in natural language
into different propositions by defining a set of rules for each of the conditions and actions
in the requirement descriptions based on propositional logic and then reasoned to identify
potentially conflicting requirements. Kim et al. [20] also have proposed a method for
requirements conflict detection. This method consists of two main steps. The first step is
to discover potential syntactically conflicting requirements by defining some rules. The
second step is to analyze whether there is a conflict through some heuristic questions.

Moser et al. [21] used ontology-based reasoning to discover requirement conflicts.
It requires the prior establishment of an ontology to discover some common words and
the relationships between words, and uses the relationship in the ontology to reason the
conflicts between the requirements. To find potential requirements conflicts between stake-
holders and subsystems, an analytical framework was introduced by Viana et al. [22]. This
analytical framework focuses on discovering conflicts in resource utilization by using
resources as a link. It requires to first define a resource ontology, then discovers over-
lapping requirements, and finally detects conflicts between requirements. However, this
analysis framework mainly detects dynamic conflicts during the operation of the soft-
ware. Arora et al. [14,15] proposed an approach that is based on the part-of-speech of
each phrase in the requirements, to check whether the requirement descriptions follow
the Rupp template [23] and the EARS template [24,25]. The method’s key is to determine
whether the requirement sentences have “noun + verb” collocation. If the “noun + verb”
collocation is present, the sentence is considered reasonable. It then goes on to judge the
other parts, including conditionals, etc. The authors mentioned that their method cannot
detect semantic inconsistencies.

Misra et al. [16] focused on the problem of inconsistency of phrases in software re-
quirements described in natural language. They proposed different findings and solutions
for different cases, such as the inconsistency between phrases and abbreviations of phrases
and semantically similar phrases to describe the same object. Hui Yang et al. [26] focused
on metaphorical ambiguity. A heuristic approach is used to capture information about a
particular text interpretation. Then, a classifier is constructed to identify sentences that
contain ambiguities, and the classifier is used to alert requirement writers to texts that carry
the risk of misinterpretation. Chantree et al. [12] created a dataset of ambiguous phrases
from a requirements corpus and used heuristics to alert authors to the potential dangerous
ambiguities. Ferrari et al. [27] proposed an approach for detecting pragmatic ambiguity in
requirements specification. The method extracts different knowledge graphs to analyze
each requirement sentence looking for potential ambiguities.

Besides these various methods, a number of software tools have been also developed
for detecting the defects from natural language requirements specification according to
the requirements specification guidelines such as EARS and INCOSE [28–31]. For exam-
ple, RAT [32] implements an intellisense way of writing that can detect inconsistencies,
ambiguity, and duplicates in requirements documents. Through detection, enumeration
and classification of all units of measure and noun phrases, QVscribe [33] verifies their
correct use and location in the requirements. It uses the EARS method to ensure that
the natural language requirements in the software requirements specification are simple
and complete. IBM RQA [34] uses the Watson natural language processing technology to
deal with escape clauses, missing units, missing tolerances, ambiguity and other issues in
requirements documents.

Unlike those detection methods mentioned above, we focus on the incompleteness
implied by the conditional statements. The proposed approach uses clustering methods
to cluster the conditional statements and find similar conditions, and then detects incom-
pleteness by identifying the opposite of the negative particles [35] or the words in an
antonyms lexicon.

Appl. Sci. 2021, 11, 7892 4 of 14

3. The Approach

In this section, we present the details of the approach. Figure 1 presents the framework
of our proposed approach. There are three phases in the proposed approach: conditional state-
ments extraction, conditional statements clustering, requirements incompleteness detection.

Figure 1. The framework of the proposed approach.

The phase of conditional statements extraction takes the natural language requirements
specification as input. Its purpose is to extract the conditional sentences and divide the
sentences into conditional statements and action statements. The conditional statements
describe one or more conditional expressions which describe the occurrence of some events,
and the action statements describe the actions that should be adopted when the conditional
statements are true. The phase of conditional statements clustering takes the conditional
statements as input. It obtains the distributed representations of the conditional statements
through embedding techniques such as Skip-Thought [36], clusters the semantically related
statements, and finds the statements describing the same events. The phase of requirements
incompleteness detection detects the potential incompleteness in each group of conditional
statements based on the negative particles and the antonyms. We detail each phase
as follows.

3.1. Conditional Statements Extraction

This phase is to extract the conditional sentences and obtain the conditional statements
of the sentences. In English, “condition” means that something else (actions) can happen
after one thing happens (event). Therefore, the conditional sentences often contain three
parts: the conditional statement, the action statement, and the subordinating conjunction,
as shown in Figure 2. The subordinating conjunctions are often the indicators of conditional
sentences. The common subordinating conjunctions include “when”, “if”, “while”, and
“where”. They are often used before the conditional statements and indicate that the
following statement is a conditional statement describing the occurrence of some events.
They can be located at the beginning of the sentences, but also can be after the action
statements in practice.

