
applied  
sciences

Article

Online Foot Location Planning for Gait Transitioning Using
Model Predictive Control

Xiangming Liu 1, Hongxu Ma 1, Lin Lang 1,2,* and Honglei An 1

����������
�������

Citation: Liu, X.; Ma, H.; Lang, L.;

An, H. Online Foot Location Planning

for Gait Transitioning Using Model

Predictive Control. Appl. Sci. 2021, 11,

7866. https://doi.org/10.3390/

app11177866

Academic Editors: Alessandro

Gasparetto, Stefano Seriani and

Lorenzo Scalera

Received: 19 July 2021

Accepted: 23 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410000, China; XiangmingL2021@163.com (X.L.); mhx1966@163.com (H.M.);
eric_nudt@163.com (H.A.)

2 College of Information Technology and Management, Hunan University of Finance and Economics,
Changsha 410000, China

* Correspondence: langlin_8502@nudt.edu.cn

Abstract: This paper proposes an online uniform foot location planning method (UPMPC) based
on model predictive control (MPC) for solving the problem of large posture changes during gait
transitioning. This method converts the foot location planning into a discrete-time MPC problem.
The core part of the method is to complete the planning of the foot location based on the linear
inverted pendulum (LIP) model and the simplified robot dynamics model. By unifying the input foot
location at each time step, the solution time is shortened. The final simulation experiment compares
the results of using the UPMPC and foot location planning method with heuristic function (HF)
for gait transitioning, respectively. This result demonstrates that the UPMPC can complete the gait
transitioning task and adapt to large changes in posture during gait transitioning. In addition, the
results also show the good performance of UPMPC in fixed gait.

Keywords: MPC; foot location; motion planning; gait transitioning; legged robots

1. Conventions

To illustrate the content of this paper, the following abbreviations listed in Table 1
are used.

Table 1. The abbreviations are used in this manuscript.

Abbreviations Meaning

MPC Model Predictive Control
LIP Linear Inverted Pendulum

COM Center of Mass
UPMPC A foot location planning method proposed in

this paper. It contains LIP model, dynamics
model of a quadruped robot and MPC method.

HF A foot location planning method used heuristic function
GRFs Ground reaction forces
COT Cost of Transport
QP Quadratic Programming
FL Front Left Leg
FR Front Right Leg
HL Hind Left Leg
HR Hind Right Leg

To illustrate the formulas in subsequent sections, the mathematical notation listed in
Table 2 is used. Matrices and vectors are upright and bold. Scalars are italicized.

Appl. Sci. 2021, 11, 7866. https://doi.org/10.3390/app11177866 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11177866
https://doi.org/10.3390/app11177866
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11177866
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11177866?type=check_update&version=1


Appl. Sci. 2021, 11, 7866 2 of 25

Table 2. Main Symbol Conventions in this paper.

Variables Meaning

x The position of the COM on the x-axis
in the world coordinate system

y The position of the COM on the y-axis
in the world coordinate system

z The position of the COM on the z-axis
in the world coordinate system

p The position of the COM
in the world coordinate system

px The position of supporting foot in the LIP model
on the x-axis in the world coordinate system

py The position of supporting foot in the LIP model
on the y-axis in the world coordinate system

pz The position of supporting foot in the LIP model
on the z-axis in the world coordinate system

x Robot state variables without angular velocity
pf The position of the robot’s foot in the world coordinate system
f Ground reaction force
I The robot’s inertia tensor
ω The robot’s angular velocity
X Robot state variables

2. Introduction

Legged robots have greater environmental adaptability than wheeled and tracked
robots. In order to meet the needs of different tasks in various environments, users are no
longer satisfied with quadruped robots moving in a fixed gait and expect legged robots to
be able to switch stably between multiple gaits during moving.

Quadruped robots usually perform gait transitioning to reduce energy consumption.
Horses [1] have varying energy expenditure at different gaits and speeds. In order to
maximize energy efficiency, the horse will choose the gait with the least energy consumption
at each speed. Quadruped robots designed with reference to quadrupeds naturally have
variable energy consumption at different gaits. The energy consumption of a quadruped
robot at various gaits and speeds is explored in detail in [2]. Each gait has a significant
energy gap at the same speed. It is also found that the long-period, large duty cycle gait
and the short-period, low duty cycle gait consume less energy at low and high speeds,
respectively. Therefore, it is of utmost importance to switch from a high-energy-consuming
gait to a gait with relatively low energy consumption.

However, in actual use, the appropriate gait is also selected according to the task needs.
When traversing uneven terrain, it is expected that the impact on the ground is small and
the height of the quadruped robot is basically constant while maintaining a certain speed.
Thus, the gait chosen at this point may not be the less energy intensive one. The choice
of gait is the result of many factors. Therefore, the quadruped robot needs to successfully
switch between different gaits at a certain speed, not just from a high-energy-consuming
gait to a low-energy-consuming gait.

The successful locomotion of the robot cannot be separated from the choice of the foot
location. A lot of researches have been done on foot location planning. HF [3] is a commonly
used method. By adjusting the gain parameters, better results can be obtained. The method
has been applied in several MIT’s robots [4,5]. Combining HF and MPC [4], MIT’s Mini
Cheetah implements multiple gaits. However, the fixed-parameter HF is difficult to cope
with transitioning between various gaits with different periods. The properties of gaits
are distinct, in the case of different periods, leading to the inability of the fixed-parameter
HF to adapt to the large changes of posture after the gait transitioning. The capture point
technique which is frequently used in bipedal robots is also a common method for foot
location planning. Pratt et al. simplify the bipedal robot into a LIP model with a flywheel,
and determine the range of foot locations and the foot location point of the bipedal robot
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by establishing the capture domain and the capture point where the robot can stop in
one step [6]. Simões et al. find the capture domain that can two-step stop based on the
capture points and N-Step Capturability theories, and successfully verify the effect of the
algorithm on simulation [7]. Seyde et al. [8] and Kojio et al. [9] both utilize capture point
theory for foot location planning and achieve good results on bipedal robots. However,
the capture point method requires setting the number of steps to stop, which limits the
performance of the robot. MPC is capable of generating behavior with a wide range of
adaptations based on real-world situations [10]. Saraf et al. use the MPC to complete a
terrain adaptive gait transitioning between bounding and trotting [11]. MPC-based foot
location planning has also been widely studied. A number of researchers achieve better
robustness and interference resistance on quadruped robots based on the LIP model for foot
location planning using MPC [12–14]. Xin et al. design LIP-based foot location planning
using MPC [15]. The method applies the LIP model to predict the COM position and
velocity. Furthermore, the prediction result is used as the initial state of MPC for planning
the foot location. It is successfully applied not only to quadruped robots but also to bipedal
robots, and has good anti-interference capability. However, the calculating time grows
rapidly with increasing prediction length.

