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Abstract: Remote sensing for the monitoring of chlorophyll-a (Chl-a) is essential to compensate for
the shortcomings of traditional water quality monitoring, strengthen red tide disaster monitoring
and early warnings, and reduce marine environmental risks. In this study, a machine learning
approach called the Gradient-Boosting Decision Tree (GBDT) was employed to develop an algorithm
for estimating the Chl-a concentrations of the coastal waters of the Beibu Gulf in Guangxi, using
Landsat 8 OLI image data as the image source in combination with field measurements of Chl-a
concentrations. The GBDT model with B4, B3 + B4, B3, B1− B4, B2 + B4, B1 + B4, and B2− B4 as input
features exhibited higher accuracy (MAE = 0.998 µg/L, MAPE = 19.413%, and RMSE = 1.626 µg/L)
compared with different physics models, providing a new method for remote sensing inversion of
water quality parameters. The GBDT model was used to study the spatial distribution and temporal
variation of Chl-a concentrations in the coastal sea surface of the Beibu Gulf of Guangxi from 2013 to
2020. The results showed a spatial distribution with high concentrations in nearshore waters and low
concentrations in offshore waters. The Chl-a concentration exhibited seasonal changes (concentration
in summer > autumn > spring ≈ winter).

Keywords: chlorophyll-a; gbdt model; Guangxi Beibu Gulf; remote sensing inversion

1. Introduction

Chlorophyll-a (Chl-a) is an important index that can reflect phytoplankton biomass
and the state of eutrophication. The concentration of Chl-a increases as the phytoplankton
biomass increases, and an increase in phytoplankton may cause red tides, with the potential
to threaten public health [1] and wildlife [2] and being harmful to the environment [3,4].
The Beibu Gulf in Guangxi receives more than 120 small- and medium-sized inflows
carrying a large amount of organic matter and inorganic salts, and it is likely to experience
eutrophication and red tides. From 2014 to 2017, several abnormal water quality events
occurred in the Beibu Gulf of Guangxi, including two red tides. Consequently, water
quality monitoring in the Guangxi Beibu Gulf is of significance for protecting the water
quality and environment of the Beibu Gulf and ensuring the health of its residents [5].

Traditional monitoring methods cannot completely reflect the spatial and temporal
distribution of the water quality because of the small coverage of such methods, which are
limited by high costs. However, satellite remote sensing enables automated monitoring of
water quality parameters, including the Chl-a and total suspended solids. Such techniques
benefit from lower costs and greater spatial and temporal coverage [6], and such studies
have been undertaken overseas and in China [7–10].

In recent years, machine learning has been used to retrieve water quality. Machine
learning enhances the accuracy of inversion and the generalization ability through model
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training and, in turn, predicting and analyzing test data [11]. This method uses internal
implicit networks and structures to determine the complex characteristics of input data and
obtain explicit relationships among the output variables [12,13]. Several approaches, in-
cluding the decision tree [12,14], BP neural network [15,16], support vector machine model
(SVM) [17,18], and extreme machine learning approaches [19], have strong adaptability,
fault tolerance, and organization of data.

The optical radiometric measurement of the Chl-a concentration in coastal waters
remains a challenge due to the presence of phytoplankton, suspended matter, and colored,
dissolved organic matter. Some studies have revealed the advantages associated with
the machine learning method applied in this field. In Galician Rias (northwest Spain),
the neural network techniques were applied to estimate the Chl-a concentrations in three
different water types. The results showed the capacity of the neural network to predict
the Chl-a concentrations in coastal waters [20]. The Mixture Density Network (MDN)
was induced for seamless retrieval of Chl-a data records in inland and coastal waters in
the study of Pahlevan et al. As evidenced through image and satellite matchup analyses,
the model generated realistic spatial distributions and provided a more accurate Chl-a
map [21]. The Gradient-Boosting Decision Tree (GBDT) is a machine learning technique
for regression, classification, and other tasks, using a decision tree flowchart approach
combined with the boosting ensemble technique. The GBDT improves the capacity of the
decision tree by reducing the residuals generated during the training procedure [22,23]. It
has been widely applied in social science research [24–28] and gradually introduced into
the field of natural science [1–7,29–35]. The GBDT exhibits much better performance in the
retrieval of water depth compared with the single-band, dual-band, and BP neural network
models [36]. Some studies have shown that the GBDT model can achieve higher simulation
accuracy to the random forest (RF) algorithm and regression tree input with the same
meteorological factors [37]. By constantly calculating the best fitting value and updating
the classifier, the GBDT algorithm can obtain explicit relationships and features between
different types of data with little prior knowledge. Considering the complex relationship
between the water quality parameters and spectral characteristics, the GBDT model has
the potential for faster and more accurate application of remote sensing retrieval of Chl-a
concentrations in coastal waters.