Taking the requirements specification document written in natural language as in-
put, the proposed approach first extracts the conditional sentences according to the four
subordinating conjunctions of “when”, “if”, “while”, and “where”. Once the conditional
sentences are extracted, the conditional statements are obtained by dividing the sentences
into conditional statements and action statements. After that, all the conditional statements
are further lowercased with the NLTK [37] tool.

Appl. Sci. 2021, 11, 7892 5 of 14

Figure 2. An example of a conditional sentence segmentation.

3.2. Conditional Statements Clustering

This phase clusters the conditional statements extracted. The purpose is to group the
conditional statements which refer to the same subjects. This paves the way for detecting
the requirements incompleteness implied by the conditions.

3.2.1. The Embedding-Based Clustering

To cluster the conditional statements, while keeping the original versions of these con-
ditional statements, we first process them with the following steps provided by NLTK tool:

• Tokenization: break down statements into words;
• Part of Speech (POS) tagging: label words with known lexical categories;
• Words selection: keep only the verbs, nouns, adjectives;
• Stop words removal: remove commonly used words;
• Lemmatization: make the words to general form.

After these preprocessing steps, the distributed representations of each statement
are obtained through the sentence embedding techniques such as Skip-Thought. Then,
the statements are clustered based on the clustering methods in machine learning. This
clustering process contributes to finding similar conditional statements quickly.

3.2.2. The Subject-Based Grouping

In order to further find these conditional statements which refer to the same subjects,
we group the conditional statements in one cluster according to whether they have the
same noun words. As shown in Figure 3, these noun words are often the subjects of the
conditional statements [38]. In this way, the statements in one cluster could be divided into
different groups.

Figure 3. The part-of-speech tagging of the conditional statements.

3.2.3. Compound Statement Splitting

For conditional statements (the original versions) in one group, they may be the
compound sentences which consist of several independent conditional clauses. To address
the compound statements, we split them to make that all conditional statements in one
group are simple sentences.

There are two classes of compound statements according to whether they share the
same subjects.

Appl. Sci. 2021, 11, 7892 6 of 14

• Shared subjects: It is composed of two or more independent conditional clauses con-
nected by coordinating conjunctions. However, for the second and subsequent condi-
tional clauses, the subjects are omitted;

• Non-shared subjects: It comprises two or more independent conditional clauses con-
nected by coordinating conjunctions. Each independent conditional clause has its
own subject.

Different methods are adopted to split the compound statements. We split the state-
ments by the coordinating conjunctions directly for the statements that do not share the
same subjects. At the same time, for the statements that share the same subjects, we not
only split the statements by the coordinating conjunctions, but also take the subject of the
first clause as the subject of the second and subsequent clauses.

3.3. Requirements Incompleteness Detection

Based on the grouped conditional statements, this phase detects the potential incom-
pleteness implied by the conditional statements. The basic idea is that if one condition
is stated, its opposite condition should also be stated. Thus, for example, if one positive
statement is described, the related negative statement should also be given and vice versa.
To achieve this goal, the potential incompleteness is detected by using the negative particles
and the antonyms, respectively. The detection process is shown in Figure 4. We detail the
process as follows.

Figure 4. The process of the requirements incompleteness detection.

3.3.1. The Negative Particles-Based Detection

The negative particles include “no”, “not”, “do not”, “does not”, “did not”, “don’t”,
“doesn’t”, “didn’t”. When the conditional statements contain these negative particles, they

Appl. Sci. 2021, 11, 7892 7 of 14

are expressing the negative meanings. In this case, for the completeness of the requirements,
the corresponding conditional statements without the negative particles should be also
there. Otherwise, the requirements are not complete.

Therefore, for each statement (the original version of the conditional statements which
are not preprocessed) in one group, we check whether they contain the negative particles.
If the negative particles are found, we further check whether the corresponding statements
without the negative particles are there. If the corresponding statements are found, the
statements and their corresponding statements are considered as the complementary state-
ments and the requirements implied by them are complete. Otherwise, the requirements
implied by the statements are considered as potential incomplete requirements.