This paper aims at addressing the transitioning of walking, trotting and flight trotting
with different gait periods at the same speed. Walking (four beat or two beat) has a duty
cycle greater than 50%. The duty cycle is the proportion of the support period to the
entire gait period. Furthermore, the four-legged support period can exist in this gait.
The two diagonally opposite legs move together for trotting. The duty cycle of trotting
is equal to 50%. The two diagonal opposite leg of the flight trotting gait also moves
simultaneously, but differs from trotting in that the duty cycle is less than 50%. There is
a period of quadrupedal vacancy. The gait cycles for three gaits are shown in Figure 1.
Walking is a common gait and employed by all terrestrial vertebrates [16]. Walking is
stable with little change in height and posture. And the quadruped robot has little contact
force with the ground. The results in [1,2] indicate that either two-beat walking or four-
beat walking has less energy expenditure at low speeds than the other gaits. Trotting
is widely adaptable to a greater range of speeds and has high energy efficiency when
the speed is below 1.2 m/s [4]. Trotting with a vacant period (flight trotting) has a better
performance in terms of energy utilization at high speeds [2]. Furthermore, these three gaits
are representative on quadruped robots that can adapt to a variety of environments and
task needs. During the gait transitioning process, the quadruped robot posture and speed
will experience large changes. By choosing a suitable foot location, the effect of the foot
location on posture and speed can be reduced. The quadruped robot can return to the stable
position more quickly. The three gaits which are used for gait transitioning, with widely
varying characteristics, have different gait periods. The HF gain parameters required for
each gait are also different. There is no fixed order for transitioning. The difference in gait
characteristics leads to large changes in posture after transitioning, making it difficult for
the fixed parameter HF to cope with. The MPC-based foot location planning method can
select a foot location that best meets the desired future state based on the actual situation
during the transitioning process and the prediction results. Thus, the quadruped robot
can better complete the gait transitioning and quickly correct the state deviation caused by
the transitioning, with better robustness and adaptability. Therefore, it was decided to use
UPMPC as the foot location planning method for quadruped robots. During the motion
of the quadruped robot, the position of the foot in the world coordinate system remains
unchanged. By unifying the foot positions at each time step, the final optimization variables
are ensured to be independent of the predicted horizon length. The matrix dimensions
to be computed are greatly reduced, which can significantly improve the computational
speed of UPMPC to satisfy the demand of high-frequency foot location planning. The gait
transitioning results given at the end of the article well demonstrate that UPMPC has
better practical performance than HF and can be applied to the foot location planning for
fixed gait.
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Figure 1. The black block indicates that the single leg of the quadruped robot is in the support phase.
FL: Front Left Leg. FR: Front Right Leg. HL: Hind Left Leg. HR: Hind Right Leg.

The main contributions of this paper are: (a) An MPC-based method for selecting the
foot location is proposed based on the LIP model and the dynamics model of the quadruped
robot, which solves the problem of large posture oscillation during gait transitioning in
different gait periods. (b) UPMPC is able to complete some of gait transitioning that cannot
be done by the HF. (c) UPMPC selects the foot location based on the predicted future state,
which improves the overall adaptability of the quadruped robot.

The paper is organized as follows. Section 3 presents the overall control architecture
of the quadruped robot. The composition of MPC and the functions of the UPMPC are
briefly demonstrated. A detailed mathematical description of UPMPC is illustrated in
Section 4. A comparison of UPMPC with HF in a simulation environment is given in
Section 5. Section 6 is a summary of the whole text.

3. Control Architecture

The control method used in this paper is MIT’s Convex MPC [4]. The overall control
block diagram [4] is shown in Figure 2.

Operator 

Input

Reference 

Trajectory
MPC

Swing 

Trajectory

State 

Estimator

Joint 

Position/Torque 

Control

UPMPC
estx

refx

i

T
R

 i
f

 i
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, , , ,p d ff desB desBK K  p v
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Figure 2. The red block indicates the control frequency at 0.5 kHz, the blue block indicates the control
frequency at 30 Hz, and the green block indicates the control frequency at 4.5 kHz [4]. xre f is the
reference state of the robot. xest is the estimated state of the robot. pdesW is the desired foot location
in the world coordinate system. f(i) is the GRFs in the world coordinate system and f(i)B is the GRFs
in the ontology coordinate system. Kp, Kd, τf f , pdesB, vdesB denotes the PD control parameters of the
joint, the feedforward force, the desired foot location under the body coordinate system, and the
desired foot velocity in the body coordinate system, respectively. The swing leg is position controlled
and the control effect of the joint is adjusted according to the PD control gain Kp, Kd.

Based on Convex MPC, the UPMPC for selecting the foot location is added. Operator
Input is the user input for commands such as gait, speed and direction. Reference Trajectory
generates a reference state for the robot based on user input, such as the robot’s pose and
speed. State Estimator estimates the robot’s state based on the sensor data. Swing Trajectory
is used in three main purposes: selection of swing legs, determination of swing time and
generation of swing trajectory. Swing Trajectory generates the desired swing trajectory
for the swing leg to track based on the reference foot location input by the UPMPC. MPC
outputs the desired GRFs based on the output of Reference Trajectory. The UPMPC selects
the foot location of the swing leg.
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The UPMPC input variables are the desired state, the current estimated state and
the GRFs planned by MPC when switching from the swing phase to the support phase.
The output variables are the desired foot location. Using the LIP model and dynamics
model of the robot, the selection of the foot location is simplified to a QP problem. The de-
sired result is obtained from the solution of the QP problem. The detailed mathematical
derivation and introduction are in shown in Section 4.

4. Foot Location Selection Based on MPC

The expression for the HF is shown in Equation (1).

pdes
f = pref

h + vCOM∆t/2 + kd

(
vCOM − vdes

)
(1)

pdes
f is the desired foot location of the quadruped robot. pref

h is the location of the
hip projected onto the ground. vCOM is the current speed of the COM. ∆t is the time the
foot will spend on the ground. vdes is the desired speed of the COM. All the variables
above are in the world coordinate system. kd is the gain of the difference between vCOM

and vdes. Due to the characteristics of different gaits, the posture of the quadruped robot
after gait transitioning will have a large offset from the steady state. In this case, HF may
choose a foot location that is not conducive to the stability of the quadruped robot’s posture
in order to correct the velocity offset. If it is desired to do a better job of transitioning
between several different gaits, a heuristic gain value needs to be determined for each gait.
Therefore, a new way of foot location planning is needed to enable gait transitioning of
quadruped robots in multiple gaits with a single set of parameters. The variables used in
the equations below are shown in Figure 3.