In light of the above considerations, the main aim of this study was to (1) develop a
machine learning algorithm for Chl-a estimation in the coastal region of the Beibu Gulf in
Guangxi, exploring the potential of GBDT model in the retrieval of water quality parameters
in coastal waters, (2) compare the performance of the GBDT with that of conventional
models, and (3) analyze the factors determining the temporal–spatial distribution of the
Chl-a concentration in the Beibu Gulf in Guangxi.

2. Materials and Methods
2.1. Study Area

The Beibu Gulf (107◦57′ E~109◦48′ E, 21◦00′ N~22◦15′ N, Figure 1) is a coastal re-
gion in Guangxi Province, included in the administrative region of Qinzhou, Beihai, and
Fangchenggang. The study area can be roughly divided into the Qinzhou Bay, Fangcheng
Bay, Dafeng Estuary Bay, Nanliu Estuary Bay, Tieshan Port Bay, and Pearl Bay.

Located south of the Tropic of Cancer, the Beibu Gulf of Guangxi is dominated by
a subtropical climate with an oceanic monsoon, exhibiting transitional characteristics
from subtropical to tropical [38]. The average sea surface temperature in the Beibu Gulf
of Guangxi is approximately 22.6 ◦C, with high temperatures experienced from June to
August and low temperatures occurring from December to March. Rainfall is cyclical, with
the wet season ranging from May to October and the dry season ranging from November
to the following April. The annual average rainfall is approximately 1500 mm, and the
rivers in Guangxi are mainly replenished by rainwater, particularly during the wet season
and a small amount in the dry season.
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Figure 1. Study region. The colored rectangles represent the mouths of the bays in the Beibu Gulf. 
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mous Region [39] (Figure 2). The quality of the coastal water at a depth of 0.5 m was mon-
itored every half an hour by a multi-parameter probe (6600V2-4, YSI, Yellow Springs, OH, 
USA) produced by Xylem, and the concentration of Chl-a was determined by a in vivo 
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2.2. Dataset
2.2.1. In Situ Data

Chl-a concentrations were measured every 30 min at the automatic monitoring station
of the Marine Environmental Monitoring Center of the Guangxi Zhuang Autonomous
Region [39] (Figure 2). The quality of the coastal water at a depth of 0.5 m was moni-
tored every half an hour by a multi-parameter probe (6600V2-4, YSI, Yellow Springs, OH,
USA) produced by Xylem, and the concentration of Chl-a was determined by a in vivo
fluorescence method.

The instantaneous value of the Chl-a concentration closest to the transit time of
Landsat 8 (11:11 a.m.) was selected as the model input dataset.

2.2.2. Satellite Data Acquisition and Pre-Processing

The Landsat 8 OLI satellite data with a nominal 30-m spatial resolution used in
this study were accessed from the United States Geological Survey (USGS) portal (https:
//glovis.usgs.gov (accessed on 1 January 2021)). The images (path-row: 125-045) cov-
ered the coastal waters of the Beibu Gulf of Guangxi to the maximum extent, and the
13 automatic monitoring stations established by the Marine Environmental Monitoring
Center of Guangxi are in the coverage. 34 scene images with low cloud cover were selected,
ranging from 2013 to 2020 (Table 1).

https://glovis.usgs.gov
https://glovis.usgs.gov
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Figure 2. Distribution of sampling points.

Table 1. Dates of remote sensing images.