3.3.2. The Antonyms-Based Detection

Besides the negative particles, an antonym lexicon is constructed and utilized for
incompleteness detection. We have built the antonym lexicon according to “The Merriam-
Webster Dictionary of Synonyms and Antonyms” [39]. A total of 326 words related to
engineering were extracted to create the antonym lexicon, and some of the antonyms are
shown in Table 1. In addition, to prevent potential errors caused by the high-frequency
words with multiple meanings such as “first” and “last”, some of the high-frequency
antonyms are eliminated.

Table 1. The antonyms in the antonym lexicon.

hide-appear
abide-violate
nadir-zenith
forbid-permit
permanent-temporary
lateral-vertical
disappear-appear
activate-failure
accurate-inaccurate
valid-invalid
accept-decline
opacity-transparent
approve-disapprove
air-ground
fasten-unfasten
abate-aggravation
equal-unequal
forward-backward
internal-external
deliver-collect
disobey-obey
gargantuan-negligible

build-destroy
enhance-alleviates
ascends-down
mutual-separate
contrary-similar
decode-encode
dismantle-construction
continue-interrupt
divestiture-restore
erasing-preserve
huddle-disperse
fall-rise
legitimate-illegitimate
hinder-unobstructed
impede-expedite
excess-lack
partial-entire
exit-entrance
track-lose
lock-unlock
empty-fill
discover-miss

complicated-regulation
approval-prohibition
mandatory-optional
mobile-immobile
interrupt-continue
incongruity-compatibility
direct-indirect
relieve-enhanced
agree-disagree
disadvantage-advantage
invalidation-efficacious
acquire-bereavement
propagate-restrain
progress-regress
fix-replace
indirect-direct
caution-indiscretion
retract-confirm
inadequacy-abundance
sporadic-frequently
horizontal-vertical
. . .

With the antonym lexicon, the proposed approach first checks whether each statement
in one group contains the negative particles. If there are no negative particles, it then
tokenizes the statement, removes the stop-words, tags the part of speech of the words,
keeps only the verbs and adjectives words, and makes lemmatization of the words. This
is because the antonym words are often the verbs and adjectives words. Subsequently,
for each word that is left, if it is in the antonym lexicon, we will find its antonym in other
statements in the same group. If its antonym is found, the requirement implied by the
statement is considered complete; otherwise, it is not.

Appl. Sci. 2021, 11, 7892 8 of 14

4. Empirical Evaluation

We evaluate our approach with a real-life case study. In this section, we present the
research questions, the study design, the results and analysis.

4.1. Research Questions(RQs)

Our evaluations aim to answer the following two questions:
RQ1: What is the optimal solution for each machine learning module?
Two machine learning modules are used in the proposed approach: sentence em-

bedding and statements clustering. For each module, we need to choose from several
alternative implementations. The purpose of RQ1 is to determine which implementation
will produce better results for each module.

RQ2: How does the performance of our approach perform?
When the implementations are selected for these machine learning modules, the

purpose of RQ2 is to observe the performance of our approach in checking the requirements
incompleteness implied by the conditions.

4.2. Study Design
4.2.1. The Datasets

To answer the research questions, we take a standard requirements statement docu-
ment about a Spacecraft as an example dataset. This document consists of thousands of
requirements. After extracting the requirements according to the keywords of “when”, “if”,
“while”, and “where”, a total of 130 conditional sentences were selected.

For this dataset of conditional sentences, two members of our research group have
been called to cluster these conditional statements according to their subjects manually.
Accordingly, these conditional statements have been divided into 75 groups. During this
process, incompleteness has been found in eight groups. Moreover, to increase the number
of cases of incompleteness, we have also randomly selected eight conditional sentences
and deleted them from the groups where they were located.

4.2.2. The Implementation

To implement the proposed approach, we used the deep learning framework of
Anaconda [40] and wrote the program using Python. The Scikit-learn [41] library is used to
provide the implementations of the clustering algorithm; the Gensim [42] library is used to
provide the implementations of the sentence embedding approaches. Table 2 shows the
versions of the tools we used.

Table 2. The versions of the tools.

Tool Versions

Anaconda 4.9.2
Python 3.8.5

Scikit-learn 0.23.2
Gensim 3.8.3
NLTK 3.5

4.2.3. The Metrics

To evaluate the effectiveness of the proposed approach, the metrics of precision, recall
and F1 are used. They are defined as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Appl. Sci. 2021, 11, 7892 9 of 14

F1 =
2 × Precision × Recall

Precision + Recall
(3)

In the definitions, TP means the number of positive samples correctly classified,
FP is the number of negative samples incorrectly labeled as positive samples, and FN
is the number of positive samples incorrectly labeled as negative samples. This means
that precision measures how many samples are correctly classified among these samples
predicted as positive samples, recall measures how many positive samples are correctly
classified, and F1 combines the values of precision and recall.