FL

FRHR

HL

x

y
z

1 2 3f f fp p p   f
p

ω
 x y zp

f
p

p

World

Figure 3. A model of the quadurped robot is shown in the figure. The World in the bottom left corner
of the diagram indicates the defined world coordinate system. The black frame in the top right corner
indicates the composition of the variables labelled in the model. pf is the position of the robot’s foot
end. p is the position of the robot’s COM. f is the ground reaction force. All the variables mentioned
are in the world coordinate system.

The LIP model has been widely used in bipedal robot motion [17,18]. The simplified
LIP model allows better planning of the bipedal robot’s foot location. LIP can also be
applied to quadrupedal robots [19,20]. With the virtual leg concept, a quadrupedal robot
can be equated to a bipedal robot. At this point the quadruped robot can also apply the LIP
model to plan the foot location. Therefore, the LIP model can be used to predict the velocity
of the quadruped robot. In a single-point support, the COM is pushed by the support foot.
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The forward acceleration ẍ is driven by the difference between the support foot position px
and the COM position x.

ẍ =
g
z0
(x− px) (2)

where px represents the position of the supporting foot in the x-axis direction in the world
coordinate system, and x, ẍ and z0 represent the position of the COM, the acceleration in
the x-axis and the height in the z-axis in the world coordinate system, respectively. g is
the acceleration of gravity in the z-axis in the world coordinate system. With the height of
COM z0 constant, the value of ẍ is determined only by x and px.

The lateral acceleration ÿ is driven by the difference between the position of support
foot py and the position y of the COM.

ÿ =
g
z0

(
y− py

)
(3)

where py represents the position of the supporting foot in the y-axis direction in the world
coordinate system, and y and ÿ represent the position of the COM and the acceleration in
the y-axis under the world coordinate system, respectively. Let the COM state be x = [x, ẋ]T,
then the equation of state is shown in Equation (4).

ẋ = Ax0 + Bpx (4)

A =

[
0 1
g
z0

0

]
, B =

[
0
− g

z0

]
, x0 =

[
x0
ẋ0

]
(5)

x0 is the robot’s current state. Extending the COM state to x = [p, ṗ]T, p ∈ R3×1 is the
position of the COM in the world coordinate system. ṗ ∈ R3×1 is the velocity of the COM
in the world coordinate system. The position of the supportting foot is extended to the
coordinates of the foot in the world coordinate system during the motion of the quadruped
robot. The equation of state is shown in Equation (6).

ẋ = Ax + Bpf (6)

A =

[
03×3 13×3

w3×3 03×3

]
(7)

B =

[
03×3 03×3 03×3 03×3

−ε(|f(1)|)·w3×3

2
−ε(|f(2)|)·w3×3

2
−ε(|f(3)|)·w3×3

2
−ε(|f(4)|)·w3×3

2

]
(8)

w3×3 =

g/z0 0 0
0 g/z0 0
0 0 0

 (9)

ε
(∣∣∣f(i)∣∣∣) =

0
∣∣∣f(i)∣∣∣ > 0

1
∣∣∣f(i)∣∣∣ = 0

(10)

where pf =
[
pf

(1) pf
(2) pf

(3) pf
(4)
]T

is the position of the foot in the world coordinate

system. pf
(i) =

[
p(i)f 1 p(i)f 2 p(i)f 3

]T
∈ R3×1 and f(i) =

[
f (i)1 f (i)2 f (i)3

]
∈ R3×1 are the

coordinates of the foot i and the GRFs in the world coordinate system, respectively. In the
LIP model, the choice of the foot location affects the velocity of the COM, but not the height
of the COM. Equation (10) is used to determine the swing leg.

The presence of GRFs makes the location of the foot affect the COM posture. Therefore,
the choice of foot location needs to consider the effect on the velocity and the posture.
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The dynamics of a quadruped robot rotating around the COM in the world coordinate
system is shown in Equation (11).

d
dt

(Iω) =
n

∑
i=1

r(i) × f(i) (11)

where I is the robot’s inertia tensor, ω ∈ R3×1 is the angular velocity of the robot. r is the
vector between the position of the foot end and the COM. When ω is small, the left side of
Equation (11) can be approximated with:

d
dt

(Iω) = Iω̇ + ω× (Iω) ≈ Iω̇ (12)

Converting the right-hand side of Equation (11) to a representation of the COM
position and the foot position in the world coordinate system.

n

∑
i=1

r(i) × f(i) =
n

∑
i=1

(
pf

(i) − p
)
× f(i) =

n

∑
i=1

f(i) ×
(

p− pf
(i)
)

(13)

Then Equation (11) can be converted to:

ω̇ =

[
I−1
[

n
∑

i=1
ε(
∣∣∣f(i)∣∣∣)f(i)] 0

]
·
[

p
ω

]

+
[
I−1
[
−f(1)

]
I−1
[
−f(2)

]
I−1
[
−f(3)

]
I−1
[
−f(4)

]]
pf

(1)

pf
(2)

pf
(3)

pf
(4)


(14)

where
[
−f(i)

]
=

 0 f(i)3 −f(i)2

−f(i)3 0 f(i)1

f(i)2 −f(i)1 0

 is the GRFs of MPC planning when switching

from the swing phase to the support phase in the previous period. The equation of state of
the system is

Ẋ = AX + Bpf (15)

A =


03×3 13×3 03×3

w3×3 03×3 03×3

I−1
[

n
∑

i=1
ε(
∣∣∣f(i)∣∣∣)f(i)] 03×3 03×3

 (16)

B =


03×3 03×3 03×3 03×3

−ε(|f(1)|)·w3×3

2
−ε(|f(2)|)·w3×3

2
−ε(|f(3)|)·w3×3

2
−ε(|f(4)|)·w3×3

2

I−1
[
−f(1)

]
I−1
[
−f(2)

]
I−1
[
−f(3)

]
I−1
[
−f(4)

]
 (17)

where X =

p
ṗ
ω

, 13×3 =

1 0 0
0 1 0
0 0 1

. Discretize Equation (15) using a zero-order retainer:

X[n + 1] = ÂX[n] + B̂pf (18)

Combining the current COM state X0, the GRFs planned by the MPC when the foot
touched the ground in the previous period and the reference state of the robot, the location
of the foot is determined according to Equation (18). Let the desired foot location be pf.
After the foot touches the ground without slipping, the position in the world coordinate
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system does not change. The equation for the change of the state for the next N steps can
be obtained.

