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Abstract: The dynamics of semiconductor lasers with optical feedback and current modulation has
been extensively studied, and it is, by now, well known that the interplay of modulation and feedback
can produce a rich variety of nonlinear phenomena. Near threshold, in the so-called low frequency
fluctuations regime, the intensity emitted by the laser, without modulation, exhibits feedback-induced
spikes, which occur at irregular times. When the laser current is sinusoidally modulated, under
appropriate conditions, the spikes lock to the modulation and become periodic. In previous works,
we studied experimentally the locked behavior and found sub-harmonic locking (regular spike
timing such that a spike is emitted every two or three modulation cycles), but we did not find spikes
with regular timing, emitted every modulation cycle. To understand why 1:1 regular locking was
not observed, here, we perform simulations of the well-known Lang–Kobayashi model. We find
a good qualitative agreement with the experiments: with small modulation amplitudes, we find
wide parameter regions in which the spikes are sub-harmonically locked to the modulation, while 1:1
locking occurs at much higher modulation amplitudes.

Keywords: semiconductor lasers; diode lasers; optical feedback; modulation; locking; laser dynamics;
nonlinear dynamics

1. Introduction

Semiconductor lasers with optical feedback provide an experimental testbed to study
a rich variety of nonlinear phenomena. While the free-running laser is a two-dimensional
system that displays only transient relaxation oscillations, the feedback delay time ex-
pands the dimensionality of the system, and induces multistability of stable solutions (the
so-called external cavity modes) and sustained periodic or chaotic oscillations [1–3]. A
small-amplitude periodic modulation of the laser current can control feedback-induced
oscillations, but it can also generate bistability, for example, of small and large chaotic
oscillations [4].

Near the threshold, a regime known as low-frequency fluctuations occurs in which
the laser intensity abruptly drops to zero and recovers gradually. In the absence of current
modulation, the intensity dropouts (which we will refer to as spikes) occur at irregular
times. With modulation, under appropriate conditions, they can lock to the modulation,
and a spike is emitted every n modulation cycles [5–17].

The laser dynamics with optical feedback and current modulation is interesting be-
cause it has three time scales that can be controlled experimentally: the “natural”, unmodu-
lated spike rate (controlled by the DC value of the laser pump current and the feedback
conditions [18]), the external cavity frequency (controlled by the length of the feedback
cavity) and the modulation frequency. By tuning these parameters, different locked and
unlocked behaviors can occur. We have studied the locking regimes, by performing experi-
ments with different lasers, feedback conditions and modulation waveforms [19–21]. We
have found that small-amplitude sinusoidal current modulation can generate rigid and
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regular subharmonically locked spikes: rigid in the sense that the locked behavior persists
in a parameter region, and regular in the sense that the spike timing is regular over very
long time intervals [21]. However, we did not find rigid and regular harmonic locking. In
this paper, we aim to shed light into the elusiveness of the regular 1:1 locked spikes.

This paper is organized as follows. In Section 2, we present the model used to simulate
the dynamics of the laser. In Section 3, we present the results of the simulations, and in
Section 4, we present the discussion and the conclusions.

2. Model

The Lang–Kobayashi rate equations [1] describing a single-mode semiconductor
laser with optical feedback and sinusoidal pump current modulation, in simplified
notation [22,23], are as follows:

Ė = k(1 + iα)(G− 1)E + ηE(t− τ)e−iω0τ +
√

Dξ, (1)

Ṅ = γN(µdc + amod sin(2π fmodt)− N − G|E|2). (2)

In these equations, E represents the slowly varying complex optical field (|E|2 is
proportional to the laser intensity) and N represents the carrier density. η, τ, and ω0τ are the
feedback strength, the delay time and the feedback phase, respectively; k = 1/(2τp) where
τp is the photon lifetime, γN = 1/τN where τN is the carrier lifetime, G = N/(1 + ε|E|2)
is the gain and ε is the gain saturation coefficient, α is the linewidth enhancement factor.
µdc, amod and fmod are the dc value, the amplitude and the frequency of the sinusoidal
modulation of the pump current, respectively.

Spontaneous emission noise is taken into account by a complex additive Gaussian
white noise, ξ, with strength D. In the deterministic model (D = 0), for typical parameters,
the spikes are a transient dynamics, after which the laser output is stable (the laser emits
the stable external cavity mode that has maximum gain). With large enough noise, the
spiking dynamics can become stable, sustained by noise [24,25]. Therefore, in this model,
the spikes are generated by the interplay of deterministic and stochastic mechanisms.
The coexistence of stable emission and spiking behavior was reported in Ref. [26]. While
this model explains many observations, it has several simplifications: it assumes single-
mode emission, it considers a single reflection in the external cavity, and it neglects spatial
inhomogeneities in the optical field and in the carrier population.