Date Cloud Cover Date Cloud Cover

7 December 2020 22.26 28 October 2017 0.13
5 November 2020 12.66 2 March 2017 0.09
2 September 2020 18.40 14 February 2017 0.28

27 April 2020 14.75 28 December 2016 1.07
23 February 2020 9.22 9 October 2016 3.60
5 December 2019 9.63 3 June 2016 15.18
18 October 2019 15.99 23 October 2015 0.64
2 October 2019 5.56 7 October 2015 11.35
15 August 2019 15.80 1 June 2015 21.82

11 May 2019 34.00 14 April 2015 1.01
20 February 2019 33.79 1 August 2014 16.62
18 December 2018 26.23 14 June 2014 14.28
31 October 2018 0.03 21 January 2014 0.05

29 September 2018 4.98 5 January 2014 1.24
11 July 2018 19.78 20 December 2013 0.42
9 June 2018 1.89 4 December 2013 0.03

1 February 2018 1.89 2 November 2013 5.83

The Landsat 8 OLI satellite images were radiologically calibrated and atmospherically
corrected before further processing. By radiometric calibration, the digital number (DN)
recorded by the sensor could be converted into the spectral radiance and to the Top
of the Atmosphere (TOA) reflectance. The surface reflectance may have changed after
the atmospheric transmission, so the atmospheric correction was required. The error of
reflectance reduced after atmospheric correction and could be used for the retrieval of
Chl-a concentration.

In this study, all of the images were processed for radiometric calibration and atmo-
spheric correction using the FLAASH model in the ENVI 5.3.1 software package. The
corrected image reduced the influence of water vapor particles in the air and was clearer
than the image before correction. The spectral curve of the pixel after atmospheric correc-
tion was closer to the actual spectral curve of the ground object and more in line with the
requirements of inversion as shown in Figure 3.
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2.2.3. Calibration Dataset

With the pre-processing of remote sensing images accomplished by radiometric cali-
bration and atmospheric correction of the image, the measured data of the Chl-a concentra-
tion were matched with the spectral data of the monitoring sampling points, producing
117 samples in total (Table 2).

Table 2. Chl-a concentration and reflectance of some samples.

Dates Site
Number

Concentration
(µg/L)

Reflectance

B1 B2 B3 B4 B5 B6 B7

14 April 2015 GX05 5.30 0.077 0.070 0.084 0.059 0.038 0.029 0.024
23 October 2015 GX04 2.80 0.085 0.075 0.083 0.054 0.030 0.012 0.006

28 December 2016 GX02 3.20 0.070 0.061 0.074 0.048 0.017 0.005 0.003
14 February 2017 GX02 2.00 0.078 0.068 0.070 0.040 0.023 0.008 0.005

11 July 2018 GX13 8.80 0.119 0.116 0.127 0.108 0.108 0.108 0.088

Clouds and shadows on the fog surface may have caused data anomalies, resulting in
deviations between the inversion results and field data. To improve the accuracy of the
inversion model, outliers needed to be removed.

A boxplot was used to filter abnormal data. The reflectance of each band for the
117 samples was calculated (Figure 4), 7 abnormal data points in the study samples were
identified and removed, and 110 samples were used in the study thereafter.

2.3. GBDT Model

The Gradient-Boosting Decision Tree (GBDT) algorithm was proposed by Friedman
in 1999 [40]. The algorithm restricts weak learners from using only the Classification and
Regression Tree (CART) model, a widely used model for constructing decision trees for both
classification and regression problems. When building a regression tree using the CART
model, the feature selection index generally uses the node minimum sample variance. The
larger the sample variance, the greater the node data scatter with low purity. The CART
branches through the variance threshold of each node. When all the variance is lower
than the threshold value of each node, or after reaching the set stop conditions, the CART
decision tree is completed. In the GBDT algorithm, the CART decision tree is associated
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with the boosting algorithm. In general, the residuals are calculated and evaluated after
each iteration and processed as the input by the next iteration, thus minimizing the loss
function and improving the fitting accuracy of the model. When the residuals reach a lowest
value, or the setting termination condition has been reached, the model is constructed, and
the regression result will be exported. The specific step of the GBDT regression algorithm
is shown in the following sequence of equations and in Figure 5.
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1. Initialize the cart learner:

f0(x) = argminc

n

∑
i=1

L(yi, c) (1)
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2. In round t, the negative gradient of each sample is calculated:

rt,i = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f(x)= ft−1(x)

(2)

3. The CART regression tree Tt is obtained by fitting (xi, rt,i), i = 1, 2, . . . , m, and the
leaf node region is divided into Rt,j, j = 1, 2, . . . , J;

4. Traverse (referring to one visit to each node in the tree (or graph) along a certain
search route) the node region, and calculate the output value of each leaf node Rt, namely
the best fitting value ct,j:

ct,j = argminc ∑
xi∈Rt,j

L(yi, ft−1(xi) + c) (3)

5. Update the learner:

ft(x) = ft−1(x) +
J

∑
j=1

ct,j I(x ∈ R) (4)