X1 = ÂX0 + B̂pf

X2 = ÂX1 + B̂pf = Â2X0 +
(
ÂB̂ + B̂

)
pf

X3 = ÂX2 + B̂pf = Â3X0 +
(

Â2 · B̂ + Â · B̂ + B̂
)

pf

...

XN = ÂXN−1 + B̂pf = ÂNX0 +
(

ÂN−1 · B̂ + ÂN−2 · B̂ + · · ·+ B̂
)

pf = ĀX0 + B̄pf

Ā = ÂN , B̄ = ÂN−1 · B̂ + ÂN−2 · B̂ + · · ·+ B̂

(19)

The control problem can be transformed into the selection of the foot location that the
robot will achieve the desired state at step N.

min J =
N

∑
i=1

(
X(i) − X(i,re f )

)T
L
(

X(i) − X(i,re f )

)
+ (pf − p)TK(pf − p) (20)

s. t. X[n + 1] = ÂX[n] + B̂pf (21)

pfmin ≤ pf ≤ pfmax (22)

Dpf = 0 (23)

Both L and K are adjustable weight matrices and semi-positive definite. Equation (23)
selects the foot that is currently in the swing period. By using Equations (19) and (20) can
be converted into the following quadratic optimization form.

min
x

1
2

pT
f Hpf+pT

f g (24)

where H = 2
(
B̄TLB̄ + K

)
, g = 2B̄TL(ĀX0 − Xd)− 2Kp. By limiting the foot location of

each time step to be equal, the dimension of the matrix to be computed is greatly reduced
and the efficiency of the computation is improved. The dimensionality of the final matrices
H and vector g is independent of the prediction length and is only related to the number
of variables. Therefore, it can greatly reduce the amount of computation to improve the
computation speed and increase the frequency of prediction.

p̈ =
∑4

i=1 f(i)

m
− g (25)

g ∈ R3×1 is the acceleration of gravity. Equations (11) and (25) form the complete
dynamics model of the quadruped robot. In Equation (11), angular acceleration is deter-
mined by the foot location and GRFs. The GRFs also determines the linear acceleration in
Equation (25). The user not only wants the quadruped robot to be able to keep up with the
desired speed, but also to ensure that the posture is stable around the desired value. This
places demands on both linear and angular acceleration. The MPC controller will select the
GRFs based on Equations (11) and (25) and the foot location. Therefore, the choice of foot
location will directly influence the outcome of the GRFs.

The HF selects the foot location only according to the current state so that the gain
value greatly affects the result. The UPMPC considers not only the current state but also
the influence of the foot location on the future state. It improves adaptability by selecting a
foot location where the future state is more in line with the desired one, rather than just
based on the current state. Therefore, the UPMPC can adapt to multiple gaits and complete
gait transitioning between different periods.
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5. Results
5.1. Simulation Setup

The proposed UPMPC is validated based on the simulation platform of MIT [21].
The simulation environment is shown in Figure 4 below. It is based on Ubuntu 18.04.
MIT’s Mini Cheetah is used [5] as the verification model for the algorithm. In which the
robot with 12 degrees of freedom weighs 9 kg [5], the friction between the foot and the
ground is 0.4. All of the joints are motor driven and torque controlled. LCM is used for
communication between the simulation environment and the control interface. LCM is
lightweight real-time communication software [22]. In this paper, qpOASES [23] is used
as a solver for the QP problem. qpOASES is specifically used to solve the MPC quadratic
optimization problem. The walking gait chosen in this paper is two-beat walking, so the
diagonal leg of walking, trotting and flight trotting can be equated to a virtual leg. At this
point, the quadruped robot is equivalent to a bipedal robot. Furthermore, the LIP model
can be applied. The control frequency of UPMPC is 0.5 kHz.

Figure 4. The model in simulation environment is the Mini Cheetah. The real-time in the upper
left corner indicates the time of the real world. The sim-time represents the time in the simulation
environment. The rate denotes the simulation rate.

During the simulation experiments, the control parameters of MPC are kept constant.
The prediction length of MPC method is 10 steps in all three gaits. The time length of each
step is 0.03 s. The prediction time is 0.3 s and the control frequency is 33 Hz. The prediction
length of UPMPC is three steps. The time length of each step is 0.03 s. None of the
parameters of the HF or UPMPC are changed during the motion. The periods of walking,
trotting and flight trotting are 0.6 s, 0.42 s and 0.3 s, respectively. The duty cycle of walking,
trotting and flight trotting are 0.6, 0.5 and 0.3, respectively. Each gait transitioning interval
is 3 s. The swing leg is planned with a Bessel curve. Figure 5 shows the COT [24] of three
gaits. COT is used to indicate the energy consumption level of the quadruped robot.

0 0.5 1 1.5 2 2.5 3

velocity

0

0.5

1

1.5

2

2.5

3

C
O

T

trotting

walking

flight trotting

Figure 5. COT of walking, trotting and flight trotting at different speeds, respectively.
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The three curves in Figure 5 represent the different gaits. The horizontal axis coor-
dinate corresponding to the rightmost end of each curve indicates the maximum speed
that can be achieved at the current gait. According to the curves in the image, the energy
consumption at various speeds for different gaits is variable. To reduce energy consump-
tion or to meet task requirements, the robot needs to transitioning between multiple gaits.
Because gait transitioning is performed at multiple speeds, the experiment is divided into
five parts to verify the performance of UPMPC:

• Transitioning between three gaits at the speed of 0.4 m/s;
• Transitioning between three gaits at the speed of 0.8 m/s;
• Transitioning between trotting and flight trotting at the speed of 1.2 m/s;
• Transitioning between trotting and flight trotting at the speed of 1.6 m/s;
• Movement of trotting gait using the UPMPC

At 0.4 m/s, walking has lower energy consumption. Higher than this speed, the energy
consumption of trotting is lower than walking. Transitioning between trotting and walking
at this speed can complete the transitioning of energy consumption smoothly. At this
time, flight trotting energy consumption is higher, but can have greater acceleration. Flight
trotting is indispensable when the robot wants to accelerate quickly from low speed to
high speed. Therefore, it is of great importance to perform the transitioning between the
three gaits.

At 0.8 m/s, it is the approximate speed at which the trotting and flight trotting COT
curves appear to intersect. Greater than this speed, flight trotting energy consumption is
less than trotting energy consumption. Flight trotting can accelerate to very fast speed in
the short time while walking can ensure posture stability at a certain speed. Therefore,
flight trotting and walking transitioning at this speed are equally relevant for applications.