4.3. Descriptions of the Studies

To answer the research questions, several studies have been performed. The details of
each study are described below.

4.3.1. Study I: Selection of Sentence Embedding Methods

The proposed approach clusters the conditional statements to group the similar state-
ments. For this purpose, it utilizes the sentence embedding methods to obtain the dis-
tributed representations of each statement. There are several candidates for the sentence
embedding methods. This study is to compare the performance of these candidates and
select the better one for the conditional statements clustering and answer the research
question RQ1. We observe the performance of these methods through clustering the condi-
tional statements with the K-Means [43] clustering algorithm. The selected candidates for
comparison are as follows:

1. Word2vec+TF-IDF: Word2Vec [44] maps each word in the dataset into a vector, while
TF-IDF [45] is a method which can generate a score for each word. In this case, the
weighted representations of the conditional statements can be generated by combining
the approaches of Word2Vec and TF-IDF. The implementations of Word2Vec and
TF-IDF in Gensim library are used. The Word2Vec is a pre-trained model from
Google [46].

2. Doc2Vec: Doc2Vec [47] is an unsupervised algorithm that can learn a fixed-length
feature representation from sentences. The implementation of Doc2Vec in Gensim
library is used.

3. Bert: Bert [48] is an unsupervised algorithm, and a deeply bidirectional system for
pre-training NLP. The implementation of Bert in Anaconda is used.

4. Skip-Thought: Skip-Thought is an unsupervised algorithm which provides a general
distributed sentence encoder. We downloaded the source code of Skip-Thought
from GitHub [49], and used the encoder of the pre-trained model to generate the
representations of conditional statements. When using skip-thought, the required
python version is 2.7.

To evaluate the performance of above sentence embedding methods, we take the
measures of rand index (RI) [50] and mutual information (MI) which are often used for the
evaluation of the clustering algorithms. They are defined as follows:

RI =
2(a + b)
n(n− 1)

(4)

MI(U, V) =
|U|

∑
i=1

|V|

∑
j=1

∣∣Ui
⋂

Vj
∣∣

N
log

N
∣∣Ui

⋂
Vj
∣∣

|Ui|
∣∣Vj
∣∣ (5)

For rand index, the number of a in Equation (4) is the number of pairs of elements
that belong to the same cluster in both the predicted results and the manually grouped
results. In the meanwhile, the number of b is the number of pairs of elements that do not
belong to a cluster in both the predicted results and the manually grouped results. The
number of n is the number of elements to be clustered. The mutual information measures
the mutual dependence between two sets. For the definition of Equation (5), Ui is the i-th

Appl. Sci. 2021, 11, 7892 10 of 14

cluster generated by the clustering algorithm, and Vj is the j-th cluster of the manually
grouped results. The values of both measures are in the range of [0, 1]. The larger, the
better.

4.3.2. Study II: Selection of Clustering Methods

There are also many candidate methods for the conditional statements clustering. In
this study, we will compare several clustering methods with the same sentence embedding
method and observe their performance. This study is to answer the research question RQ1
by selecting one suitable method for the conditional statements clustering. The selected
clustering methods used for the comparison are as follows.

1. K-Means: K-Means is the commonly used clustering algorithm based on Euclidean
distance. We use the K-Means in the Scikit-learn. The number of clusters is set to 12
according to the sum of the squared errors (SSE).

2. Spectral Clustering: spectral clustering [51] is based on graph theory. We use the
implementation of spectral clustering provided by Scikit-learn. The number of clusters
is also set to 12.

3. Agglomerative Clustering: agglomerative clustering [52] is a hierarchical clustering
approach. We use the implementation of agglomerative clustering provided by Scikit-
learn. The number of clusters is also set to 12.

4. DBSCAN: DBSCAN [53] is a density-based clustering approach. The number of
clusters is not required for clustering. We use the implementation of DBSCAN
provided by Scikit-learn.

5. Affinity Propagation: affinity propagation [54] is a graph-based clustering method,
which does not require specifying the number of clusters for clustering. We use the
implementation of affinity propagation provided by Scikit-learn.

To evaluate the performance of the clustering algorithms, the metrics of rand index
and mutual information are also used.

4.3.3. Study III: The Performance of the Proposed Approach

Based on the results of the above studies, the suitable methods for the conditional
statements embedding and clustering will be selected. Then, this study is to evaluate
the performance of our approach and answer the research question RQ2 based on the
dataset used.

4.4. Results and Analysis

In this section, we describe the results of our studies and answers to the RQs.