6. Repeat these steps until the termination condition is reached, and the final strong
learner expression is obtained by adding the weak learners as follows:

f (x) = f0(x) +
T

∑
t=1

J

∑
j=1

ct,j I(x ∈ R) (5)

To avoid over- or underfitting of the model, the setting of the GBDT model was
determined by grid searching with cross-validation. By 10-fold cross-validation, the method
of cross validation used in this study, the dataset was separated into 10 subsamples. After
one of the subsamples was randomly used as a testing set with the rest as a training set,
the GBDT model was constructed, and the performance was evaluated. This process was
repeated 10 times. By grid research, all the potential setting was traversed with 10-fold
cross-validation, and the parameters with best performance were given. In this study, the
mean square error (MSE) was set as a loss function, and the learning rate was set as 0.1.
The number of the CART decision trees was set as 100, and the max depth of the decision
tree was set as 3.

The inversion accuracy of the remote sensing inversion model was assessed using
the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean
square error (RMSE), which are defined as follows:

MAE =
1
n
×∑n

i=1|(yi − fi)| (6)

MAPE(%) =
1
n
×∑n

i=1

∣∣∣∣ (yi − fi)

yi
× 100%

∣∣∣∣ (7)

RMSE =

√
1
n
×∑n

i=1(yi − fi)
2 (8)

where n is the number of data pairs, the subscript i denotes individual data points, and y
and f represent the measured and estimated values, respectively.

The correlation coefficient (R2) was also measured to show how well the variation of
one model explained the variation in the concentration of Chl-a. Generally, the largest R2

with the smallest RMSE gives the best prediction model. In this study, the models with cor-
relation coefficients (R2) exceeding 0.7 would be selected to verify the inversion accuracy.

Theil–Sen and Mann-Kendall trend analysis were used to analyze the variation of
Chl-a concentrations in the coastal sea surface of the Beibu Gulf of Guangxi. Theil–Sen and
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Mann-Kendall trend analysis includes Theil–Sen slope estimation and the Mann-Kendall
significance test, which does not require the dataset to meet the normal distribution on
the time series, nor does it require a dataset correlation between time series, which is
insensitive to outliers in time series and has a strong ability to avoid measurement errors
in datasets or discrete data.

The remote sensing images with sensing dates ranging from 2013 to 2020 were con-
verted into the trained GBDT model, and the output results were imported into ArcGIS
10.5 for raster processing. After elimination of the outlier values and Inverse Distance
Weighted (IDW) interpolation, the spatial and temporal distributions of chlorophyll were
visualized for analysis.

3. Results
3.1. Performance Assessment

In this study, single bands and the single-band ratio, band combination, and water
index of the Landsta8 OLI images in the study area were used to establish the feature
library of the GBDT model. The single-sample Kolmogorov–Smirnov test (K–S test) was
used in SPSS software to determine whether these variables were in line with the normal
distribution. The results showed that the value of progressive significance of the test
samples was greater than 0.05, proving that the variables were in line with the normal
distribution. In this case, Pearson’s correlation analysis was used to test the importance of
the features.

Features with high importance (correlation coefficient higher than 0.6) are shown in
Table 3. The features with correlation coefficients higher than 0.7 (B4, B3 + B4, B3, B1 − B4,
B2 + B4, B1 + B4, and B2 − B4) were selected as the input variables.

Table 3. Importance of modeling features.

Feature Correlation
Coefficient Feature Correlation

Coefficient Feature Correlation
Coefficient

B4 0.763 ** B2 − B3 −0.694 ** B4 + B7 0.674 **
B3 + B4 0.751 ** B4/B1 0.691 ** B4 + B6 0.668 **

B3 0.725 ** B4 + B5 0.689 ** B3 + B7 0.664 **
B1 − B4 −0.724 ** B1 − B3 −0.686 ** B3 + B6 0.660 **
B2 + B4 0.717 ** B2 + B3 0.686 ** B4/B2 0.647 **
B1 + B4 0.706 ** B3 + B5 0.680 ** FAI −0.614 **
B2 − B4 −0.704 ** B1 + B3 0.675 ** B1/B4 −0.609 **

** Significant correlation at the 0.01 level (bilateral).

The input features of the GBDT model were added successively, and the accuracy of
the inversion results was evaluated and compared (Table 4). The results demonstrated
that the inversion accuracy was enhanced as more variables were added, suggesting that
additional variables could significantly improve the performance of the GBDT model for
the retrieval of the Chl-a concentration, and the GBDT model with all the selected variables
performed with a higher accuracy (R2 = 0.778).