For walking, 1.2 m/s and 1.6 m/s are already quite large speed of movement, very
close to the maximum speed in that gait, which itself is already not moving stably enough.
Feet in swing may collide with feet lifting off the ground sometimes. Furthermore, the COT
in this gait is already much larger than trotting and flight trotting. Therefore, transitioning
between trotting or flight trotting and walking at this speed lacks practical meaning. Only
the gait transitioning between trotting and flight trotting is considered.

To eliminate the effect of incidental factors, multiple gait transitioning is performed at
a given speed during the transitioning process. During the motion of a quadruped robot,
the posture change is closely related to the stability of the control. With small variations
in posture, the quadruped robot performs better in actual motion. Ideally, a quadruped
robot is most stable when the posture is at the desired value and does not change during
motion. Therefore, comparing the change in posture at the time of gait transitioning and
throughout the gait transitioning process gives a good indication of how well the foot
location planning method works. With the control algorithm unchanged, the choice of foot
location affects the planning result of MPC in gait transitioning, which in turn influences
the posture control of the quadruped robot. The posture is the result of the combined effect
of force and foot location. The advantages and disadvantages of the two methods can
be determined by posture changes and foot-end forces. Because the selected gaits are all
symmetrical, the force change at the foot end of one leg can better reflect the planning result
of MPC. The effectiveness and superiority of the UPMPC can be better demonstrated by
integrating the results of force planning and posture change. Finally, the posture changes
in trotting are shown to demonstrate that UPMPC can also get good results in a single gait.

5.2. UPMPC vs. HF

In this section, the peak value and the mean of absolute value are used to compare the
advantages and disadvantages of the two methods. The peak value is able to reflect the
stability of the posture after transitioning. Smaller peak indicates less posture oscillation
and better stability. The mean of absolute value gives a better evaluation to the change in
posture throughout the process and eliminates the effect of positive and negative values.
A smaller mean of absolute value of the posture indicates that the quadruped robot recovers
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from postural oscillations more quickly after a gait transitioning or the change in posture is
relatively small over the whole time. If the mean of absolute value is large, the quadruped
robot is unable to return to a stable state more quickly after a gait transitioning, or has a
large oscillation over the whole time.

The numbers marked in the figures below are the times at which the gait transitioning
takes place. The peak value used is the maximum value of the posture for the duration
after the gait transitioning has occurred and before the next starts. There is a time delay
between the peak values and the transitioning point, as the quadruped robot needs a very
short amount of time after the gait transitioning to reach its most unstable moment. This
part of the time is not negligible. Therefore, it will be seen that there is a lag between the
time of the transitioning point and the time of peak values.

Figure 6 is the gait transitioning between trotting and walking at 0.4 m/s. The gait
transitioning using the HF in Figure 6a fails directly and using the UPMPC in Figure 6b
succeeds despite facing a large posture oscillation. In Figure 6a, a large posture oscillation
has happened during the gait transitioning but the foot location of the HF planning cannot
cope with this situation. It makes the roll and yaw deviate more and more from the stable
position, leading to the posture divergence and gait transitioning failure. The posture
change is not so clear in Figure 6a,b. In Figure 6e, it becomes clear. In this graph the peak
of the posture after the gait transitioning is shown. The numbers 1, 2 and 3 stand for roll,
pitch and yaw, respectively. It is clear from Figure 6e that the gait transitioning using the
HF faces a large posture peak after the transitioning and far exceeds that of the UPMPC.
This is more than the controller can steadily control, making the system falter and the
transitioning fail. In Figure 6b,e, with the controller unchanged, the UPMPC planned foot
location effectively reduces the peak values of the posture comparing with the HF, allowing
the posture to return to near the stable value. Even if the transitioning results in a large
posture change, the UPMPC is able to help keep the robot moving stably by planning
a good foot location. Figure 6c,d shows the foot-end force planned by MPC for the left
front leg foot of the quadruped robot during the transitioning process. Figure 6f shows
the comparison of the peak force at the foot end after transitioning. The difference in peak
force is not so clear from Figure 6c,d. However, in Figure 6f, a huge difference is shown.
The huge force may cause unnecessary vibration and instability. It is not desirable that the
peak of the foot-end force is too large if the gait transitioning can be done. This is because
it will have a large impact on the posture and affects the stability of the quadruped robot
after gait transitioning. As can be seen from Figure 6f, the forces required by the robot
using UPMPC are much smaller during gait transitioning. The quadruped robot regains
stability in its posture by the combined effect of force and foot-end position. In Figure 6f,
the HF uses a greater force to try to restore stability, but the gait transitioning still fails.
In contrast, the UPMPC successfully completes the gait transitioning with less force.