4.4.1. RQ1: What Is the Optimal Solution for Each Machine Learning Module?

Table 3 shows the comparison results of the selected sentence embedding methods.
The best results are indicated in bold. By comparison, we can find that the Skip-Thought
method performs better than the other methods in all metrics. For example, when compared
with Word2vec+TF-IDF, the rand index of Skip-Thought is improved by 84.06%, the mutual
information by 18.42%. According to this result, the Skip-Thought method is used in the
proposed approach for the conditional statements embedding.

Table 3. The results of the comparison between the sentence embedding methods.

Rand Index Mutual Information

Word2vec+TF-IDF 0.0693 0.6185
Doc2vec 0.0704 0.6382

Bert 0.1197 0.6944
Skip-Thought 0.1265 0.7334

Appl. Sci. 2021, 11, 7892 11 of 14

Table 4 shows the comparison results of the selected clustering methods. The best re-
sults are indicated in bold. It can be seen that affinity propagation has the best performance
in two metrics. In terms of the rand index, it is 155.72% higher compared to agglomerative
clustering. In terms of the mutual information, it is 27.19% higher compared to spectral
clustering. This result indicates that it is better to select the affinity propagation method for
the conditional statements clustering.

Table 4. The comparison results between the clustering methods.

Rand Index Mutual Information

K-Means 0.1265 0.7334
Spectral Clustering 0.0658 0.6814

Agglomerative Clustering 0.1215 0.7331
DBSCAN 0.1979 0.8519

Affinity Propagation 0.3107 0.8667

4.4.2. RQ2: How Does the Performance of Our Approach Perform?

We have selected the Skip-Thought method for the conditional statements embedding
and the affinity propagation method for the conditional statements clustering. Based on
the dataset used for the evaluation, the performance of the proposed approach is shown in
Table 5. From Table 5, it can be seen that the proposed approach reaches 42.31% in precision
and 68.75% in recall.

Table 5. The performance of the proposed approach described in Section 3.

Precision Recall F1

Our approach 0.4231 0.6875 0.5238

From the results shown in Table 5, it can be seen that the proposed approach has
achieved a low precision. Compared with the precision, the recall is higher. This is partly
because that in most classification problems, high recall rates come at the cost of the
decrease of precision [55]. By analyzing the results of the proposed approach, we found
that there are several factors that affect the performance of the proposed approach.

1. Template non-conformance: The proposed approach finds the opposite conditions by
using the negative particles and the antonyms. This means that when the conditional
statements have not used the negative particles and antonyms, the opposite conditions
will not be found. For example, for the conditional statement “When there are GPS
events to report”, it is difficult for our approach to find its opposite “When there are none
GPS events”.

2. Unknown words: We found that there are a lot of proper nouns used in the requirements
specification. In most cases, they appear in the form of abbreviations. For a part of
the speech tagging of these words, low accuracy is often achieved. This will affect the
grouping of the conditional statements.

3. Incorrect keywords: When specifying requirements, the analysts may use some words
to describe some objects such as a button. For example, for the conditional statement
“When the screen prompts ‘DORMANCY LIGHT: ON’”, the word of DORMANCY here
refers to a light and not a state. In this case, it is incorrect to detect the incompleteness
by finding the antonym of this word. However, our approach cannot identify these
cases and this results in some wrongly reported detections.

4. Ill-formed sentences: After clustering the conditional statements, the proposed ap-
proach groups the conditional statements according to the subjects of the statements.
However, in practice, the subjects may be missing and the statements are not complete.
For example, for the conditional statement “When transmitted”, it is obvious that the
subject is missing. This will lower the precision of the proposed approach.

Appl. Sci. 2021, 11, 7892 12 of 14

Among these factors, the cases of template non-conformance and unknown words collec-
tively account for approximately 90 percent of the values of FN and FP. For these factors,
more improvements should be adopted to address them in the future.

5. Conclusions

When specifying the requirements, there may be many requirements described in
terms of conditions. If one condition is stated and its opposite condition is not there, the re-
quirements implied by the condition are incomplete. Focusing on this kind of requirement
incompleteness, this paper has proposed a sentence embedding and antonym-based ap-
proach for detecting the requirement incompleteness implied by the conditional statements.
To detect the incompleteness, the proposed approach first extracts the conditional sentences
from the requirements specification, and elicits the conditional statements which contain
one or more conditional expressions. Then, the conditional statements are clustered with
sentence embedding techniques. The conditional statements in each cluster are further
analyzed to detect the potential incompleteness by using the negative particles and the
antonyms. A benchmark dataset from an aerospace requirements specification has been
used to validate the proposed approach. The validation results have shown that the recall
of the proposed approach reaches 68.75%, and the F1 52.38%.