Table 4. Results of assessing the accuracy of multiple feature variables.

Feature Variables MAE
(µg/L)

MAPE
(%)

RMSE
(µg/L) R2

B4 2.641 51.365 3.616 0.043
B4, B3 + B4 1.416 27.539 1.970 0.685

B4, B3 + B4, B3 1.387 26.988 1.912 0.695
B4, B3 + B4, B3, B1 − B4 1.284 24.968 1.793 0.729

B4, B3 + B4, B3, B1 − B4, B2 + B4 1.247 24.250 1.731 0.755
B4, B3 + B4, B3, B1 − B4, B2 + B4, B1 + B4 1.303 25.355 1.752 0.752
B4, B3 + B4, B3, B1 − B4, B2 + B4, B1 + B4,

B2 − B4 0.998 19.414 1.626 0.778
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The inversion results and the fitting of the measured values of the GBDT model
constructed with B4, B3 + B4, B3, B1− B4, B2 + B4, B1 + B4, and B2− B4 as the input features
are shown in Figure 6. The GBDT model performed well, as indicated (MAE = 0.998 µg/L,
MAPE = 19.414%, RMSE = 1.626 µg/L, and R2 = 0.778).
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3.2. Spatial–Temporal Distribution of Chl-a
3.2.1. Spatial Variations of Chl-a

Based on the inversion results of the Chl-a concentrations from 2013 to 2020, the
distribution of the Chl-a concentrations in the coastal waters of the Guangxi Beibu Gulf
was obtained by taking the average value (Figure 7). The average Chl-a concentration
in each bay in the coastal waters of the Guangxi Beibu Gulf from 2013 to 2020 is shown
in Table 5.

Table 5. Details of Chl-a concentration distribution of 2013~2020.

Bay Minimum Value
(µg/L)

Maximum Value
(µg/L)

Average
(µg/L)

Pearl Bay 1.283 10.082 5.031
Fangcheng Bay 1.571 5.034 3.372
Qinzhou Bay 1.508 13.003 6.600

Dafeng Estuary Bay 1.570 12.410 8.198
Nanliu Estuary Bay 0.836 19.703 11.469

Beihai 2.883 13.131 7.461

The concentration of Chl-a in the coastal sea surface of the Beibu Gulf of Guangxi was
higher in the nearshore coastal waters and lower in the offshore waters, and it gradually
decreased from north to south. The concentration of Chl-a in the Nanliu Estuary Bay was
the highest, and the average of the whole region was 11.469 µg/L. The means of the Dafeng
Estuary Bay, Beihai, Qinzhou Bay, Pearl Bay, and Fangcheng Bay were 8.198, 7.461, 6.600,
5.031, and 3.372 µg/L, respectively.
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3.2.2. Temporal Variations of Chl-a

The Chl-a concentrations in the four seasons in 2019 are presented in Figure 8.
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The thermal and dynamic structures of the sea surfaces of the Beibu Gulf of Guangxi
are affected by subtropical monsoons. The spatial and temporal differences in the Chl-a
concentration in the Beibu Gulf were caused by the transport of nutrients. The concen-
tration of Chl-a in the coastal sea surface exhibited clear seasonal changes. The average
concentration of Chl-a in the summer was the highest (8.312 µg/L), while it was moderate
during autumn (7.714 µg/L) and spring (6.954 µg/L) and lowest in winter (6.680 µg/L).

3.3. Theil–Sen and Mann-Kendall Trend Analysis

Theil–Sen and Mann-Kendall trend analysis demonstrated variations in the Chl-a
concentrations in the coastal sea surfaces of the Guangxi Beibu Gulf (Figure 9), and the
statistical results of each trend are shown in Table 6.
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Table 6. Statistical table of the area of each trend.