These would suggest that the foot location chosen by the UPMPC is far superior to the
HF. Gait transitioning is accomplished with less foot-end force and less posture oscillation.
UPMPC shows a great advantage over HF in completing the gait transitioning between
trotting and walking.
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Figure 6. The figure shows the posture and GRFs of trotting in a gait transitioning to walking at
0.4 m/s. The number 1 in (a–d) indicate gait transitioning occuring. The horizontal coordinate of the
number 1 in the diagram represents the exact time of the transitioning. The transitioning process
is: trotting (0–27.6 s), walking (27.6-final). (c,d) Only capture the GRFs near the transitioning point
to facilitate analysis of the forces, so the transitioning time is not consistent with (a,b). All data in
the plots are from the same dataset. (a) Posture change using the HF at 0.4 m/s gait transitioning.
(b) Posture change using the UPMPC at 0.4 m/s gait transitioning. (c) Change in forward force at
0.4 m/s during gait transitioning. (d) Change in lateral force at 0.4 m/s during gait transitioning.
(e) Comparison of the peak values of roll, pitch and yaw for the two methods after transitioning.
The numbers 1, 2 and 3 on the horizontal axis in the graph represent roll, pitch and yaw, respectively.
(f) Comparison of peak values after transitioning for forward and lateral forces under both methods.
The numbers 1 and 2 on the horizontal axis in the diagram represent forward and lateral forces,
respectively.
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Figure 7 is the posture change during gait transitioning between flight trotting and
walking at 0.8 m/s. The transitioning points are marked by the numbers 1, 2, 3, 4 and 5
in the figure. In Figure 7a, the change of roll using UPMPC is basically consistent with
HF. All have oscillation after the transitioning. In Figure 7b, the numbers 1, 2, 3, 4, 5 show
the peak of the posture after the gait transitioning. A distinct difference between the two
methods can be seen in in Figure 7b. In this figure, the peak of roll using the UPMPC is
smaller than that of the HF, except for the fourth gait transitioning. The location of the foot
chosen by the UPMPC enables a smaller roll peak after transitioning. This indicates that the
quadruped robot with the UPMPC is more stable after switching. The number 6 represents
the mean of absolute value of the roll. Smaller mean of the absolute values can indicate
that the quadruped robot is more stable throughout the whole transitioning process. In
Figure 7b, the mean of absolute value of roll using the HF is significantly larger than that
using the UPMPC. The roll with the less oscillations over the whole time has the small
mean of the absolute values. Combining the mean of absolute value and the peak values,
the UPMPC has better control over roll. In Figure 7c, the curves of the two methods overlap
highly. In Figure 7d, both the peak values and the mean of absolute value of pitch at the
gait transitioning using UPMPC are smaller. Therefore, the UPMPC has better control of
the pitch. In Figure 7e, yaw drifts regardless of the foot location planning method. As the
number of transitioning accumulates, the yaw drift of UPMPC is smaller than that of the
HF in Figure 7e. UPMPC has better control of yaw during gait transitioning. Comparing
Figure 7b,d, the good control of yaw by UPMPC does not come at the expense of roll and
pitch. Figure 8 is the foot-end force change during gait transitioning between flight trotting
and walking at 0.8 m/s. Figure 8a,c show the force planned by MPC for the foot-end of the
left front leg during the transitioning process. In Figure 8b, the force peaks of the UPMPC
are significantly smaller in the second, third and fourth gait transitioning. The HF has
a slightly smaller force peak in the first and fifth gait transitioning. It is not possible to
distinguish exactly which method has the smaller mean of absolute values. The forward
forces required by the robot are nearly the same for both methods over the whole time.
In Figure 8d, the peak using the HF is smaller than that of UPMPC over the whole time.
However, there is no difference in the mean of absolute value between the two methods.
This means that both methods require essentially the same size force over the whole time.
There is no considerable difference between the two methods in regards to forward forces
or lateral forces. Combined with the change of posture, the UPMPC uses the same force to
achieve smaller posture peak and mean of absolute values of posture over the whole time.
Therefore, the UPMPC enables better control of posture. The UPMPC helps the quadruped
robot to perform better in gait transitioning tasks at 0.8 m/s. The overall oscillations in
posture are also smaller. However, it still cannot avoid the oscillation of posture at the
moment of transitioning. The better effect of UPMPC has been demonstrated.
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Figure 7. The figure shows the posture changes in gait transitioning between flight trotting and
walking at 0.8 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c,e) indicate gait transitioning occuring.
The horizontal coordinate of these numbers in the diagram represents the exact time of the tran-
sitioning. The transitioning process is: flight trotting (0–2.27 s (number 1)), walking (2.27–5.27 s
(number 2)), flight trotting (5.27–8.77 s (number 3)), walking (8.77–11.81 s (number 4)), flight trotting
(11.81–15.20 s (number 5)) and walking (15.20-final). The numbers 1, 2, 3, 4 and 5 in (b,d,f) denote the
peak values of the corresponding posture (roll, pitch or yaw) after the gait transitioning. Furthermore,
the number 6 indicates the mean of the absolute value of the corresponding posture over the whole
time. (a) Changes in roll during gait transitioning at 0.8 m/s. (b) Comparison of the peak values of
roll after transitioning and mean of the absolute values of roll in the whole time for the two methods
at 0.8 m/s. (c) Changes in pitch during gait transitioning at 0.8 m/s. (d) Comparison of the peak
values of pitch after transitioning and mean of the absolute values of pitch in the whole time for the
two methods at 0.8 m/s. (e) Changes in yaw during gait transitioning at 0.8 m/s. (f) Comparison of
the peak values of yaw after transitioning and mean of the absolute values of yaw in the whole time
for the two methods at 0.8 m/s.
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Figure 8. The figure shows the force changes in gait transitioning between flight trotting and walking
at 0.8 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c) indicate gait transitioning occuring. The horizontal
coordinate of these numbers in the diagram represents the exact time of the transitioning. The tran-
sitioning process is: flight trotting (0–1.37 s (number 1)), walking (1.37–4.54 s (number 2)), flight
trotting (4.54–7.86 s (number 3)), walking (7.86–11.05 s (number 4)), flight trotting (11.05–14.33 s
(number 5)) and walking (14.33-final). The numbers 1, 2, 3, 4 and 5 in (b,d) denote the peak values
of the corresponding forward forces or lateral forces after the gait transitioning. Furthermore, the
number 6 indicates the mean of the absolute value of the corresponding forces over the whole time.
(a) Change in forward force at 0.8 m/s. (b) Comparison of the peak values of forward force after
transitioning and mean of the absolute values of forward force in the whole time for the two methods
at 0.8 m/s. (c) Change in lateral force at 0.8 m/s. (d) Comparison of the peak values of lateral force
after transitioning and mean of the absolute values of lateral force in the whole time for the two
methods at 0.8 m/s.

Figure 9 is the posture change during gait transitioning between flight trotting and
trotting at 1.2 m/s. The transitioning points are marked by the numbers 1, 2, 3, 4 and
5 in the figure. In Figure 9a, many parts are overlapped. At three transitioning points,
the peak of the roll using UPMPC is slightly larger than that of HF in Figure 9c. However,
the HF does not show a clear advantage over the UPMPC in reducing the peaks values.
The mean of absolute value of the two methods is basically the same. For a slightly larger
peak values than the HF, the UPMPC has the same mean of absolute value. It shows that
the UPMPC allows the quadruped robot to recover stable from the postural oscillation of
the transitioning more quickly. Despite the small peak values, the HF requires a longer
time of posture oscillation to remove the effects of the transitioning. Therefore, it cannot be
stated which method is really better for roll control. In Figure 9e, both methods have a large



Appl. Sci. 2021, 11, 7866 16 of 25

change in pitch at the instant of transitioning. The pitch using UPMPC has a smaller peak.
It can be clearly seen from Figure 9b. At the same time, the mean of absolute values of pitch
using the UPMPC is also smaller than that using the HF. Therefore, the UPMPC has better
control for pitch. In Figure 9d, the yaw of both methods has some variation. In contrast to
the UPMPC, HF does not control yaw well. Yaw gradually deviates from the stable value
as gait transitioning occurs. The yaw using UPMPC also deviates, but its deviation under
multiple gait transitioning is much smaller than HF in Figure 9f. Thus, the UPMPC has
better control for yaw. Stability of posture is a prerequisite for the stable movement of a
quadruped robot. Figure 10a,b shows the foot-end force of the left front leg planned by the
MPC during the transitioning process. In Figure 10a, the vast majority of the curves from
both methods overlap. A clear feedback is also obtained in Figure 10c. It was not possible
to clearly determine which method had a smaller peak value of the forward force after gait
transitioning. The mean of absolute values are also essentially the same. The forces are
essentially the same under both methods. From the peak values, the lateral forces planned
by UPMPC become significantly smaller than those of HF in Figure 10d. During the whole
transitioning process, the lateral forces of HF are significantly greater than those of the
UPMPC. Comparing to HF, the robot with the UPMPC has less posture change during gait
transitioning, along with same forward forces and less lateral forces over the whole time
at the speed of 1.2 m/s. The gait transitioning task is done better by the UPMPC. This
indicates that the UPMPC selects a better location for the landing point. Combining the
forces and posture, UPMPC’s results are much better than HF’s.
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Figure 9. Cont.