It should be noted that the proposed approach cannot detect all potential incomplete-
ness implied by the conditional statements. For example, the proposed approach finds
the opposite conditions by using the negative particles and the antonyms. This leads to
the result that, when the conditional statements have not used the negative particles and
antonyms, the opposite conditions will not be found. The abbreviations of the proper
nouns and the ill-formed sentences in the requirement specifications may also affect the
performance of the proposed approach. In the future, more efforts will be adopted to
address these factors and improve the proposed approach.

Author Contributions: Conceptualization, C.L. and Z.L.; methodology, C.L.; software, Z.Z.; val-
idation, C.L., L.Z. and Z.Z.; formal analysis, C.L. and Z.Z.; investigation, L.Z.; resources, C.L.;
data curation, L.Z.; writing—original draft preparation, C.L.; writing—review and editing, Z.L.;
supervision, C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brooks. No Silver Bullet Essence and Accidents of Software Engineering. Computer 1987, 20, 10–19. [CrossRef]
2. Davies, J.; Woodcock, J. Using Z: Specification, Refinement, and Proof; Prentice Hall International: Hoboken, NJ, USA,1996
3. Peterson, J.L. Petri Nets. ACM Comput. Surv. 1977, 9, 223–252. [CrossRef]
4. Group, O.M. UML Resource Page. 2021. Available online: http://www.uml.org/ (accessed on 26 March 2021).
5. Holt, J. UML for Systems Engineering: Watching the Wheels; IET: London, UK, 2004; Volume 4.
6. Group, O.M. Official OMG SysML Site. 2021. Available online: http://www.omgsysml.org/ (accessed on 27 March 2021).
7. Alexander, I.F.; Maiden, N. Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle, 1st ed.; Wiley Publishing:

Hoboken, NJ, USA, 2004.
8. Alexander, I.F.; Beus-Dukic, L. Discovering Requirements: How to Specify Products and Services; John Wiley & Sons: Hoboken, NJ,

USA, 2009.
9. Luisa, M.; Mariangela, F.; Pierluigi, N.I. Market Research for Requirements Analysis Using Linguistic Tools. Requir. Eng. 2004,

9, 40–56. [CrossRef]
10. da Silva, A.R.; Savić, D. Linguistic Patterns and Linguistic Styles for Requirements Specification: Focus on Data Entities. Appl.

Sci. 2021, 11, 4119. [CrossRef]

http://doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1145/356698.356702
http://www.uml.org/
http://www.omgsysml.org/
http://dx.doi.org/10.1007/s00766-003-0179-8
http://dx.doi.org/10.3390/app11094119

Appl. Sci. 2021, 11, 7892 13 of 14

11. Schwitter, R. Controlled Natural Languages for Knowledge Representation. In Proceedings of the 23rd International Confer-
ence on Computational Linguistics: Posters, Beijing, China, 23–27 August 2021; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2010; pp. 1113–1121.

12. de Roeck, A.; Willis, A.; Nuseibeh, B.; Chantree, F. Identifying Nocuous Ambiguities in Natural Language Requirements. In
Proceedings of the 14th IEEE International Requirements Engineering Conference, Minneapolis, MN, USA, 11–15 September
2006; Computer Society: Los Alamitos, CA, USA, 2006; pp. 59–68. [CrossRef]

13. Gervasi, V.; Zowghi, D. Reasoning about Inconsistencies in Natural Language Requirements. ACM Trans. Softw. Eng. Methodol.
2005, 14, 277–330. [CrossRef]

14. Arora, C.; Sabetzadeh, M.; Briand, L.; Zimmer, F. Automated Checking of Conformance to Requirements Templates Using
Natural Language Processing. IEEE Trans. Softw. Eng. 2015, 41, 944–968. [CrossRef]

15. Arora, C.; Sabetzadeh, M.; Briand, L.; Zimmer, F. Automated Extraction and Clustering of Requirements Glossary Terms. IEEE
Trans. Softw. Eng. 2017, 43, 918–945. [CrossRef]

16. Misra, J. Terminological inconsistency analysis of natural language requirements. Inf. Softw. Technol. 2016, 74, 183–193. [CrossRef]
17. Moitra, A.; Siu, K.; Crapo, A.; Chamarthi, H.; Durling, M.; Li, M.; Yu, H.; Manolios, P.; Meiners, M. Towards Development

of Complete and Conflict-Free Requirements. In Proceedings of the 2018 IEEE 26th International Requirements Engineering
Conference (RE), Banff, AB, Canada, 20–24 August 2018; pp. 286–296. [CrossRef]