Trend of Chl-a Concentration Area (km2)

Obvious decrease 193.550
Less obvious decrease 356.720

No obvious change 383.690
Less obvious increase 724.450

Obvious increase 761.490
Failed the significance test 1721.900

The area of this study area was 4141.8 km2, of which the area with an obvious decrease
in its Chl-a concentration was 193.55 km2, the area with a less obvious decrease was
356.72 km2, the area with no obvious change was 383.69 km2, the area with a less obvious
increase was 724.45 km2, and the area with an obvious increase was 761.49 km2. The
remaining 1721.900 km2 in the study area showed no significant change. The concentration
of Chl-a in the coastal sea surface has exhibited an increase in recent years.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.
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4. Discussion
4.1. Comparison of Different Models

Two machine learning models were used for comparison in this study. An artificial
neural network is a machine learning model that can explore the nonlinear relationship
between the input variables and target data though training and adjusting the inside
interconnected processing neurons [41]. The features of high prediction accuracy, self-
adaptation, and robustness make it widely used for retrieval in waters with complex
optical characteristics [42]. The support vector machine (SVM) is a useful tool for nonlinear
statistical learning and regression analysis [43], whose training provides the support vectors
to separate the classes in a multidimensional attribute space (the inland water’s trophic
status classification is based on machine learning and remote sensing data).

The artificial neural network and SVM model were trained in MATLAB software.
Given the same input variables as the GBDT model, the performance of them for the
estimation of the Chl-a concentration in the coastal waters of the Beibu Gulf in Guangxi
were evaluated.

The results from verifying the accuracies of different models are compared in Figure 10
and Table 7.

Table 7. Comparison of model accuracies.

Model Variables MAE
(µg/L)

MAPE
(%)

RMSE
(µg/L) R2

Single band B3 3.381 65.758 3.705 0.563
B4 3.006 58.470 2.903 0.719

Band ratio B4/B1 1.967 38.261 1.935 0.706

Band
combination

B2 + B3 2.035 39.582 2.248 0.637
B2 + B4 1.898 36.927 2.029 0.671
B3 + B4 1.795 34.913 1.959 0.698

Water index FAI 1.843 35.884 2.226 0.591

SVM B4, B3 + B4, B3, B1 − B4,
B2 + B4, B1 + B4, B2 − B4 2.085 39.784 2.986 0.527

GBDT model B4, B3 + B4, B3, B1 − B4,
B2 + B4, B1 + B4, B2 − B4 0.998 19.414 1.626 0.778

Neural
network

B4, B3 + B4, B3, B1 − B4,
B2 + B4, B1 + B4, B2 − B4 1.492 28.472 1.974 0.714

The GBDT model performed well, as indicated in the statistical metrics. The results
of the analyses of the accuracy demonstrated that the GBDT model exhibited the highest
inversion accuracy for the Chl-a concentration, with an RMSE of 1.626; the remote sensing
inversion model for the Chl-a concentration based on the GBDT algorithm exhibited
advantages in the inversion accuracy.

The GBDT model performed better than the B4/B1 model and the other models
tested. While the B4/B1 model reasonably estimated the Chl-a concentration (R2 = 0.706;
Figure 10b), it exhibited deviations at high and low Chl-a concentrations. The floating
algae index (FAI), a water index strongly correlated with Chl-a which was proposed by
Hu in 2009 [44], exhibited a relatively large deviation from the in situ data (R2 = 0.591,
RMSE = 2.226 µg/L, MAPE = 35.884%, and MAE = 1.843 µg/L) (Table 6; Figure 10f).
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Among the machine learning algorithms tested, the GBDT algorithm exhibited the best
performance, while the SVM had the poorest performance (R2 = 0.527, RMSE = 2.986 µg/L,
MAPE = 39.784%, and MAE = 2.085 µg/L). Given the same input variables as the GBDT
model, the neural network had a higher inversion accuracy than the traditional statistical
models (R2 = 0.706), showing a capacity to estimate the concentration of Chl-a in the coastal
water. In general, the neural network tended to underestimate the Chl-a concentration,
and the reason for this might be that the samples used to train and validate the neural
network were inadequate. In a previous study (Song et al. [45]), the artificial neural network
performed well for the estimation of the TSM and Chl-a concentration, but it required a
large dataset for training. With a smaller dataset and faster computation, the GBDT model
could generate a prediction algorithm, allowing better generalization and thus making it
more appropriate for estimating the temporal variation of the Chl-a concentration than
other models.
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The concentration of Chl-a in the coastal sea surface of the Beibu Bay of Guangxi
obtained by remote sensing inversion ranged from 0 to 35 µg/L, similar to the field survey
results of Yang Bin and Zhong Qiuping et al. [46], indicating that the retrieval effect of the
selected remote sensing inversion model for the Chl-a concentration was close to the field
data, and the remote sensing inversion results had high reference significance.