Appl. Sci. 2021, 11, 7866 17 of 25

0 5 10 15 20

time(s)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

a
n

g
le

(r
a

d
)

yaw

1

2
3

4 5

HF

UPMPC

(e)

The peak and mean absolute value of the yaw

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

a
n

g
le

(r
a

d
)

HF

UPMPC

(f)

Figure 9. The figure shows the posture changes in gait transitioning between trotting and flight
trotting at 1.2 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c,e) indicate gait transitioning occuring. The hor-
izontal coordinate of these numbers in the diagram represents the exact time of the transitioning.
The transitioning process is: trotting (0–4.66 s (number 1)), flight trotting (4.66–7.87 s (number 2)),
trotting (7.87–11.36 s (number 3)), flight trotting (11.36–14.38 s (number 4)), trotting (14.38–17.88 s
(number 5)) and flight trotting (17.88-final). The numbers 1, 2, 3, 4 and 5 in (b,d,f) denote the peak
values of the corresponding posture (roll, pitch or yaw) after the gait transitioning. Furthermore, the
number 6 indicates the mean of the absolute value of the corresponding posture over the whole time.
(a) Changes in roll during gait transitioning at 1.2 m/s. (b) Comparison of the peak values of roll
after transitioning and mean of the absolute values of roll in the whole time for the two methods at
1.2 m/s. (c) Changes in pitch during gait transitioning at 1.2 m/s. (d) Comparison of the peak values
of pitch after transitioning and mean of the absolute values of pitch in the whole time for the two
methods at 1.2 m/s. (e) Changes in yaw during gait transitioning at 1.2 m/s. (f) Comparison of the
peak values of yaw after transitioning and mean of the absolute values of yaw in the whole time for
the two methods at 1.2 m/s.
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Figure 10. The figure shows the force changes in gait transitioning between flight trotting and trotting
at 1.2 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c), indicate gait transitioning occuring. The horizontal
coordinate of these numbers in the diagram represents the exact time of the transitioning. The tran-
sitioning process is: trotting (0–1.4 s (number 1)), flight trotting (1.4–4.26 s (number 2)), trotting
(4.26–8.08 s (number 3)), flight trotting (8.08–10.94 s (number 4)), trotting (10.94–14.11 s (number 5))
and flight trotting (14.11-final). The numbers 1, 2, 3, 4 and 5 in (b,d) denote the peak values of the
corresponding forward forces or lateral forces after the gait transitioning. Furthermore, the number 6
indicates the mean of the absolute value of the corresponding forces over the whole time. (a) Change
in forward force at 1.2 m/s gait transitioning. (b) Comparison of the peak values of forward force
after transitioning and mean of the absolute values of forward force in the whole time for the two
methods at 1.2 m/s. (c) Change in lateral force at 1.2 m/s gait transitioning. (d) Comparison of the
peak values of lateral force after transitioning and mean of the absolute values of lateral force in the
whole time for the two methods at 1.2 m/s.

5.3. Walk with a Fixed Gait

The UPMPC can also be used for walking with a fixed gait. Let the gait be trotting and
the foot location planning method be UPMPC. In this gait the quadruped robot accelerates
from stepping in place to 1.6 m/s. Each speed increase is 0.1 m/s with time interval of
30 gait periods (12.6 s). The roll, pitch and yaw changes during this process are shown in
Figure 11.
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Figure 11. (a) The change of roll in trottting. (b) The change of pitch in trottting. (c) The change of
yaw in trottting.

The quadruped robot has a small spike at each acceleration and the amplitude of
the oscillation increases as the speed increases. Yaw has deviated from the stable value.
However, it basically oscillates back and forth around the stable value. The peak values of
posture has not yet exceeded ±0.03 rad (1.72 deg) which is so small that it can be ignored.
With the same control method, the use of UPMPC also allows the quadruped robot to
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advance at a uniform speed and accelerate steadily. Therefore, UPMPC can be applied not
only in the process of gait transitioning, but also in the planning of foot location under
fixed gait.

5.4. Discussion

Figure 12 is the gait transitioning between trotting and walking at 0.8 m/s. This figure
is different from Figure 6a. The gait transitioning using the HF in Figure 12a fails. The
three postures after the transitioning are a straight line with no change, indicating that the
quadruped robot is at stationary position. There is no command given after transitioning
in the simulation. Thus, the gait transitioning has failed and the robot falls to the ground.
It fails because of the large posture changes generated after the gait transitioning and the
foot-end forces do not provide good control of the posture. The gait transitioning using
the UPMPC in Figure 12b succeeds. However, the posture still face a huge oscillation. The
control method for the quadruped robot is MPC all the time. Despite the greater foot end
forces, the UPMPC planned foot location can perform gait transitioning tasks together with
the controller. Although the force is less, the gait transitioning using the HF cannot be
completed. It indicates that the foot location chosen by HF at this point is not reasonable.
The foot location and foot-end forces under the HF can not correct for postural deviations.
The HF cannot cope with this gait transitioning. Therefore the UPMPC’s choice of foot
location is still preferable to HF. The rest of the simulation results are in the Appendix A.
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Figure 12. Cont.
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Figure 12. The figure shows the posture and GRFs of trotting in a gait transitioning to walking
at 0.8 m/s. The number 1 in (a–d) indicate gait transitioning occuring. The horizontal coordinate
of the number 1 in the diagram represents the exact time of the transitioning. The transitioning
process is: trotting (0–28.3 s), walking (28.3-final). (c,d) only capture the GRFs near the transitioning
point to facilitate analysis of the forces, so the transitioning time is not consistent with (a,b). All
data in the plots are from the same dataset. (a) Posture change using the HF at 0.8 m/s gait
transitioning. (b) Posture change using the UPMPC at 0.8 m/s gait transitioning. (c) Change in
forward force at 0.8 m/s during gait transitioning. (d) Change in lateral force at 0.8 m/s during gait
transitioning. (e) Comparison of the peak values of roll, pitch and yaw for the two methods after
transitioning. The numbers 1, 2 and 3 on the horizontal axis in the graph represent roll, pitch and
yaw, respectively. (f) Comparison of peak values after transitioning for forward and lateral forces
under both methods. The numbers 1 and 2 on the horizontal axis in the diagram represent forward
and lateral forces, respectively.