18. Filipovikj, P.; Rodriguez-Navas, G.; Nyberg, M.; Seceleanu, C. SMT-Based Consistency Analysis of Industrial Systems Require-
ments. In Proceedings of the Symposium on Applied Computing, Maracas, Morocco, 4–6 April 2017; Association for Computing
Machinery: New York, NY, USA, 2017; pp. 1272–1279. [CrossRef]

19. Filipovikj, P.; Nyberg, M.; Rodriguez-Navas, G. Reassessing the pattern-based approach for formalizing requirements in the
automotive domain. In Proceedings of the 2014 IEEE 22nd International Requirements Engineering Conference (RE), Karlskrona,
Sweden, 25–29 August 2014; pp. 444–450. [CrossRef]

20. Kim, M.; Park, S.; Sugumaran, V.; Yang, H. Managing requirements conflicts in software product lines: A goal and scenario based
approach. Data Knowl. Eng. 2007, 61, 417–432. [CrossRef]

21. Moser, T.; Winkler, D.; Heindl, M.; Biffl, S. Automating the Detection of Complex Semantic Conflicts between Software
Requirements. In Proceedings of the 23rd International Conference on Software Engineering and Knowledge Engineering, Miami
Beach, FL, USA, 7–6 July 2011

22. Viana, T.; Zisman, A.; Bandara, A.K. Identifying Conflicting Requirements in Systems of Systems. In Proceedings of the 2017 IEEE
25th International Requirements Engineering Conference (RE), Lisbon, Portugal, 4–8 September 2017; pp. 436–441. [CrossRef]

23. Pohl, K. Requirements Engineering Fundamentals: A Study Guide for the Certified Professional for Requirements Engineering Exam-
Foundation Level-IREB Compliant; Rocky Nook, Inc.: San Rafael, CA, USA, 2016.

24. Mavin, A.; Wilkinson, P.; Harwood, A.; Novak, M. Easy Approach to Requirements Syntax (EARS). In Proceedings of the 2009
17th IEEE International Requirements Engineering Conference, Atlanta, GA, USA, 31 August–4 September 2009; pp. 317–322.
[CrossRef]

25. Mavin, A.; Wilkinson, P. Big Ears (The Return of “Easy Approach to Requirements Engineering”). In Proceedings of the 2010
18th IEEE International Requirements Engineering Conference, Sydney, Australia, 27 September–1 October 2010; pp. 277–282.
doi:10.1109/RE.2010.39 [CrossRef]

26. Yang, H.; De Roeck, A.; Gervasi, V.; Willis, A.; Nuseibeh, B. Analysing Anaphoric Ambiguity in Natural Language Requirements.
Requir. Eng. 2011, 16, 163. [CrossRef]

27. Ferrari, A.; Gnesi, S. Using collective intelligence to detect pragmatic ambiguities. In Proceedings of the 2012 20th IEEE
International Requirements Engineering Conference (RE), Chicago, IL, USA, 24–28 September 2012; pp. 191–200. [CrossRef]

28. Efremov, A.; Gaydamaka, K. Incose guide for writing requirements. Translation experience, adaptation perspectives. In
Proceedings of the CEUR Workshop Proceedings, Como, Italy, 9–11 September 2019; pp. 164–178

29. 21 Top Engineering Tips: How to Write an Exceptionally Clear Requirements Document. White Paper. QRA Corp, 2018. Available
online: https://www.qracorp.com/write-clear-requirements-document/ (accessed on 17 August 2021).

30. Anderberg, M.R. Guide for Writing Requirements; INCOSE Publications Office: San Diego, CA, USA, 2019 ; Volume 3.
31. Automating the INCOSE Guide for Writing Requirements; White Paper; QRA Corp: Halifax, NS, Canada, 2019.
32. RAT—AUTHORING Tools. 2021. Available online: https://www.reusecompany.com/rat-authoring-tools (accessed on 16

August 2021).
33. QVscribe. 2021. Available online: https://qracorp.com/qvscribe/ (accessed on 15 August 2021).
34. IBM Engineering Requirements Quality Assistant. 2021. Available online: www.ibm.com/products/requirements-quality-

assistant (accessed on 16 August 2021).
35. Thompson, S.A. A Discourse Explanation for the Cross-linguistic Differences in the Grammar of Interrogation and Negation.