3. Results

The model equations were integrated with the following (typical) parameters that
fit the experimental conditions in [19–21]: k = 300 ns−1, γN = 1 ns−1, α = 4, ε = 0.01,
η = 30 ns−1, τ = 5 ns, µdc = 0.99 and D = 10−5 ns−2. The Euler–Maruyama method
with an integration step of dt = 1 ps was used to integrate the equations. The initial
conditions were chosen with the laser off and after disregarding a transient time of 50 µs,
the equations were integrated for 10 µs. To detect the spike times the intensity time series,
|E(t)|2 was band-pass filtered [27] to simulate the finite bandwidth of the experimental
detection system, and was normalized to zero mean and unit variance. Then, a spike was
detected when the intensity decreased below the threshold Th = −1.1.

In Figure 1, we analyze the statistics of the spike sequences, as a function of the
modulation amplitude and frequency. Figure 1 displays in color code the number of
spikes in the intensity time series (panel a), the mean inter-spike-interval (ISI) normalized
to the modulation period (panel b), and the normalized standard deviation of the ISI
distribution (panel c, σISI/〈ISI〉, in logarithmic scale). In panel (a), we see that the spikes
become more frequent with increasing amod and fmod, i.e., the spikes become faster with
amod and fmod. In panel (b) we can differentiate five regions: in blue, 〈ISI〉/Tmod ≈ 1, in
cyan, 〈ISI〉/Tmod ≈ 2, in green, 〈ISI〉/Tmod ≈ 3, in yellow 〈ISI〉/Tmod ≈ 4, and in red
〈ISI〉/Tmod ≥ 5. We do not find 5:1 locking, and we interpret that this is likely due to the
fact that the 5:1 locking region would be located at high modulation frequencies, where the
spikes are poorly defined, as the intensity displays quite chaotic fluctuations.
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Figure 1. (a) Number of spikes in the intensity time series, in logarithmic color code, as a function
of the modulation amplitude and frequency. (b) Mean inter−spike−interval, normalized to the
period of the modulation. Here, the color scale is saturated such that red represents 〈ISI〉/Tmod ≥ 5.
(c) Standard deviation of the ISI distribution normalized to the mean ISI. Note the logarithmic color
scale. The symbols indicate the parameters used in Figure 2.

To determine where, within these regions, the spikes are regularly locked to the
sinusoidal modulation, we need to inspect panel (c), where very low values of σISI/〈ISI〉
(<10−2, blue regions) reveal a narrow ISI distribution (i.e., a regular spike timing). In panel
(c), we see two well-defined blue regions (light blue and dark blue). In these regions, in
panel (b) we see that 〈ISI〉/Tmod = 2 or 3. Comparing panels (b) and (c), we see that for
the blue regions in panel (b) [〈ISI〉/Tmod ≈ 1], σISI/〈ISI〉 > 10−2 in panel (c); therefore,
the timing of the spikes when 〈ISI〉 ≈ Tmod is significantly more irregular than the timing
of 2:1 and 3:1 locked spikes.

Examples of the intensity time series in the different locking regions are presented in
Figure 2. The shape of the oscillations after each spike is similar for 2:1 and 3:1 locking, but
it is very different for 1:1 locking, as in this case the spike is of very small amplitude. For
2:1 and 3:1 locking (panels b and c), in our previous works, we have reported very similar
experimental time series (see Figure 1 in [20]). In our previous works, the modulation was
of a small amplitude and we did not observe 1:1 locking of the form shown in Figure 2a.
However, a very similar experimental time series of 1:1 locked spikes was reported in
Ref. [8] (Figure 3f, which is for a modulation amplitude of 13.8% of the DC level of the
laser current).

Figure 2. Time series of the laser intensity (normalized to zero−mean and unit variance) in different
locking regions: (a) 1:1 locking for fmod = 5 MHz, amod = 0.045; (b) 2:1 locking for fmod = 24 MHz,
amod = 0.0125; (c) 3:1 locking for fmod = 42 MHz, amod = 0.0125 (these parameters were indicated in
Figure 1 with a circle, a triangle, and a square, respectively). In all panels, the red dots mark the spike
times (when the intensity decreases below the threshold −1.1).
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To unveil the role of the modulation amplitude, we show in Figures 3 and 4 the
effect of increasing amod, for two modulation frequencies such that for appropriate amod,
the modulation produces 1:1 (Figure 3) or 2:1 (Figure 4) locked spikes. In Figure 3, we see
that 1:1 locking occurs for high enough amod (panel e), while if the modulation amplitude is
not too large (as in our experiments), we see that the spike timing is irregular. Note that in
this figure, panel (a) displays the “natural”, unmodulated intensity dynamics. In Figure 4
we see that regular 2:1 locking occurs for amod = 0.0125 [panel (b)]. The locked behavior
is rigid in the sense that it persists in a range of amod values; if amod is too small, the spike
timing is irregular, while if it is too large, the spikes become poorly defined. The locking
region has smooth boundaries; therefore, we cannot define a precise range of amod values.
However, we can see that in panels (a) and (d) the spikes are not locked, while in panels (b)
and (c), they are locked.

Figure 3. Intensity time series for increasing modulation amplitude: amod = 0 (a), 0.01 (b), 0.025 (c),
0.04 (d), 0.05 (e). fmod = 5 MHz; other parameters are as indicated in the text.