6. Conclusions

Combining multiple gaits transitioning at various speeds, UPMPC performs better
than the HF in all cases. In particular, the gait transitioning between trotting and walking
cannot be done by the HF but can be done by UPMPC. Furthermore, it has much better
control over yaw and pitch than HF. At most gait transitioning, the mean of absolute values
of roll under UPMPC is smaller. UPMPC with fixed parameters is able to accommodate
gait transitioning between multiple gaits at a variety of speeds.

Despite the use of a simplified model to describe the kinematics and dynamics of
the quadruped robot, the UPMPC-planned foot location still meets the requirements for
gait transitioning and is better than HF. The use of the uniform foot location not only
speeds up the solution, but also converts the problem to be solved into a QP form with
a smaller matrix. The coordinates of the foot in the world coordinate system are used as
the optimization solution variable more in line with the actual situation. Due to the good
migration of the used platform, it is believed that UPMPC can be applied in real systems to
meet the need of gait transitioning on real world.
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Figure A1. The figure shows the posture changes in gait transitioning between trotting and flight
trotting at 0.4 m/s. The numbers 1 and 2 in (a,c,e) indicate gait transitioning occuring. The horizontal
coordinate of these numbers in the diagram represents the exact time of the transitioning. The transi-
tioning process is: trotting (0–1.80 s (number 1)), flight trotting (1.80–4.76 s (number 2)) and trotting
(4.76-final). The numbers 1 and 2 in (b,d,f) denote the peak values of the corresponding posture
(roll, pitch or yaw) after the gait transitioning. Furthermore, the number 3 indicates the mean of the
absolute values of the corresponding posture over the whole time. (a) Changes in roll during gait
transitioning at 0.4 m/s. (b) Comparison of the peak values of roll after transitioning and mean of the
absolute values of roll in the whole time for the two methods at 0.4 m/s. (c) Changes in pitch during
gait transitioning at 0.4 m/s. (d) Comparison of the peak values of pitch after transitioning and mean
of the absolute values of pitch in the whole time for the two methods at 0.4 m/s. (e) Changes in yaw
during gait transitioning at 0.4 m/s. (f) Comparison of the peak values of yaw after transitioning
and mean of the absolute values of yaw in the whole time for the two methods at 0.4 m/s.
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Figure A2. The figure shows the posture changes in gait transitioning between flight trotting and
walking at 0.4 m/s. The numbers 1 and 2 in (a,c,e) indicate gait transitioning occuring. The hor-
izontal coordinate of these numbers in the diagram represents the exact time of the transitioning.
The transitioning process is: flight trotting (0–1.88 s (number 1)), walking (1.88–5.12 s (number 2)) and
flight trotting (5.12-final). The numbers 1 and 2 in (b,d,f) denote the peak values of the corresponding
posture (roll, pitch or yaw) after the gait transitioning. Furthermore, the number 3 indicates the mean
of the absolute value of the corresponding posture over the whole time. (a) Changes in roll during gait
transitioning at 0.4 m/s. (b) Comparison of the peak values of roll after transitioning and mean of the
absolute values of roll in the whole time for the two methods at 0.4 m/s. (c) Changes in pitch during
gait transitioning at 0.4 m/s. (d) Comparison of the peak values of pitch after transitioning and mean
of the absolute values of pitch in the whole time for the two methods at 0.4 m/s. (e) Changes in yaw
during gait transitioning at 0.4 m/s. (f) Comparison of the peak values of yaw after transitioning
and mean of the absolute values of yaw in the whole time for the two methods at 0.4 m/s.
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Figure A3. The figure shows the posture changes in gait transitioning between trotting and flight
trotting at 0.8 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c,e) indicate gait transitioning occuring. The hor-
izontal coordinate of these numbers in the diagram represents the exact time of the transitioning.
The transitioning process is: trotting (0–3.48 s (number 1)), flight trotting (3.48–6.77 s (number 2)),
trotting (6.77–10.28 s (number 3)), flight trotting (10.28–13.10 s (number 4)), trotting (13.10–16.61 s
(number 5)) and flight trotting (16.61-final). The numbers 1, 2, 3, 4 and 5 in (b,d) denote the peak
values of the corresponding posture (roll, pitch or yaw) after the gait transitioning. Furthermore, the
number 6 indicates the mean of the absolute value of the corresponding posture over the whole time.
(a) Changes in roll during gait transitioning at 0.8 m/s. (b) Comparison of the peak values of roll
after transitioning and mean of the absolute values of roll in the whole time for the two methods at
0.8 m/s. (c) Changes in pitch during gait transitioning at 0.8 m/s. (d) Comparison of the peak values
of pitch after transitioning and mean of the absolute values of pitch in the whole time for the two
methods at 0.8 m/s. (e) Changes in yaw during gait transitioning at 0.8 m/s. (f) Comparison of the
peak values of yaw after transitioning and mean of the absolute values of yaw in the whole time for
the two methods at 0.8 m/s.
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Figure A4. The figure shows the posture changes in gait transitioning between trotting and flight
trotting at 1.6 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c,e) indicate gait transitioning occuring. The hor-
izontal coordinate of these numbers in the diagram represents the exact time of the transitioning.
The transitioning process is: trotting (0–3.57 s (number 1)), flight trotting (3.57–6.79 s (number 2)),
trotting (6.79–10.27 s (number 3)), flight trotting (10.27–13.09 s (number 4)), trotting (13.09–16.72 s
(number 5)) and flight trotting (16.72-final). The numbers 1, 2, 3, 4 and 5 in (b,d) denote the peak
values of the corresponding posture (roll, pitch or yaw) after the gait transitioning. Furthermore, the
number 6 indicates the mean of the absolute value of the corresponding posture over the whole time.
(a) Changes in roll during gait transitioning at 1.6 m/s. (b) Comparison of the peak values of roll
after transitioning and mean of the absolute values of roll in the whole time for the two methods at
1.6 m/s. (c) Changes in pitch during gait transitioning at 1.6 m/s. (d) Comparison of the peak values
of pitch after transitioning and mean of the absolute values of pitch in the whole time for the two
methods at 1.6 m/s. (e) Changes in yaw during gait transitioning at 1.6 m/s. (f) Comparison of the
peak values of yaw after transitioning and mean of the absolute values of yaw in the whole time for
the two methods at 1.6 m/s.
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