Case Typology Gramm. Honor. Barry J. Blake 1998, 309, 341.
36. Kiros, R.; Zhu, Y.; Salakhutdinov, R.; Zemel, R.S.; Torralba, A.; Urtasun, R.; Fidler, S. Skip-Thought Vectors. In Proceedings of the

Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–10 December 2015
37. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python; O’Reilly Media, Inc.: Newton, MA, USA , 2009.
38. Oxford, O.E. Oxford English Dictionary; Oxford University Press: Oxford, UK, 2009.
39. Cornog, M.W. The Merriam-Webster Dictionary of Synonyms and Antonyms; Merriam-Webster, Inc.: Springfield, MA, USA, 1992

http://dx.doi.org/10.1109/RE.2006.31
http://dx.doi.org/10.1145/1072997.1072999
http://dx.doi.org/10.1109/TSE.2015.2428709
http://dx.doi.org/10.1109/TSE.2016.2635134
http://dx.doi.org/10.1016/j.infsof.2015.11.006
http://dx.doi.org/10.1109/RE.2018.00036
http://dx.doi.org/10.1145/3019612.3019787
http://dx.doi.org/10.1109/RE.2014.6912296
http://dx.doi.org/10.1016/j.datak.2006.06.009
http://dx.doi.org/10.1109/RE.2017.48
http://dx.doi.org/10.1109/RE.2009.9
doi: 10.1109/RE.2010.39
http://dx.doi.org/10.1109/RE.2010.39
http://dx.doi.org/10.1007/s00766-011-0119-y
http://dx.doi.org/10.1109/RE.2012.6345803
https://www.qracorp.com/write-clear-requirements-document/
https://www.reusecompany.com/rat-authoring-tools
https://qracorp.com/qvscribe/
www.ibm.com/products/requirements-quality-assistant
www.ibm.com/products/requirements-quality-assistant

Appl. Sci. 2021, 11, 7892 14 of 14

40. Anaconda Individual Edition. 2021. Available online: https://www.anaconda.com (accessed on 19 February 2021).
41. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
42. Řehůřek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop

on New Challenges for NLP Frameworks, Valletta, Malta, 22 May 2010; ELRA: Valletta, Malta, 2010; pp. 45–50
43. Macqueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18 July 1967; Volume 1, pp. 281–297.
44. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,

arXiv:1301.3781.
45. Rajaraman, A.; Ullman, J.D. Mining of Massive Datasets; Cambridge University Press: Cambridge, UK, 2011.
46. Google Code: word2vec. 2013. Available online: https://code.google.com/archive/p/word2vec/ (accessed on 18 February 2021).
47. Le, Q.V.; Mikolov, T. Distributed Representations of Sentences and Documents. arXiv 2014, arXiv:1405.4053.
48. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. arXiv 2019, arXiv:1810.04805.
49. Zhu, Y.; Kiros, R.; Zemel, R.; Salakhutdinov, R.; Urtasun, R.; Torralba, A.; Fidler, S. Aligning Books and Movies: Towards

Story-like Visual Explanations by Watching Movies and Reading Books. arXiv 2015, arXiv:1506.06724.
50. Rand, W.M. Objective Criteria for the Evaluation of Clustering Methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [CrossRef]
51. von Luxburg, U. A Tutorial on Spectral Clustering. arXiv 2007, arXiv:0711.0189.
52. Anderberg, M.R. Cluster Analysis for Applications: Probability and Mathematical Statistics: A Series of Monographs and Textbooks;

Academic Press: Cambridge, MA, USA, 2014; Volume 19.
53. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996 ; pp. 226–231.

54. Frey, B.J.; Dueck, D. Clustering by Passing Messages between Data Points. Science 2007, 315, 972–976. [CrossRef] [PubMed]
55. Buckland, M.; Gey, F. The Relationship between Recall and Precision. J. Am. Soc. Inf. Sci. 1994, 45, 12–19. [CrossRef]

https://www.anaconda.com
https://code.google.com/archive/p/word2vec/
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1126/science.1136800
http://www.ncbi.nlm.nih.gov/pubmed/17218491
http://dx.doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L

	Introduction
	Related Work
	The Approach
	Conditional Statements Extraction
	Conditional Statements Clustering
	The Embedding-Based Clustering
	The Subject-Based Grouping
	Compound Statement Splitting

	Requirements Incompleteness Detection
	The Negative Particles-Based Detection
	The Antonyms-Based Detection

	Empirical Evaluation
	Research Questions(RQs)
	Study Design
	The Datasets
	The Implementation
	The Metrics

	Descriptions of the Studies
	 Study I: Selection of Sentence Embedding Methods
	 Study II: Selection of Clustering Methods
	 Study III: The Performance of the Proposed Approach

	Results and Analysis
	 RQ1: What Is the Optimal Solution for Each Machine Learning Module?
	RQ2: How Does the Performance of Our Approach Perform?

	Conclusions
	References