Figure 4. Intensity time series for amod = 0.01 (a), 0.0125 (b), 0.02 (c), 0.03 (d). fmod = 24 MHz; other
parameters are as indicated in the text.
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The locking regions are separated by regions where the spikes are unlocked. An exam-
ple of the transition of 2:1 locking to 3:1 locking that occurs when the modulation frequency
increases is shown in Figure 5. This transition corresponds to moving along an horizontal
line in the panels displayed in Figure 1. In Figure 5 we see that for fmod = 35 MHz (panel
a) and 40 MHz (panel d), the spikes are locked (2:1 and 3:1, respectively) while for frequen-
cies in between, there is the intermittent alternation of 2:1 and 3:1 locked spikes. This is
consistent with the results shown in Figure 1c, where we see that σISI/〈ISI〉 is small in the
locking regions, while it grows in the transition region.

Figure 5. Transition between 2:1 and 3:1 regular locking, when the modulation frequency in-
creases while the modulation amplitude is kept constant. The parameters are amod = 0.0125 and
fmod = 35 MHz (a), 37 MHz (b), 39 MHz (c), 40 MHz (d).

For particular values of the modulation amplitude and frequency, a spike can occur
every modulation cycle. An example is shown in Figure 6a; it corresponds, in Figure 1b
to the “blue dot” within the green area. There is no “rigid” locking as the regular spiking
dynamics is not robust to small changes of the parameters (i.e., there is no range of
frequencies or amplitudes within which the regular behavior persists). We note that the
shape of the spikes in Figure 6a and in Figure 2a is different. This may be due to the
fact that the modulation parameters, both amplitude and frequency, are very different: in
Figure 6a, amod = 0.012, fmod = 16 MHz, while in Figure 2a, amod = 0.045, fmod = 5 MHz. This
“blue dot” is visible because it is located within the green area; it is possible that other “blue
dots” exist that are not visible because they are located within the blue area.

As explained before, optical feedback introduces a set of coexisting steady-state
solutions (the external cavity modes, ECMs, which can be stable modes or unstable modes).
Under current modulation the ECMs turn into limit cycles that can be stable or unstable.
For particular values of the modulation amplitude and frequency, after a transient, the
system ends in a limit cycle and the intensity displays periodic oscillations without spikes.
An example is shown in Figure 6b. When this occurs, after the transient, 〈ISI〉/Tmod = 1
and σISI/〈ISI〉 is small. As in the case of 1:1 locked spikes, there is no “rigidity”, i.e., we
have not found parameter regions where these regular oscillations persist. Therefore, in
Figure 1b,c, in the blue dots where 〈ISI〉/Tmod = 1 and σISI/〈ISI〉 is small, the intensity
can display 1:1 locked spikes, or periodic oscillations without spikes.
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Figure 6. Intensity time series displaying (a) 1:1 locked spikes ( fmod = 16 MHz, amod = 0.012);
(b) transient spiking dynamics followed by periodic oscillations ( fmod = 6 MHz, amod = 0.006).

These results are robust with respect to small changes of the DC level of the laser
current. We remark that the low frequency fluctuation regime (where the intensity displays
well-defined spikes), occurs near the solitary threshold, in a limited range of pump current
values: if we decrease or increase too much µdc the spikes become not well defined,
either because the intensity fluctuations are too noisy, or because they are too fast and
chaotic [28,29].

4. Discussion

To summarize, we have studied numerically the dynamics of a semiconductor laser
with optical feedback and sinusoidal current modulation. We simulated the Lang–Kobayashi
model to understand why, with small-amplitude modulation, regular 1:1 locked spikes
was not observed experimentally. The simulations have allowed us to identify the locking
regions in the parameter space (modulation amplitude, modulation frequency). We have
found subharmonically locked spikes (2:1 and 3:1) when the modulation is fast enough,
and its amplitude is not too large. We have also found 1:1 locked spikes that occur at a
higher modulation amplitude and lower modulation frequency, but in this case, the spike
timing is more irregular (for subharmonic locking, the normalized standard deviation is
<10−2, while for harmonic locking, it is >10−2).

Our interpretation of the physical mechanisms behind these results is the interplay
of the laser dynamics near the threshold and the modulation-induced dynamics. While
locking phenomena in nonlinear oscillators is well understood and broadly applied, in
laser systems, the existence of the threshold introduces additional nonlinear behaviors
not observed in conventional, threshold-less oscillators. In the situation considered here,
because the laser is near the threshold (where the feedback-induced spiking dynamics
occurs), in each modulation cycle, the pump current brings the laser close or below the
threshold, and at low modulation frequencies, this occurs for a duration long enough
to prevent the generation of fully regular 1:1 locked behavior (due to fluctuations in the
timing of the turn-on pulses—the so-called timing jitter). However, when the modulation
frequency increases, the intervals during which the pump current is close or below the
threshold are shorter, and the current modulation can generate regular 2:1 and 3:1 locked
behaviors. It will be interesting, for future work, to analyze how the optical feedback
parameters affect the spike timing regularity.
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