4.2. Spatial and Temporal Distribution of Chl-a
4.2.1. Spatial Difference of Chl-a

The average distribution of the Chl-a concentration in the coastal waters of the Guangxi
Beibu Gulf is shown in Figure 11. The concentration of coastal sea surface chlorophyll was
high in the nearshore waters and low in the offshore waters, and it gradually decreased
from north to south. Nutrients in the Beibu Gulf in Guangxi are mainly transported from
coastal land sources [47], and the pollution inputs from the Nanliu River are the largest. The
Nanliu River basin is large, bringing together industrial, agricultural, and urban sewage
from adjacent land, which carries a large amount of nutrients. According to the Marine
Environment Quality Bulletin of the Guangxi Zhuang Autonomous Region, in 2016, the
inflow CODCr of the Nanliu River in 2016 was 174,049 t, and the total amount of ammonia
nitrogen, nitrate nitrogen, and nitrite nitrogen was 9868 t. The estuarine and coastal zones
are transitional zones between land and sea with relatively shallow water depths, so river
inflows with high-input terrigenous nutrient content mix with offshore salt water. The
annual average SST is about 20.3~29.9 ◦C. High light intensity and high SST promote the
growth and reproduction of phytoplankton and algae, resulting in an increase in the Chl-a
concentration [48].
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The runoff diluted water lifts the level in the nearshore sea, and the offshore sea level
is relatively low; nutrients then plume out to sea from the estuary. The Beibu Gulf in
Guangxi has a tropical and subtropical monsoon climate. The monsoon strengthens the
emergence of a current alongshore area, which is also affected by the Coriolis force, and
the seaward runoff moves westward along the coast. Therefore, from the perspective of
the source, the concentration of Chl-a in the coastal waters of the Beibu Gulf in Guangxi
was higher in the nearshore water and lower in the offshore water due to the input of
terrestrial nutrients. From the perspective of transport, the nutrients in the Beibu Gulf in
Guangxi diffuse from the estuary to the offshore sea. Under the influence of the monsoon,
the nutrients flow westward along the coast, and the concentration of Chl-a gradually
decreases when moving westward.

4.2.2. Temporal Variation of Chl-a

The concentration of Chl-a in the coastal sea surface of the Beibu Gulf in Guangxi
exhibited strong seasonal changes, with the following ranking being apparent: summer >
autumn > spring and winter (Figure 12).
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The Chl-a concentration in summer and autumn was mainly affected by the climate [49,50].
In summer, the Beibu Gulf receives abundant rainfall. The wet season ranges from July
to September, and the average monthly precipitation exceeds 100 mm, accounting for
approximately 55–70% of the total annual rainfall. River runoff is the largest in summer,
and many rivers along the coast flow into the Beibu Gulf, taking agricultural and industrial
wastewater into the gulf. The inflows have strong diffusion force, carrying large amounts
and high concentrations of nutrients. As the sea level is raised by the runoff, the resultant
concentration gradient strengthens the water exchange and increases the thickness of the
mixing layer. There are high temperatures in summer, with the highest SST being up to
34.1 ◦C. Under such environmental conditions, phytoplankton proliferate in large numbers.
Therefore, the concentration of Chl-a was the highest in the summer, and the area with a
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high value was concentrated in the estuarine area of the region. The southwest monsoon
prevails in summer, generating a coastal component of the wind force, and it flows along
the coast, driven by the monsoon [51]. The runoff raised the sea level and further promoted
southwest flow along the coast by the gradient in the sea level. Therefore, in summer,
nutrients along the Beibu Gulf are transported from east to west. The Chl-a concentration
declined gradually from east to west. In autumn, rainfall decreases, and runoff into the sea
decreases. The river-diluted water contracts to the shore, and the concentration of Chl-a
decreases compared with that in the summer.

In spring and winter, the river runoff was the smallest, the terrestrial nutrient input
was lower, the sea surface temperature was the lowest (19.0–24.0 ◦C), the growth of
phytoplankton was inhibited, and the Chl-a concentration in the sea surface was the lowest.
The wind is light over the Beibu Gulf in spring, and the effect of the Beibu Gulf monsoon on
aquatic mixing is greatly reduced, causing a smaller mixing layer. Additionally, controlled
by the reduction in flow, the Chl-a concentration is generally low in the spring and winter
in the Beibu Gulf. The climate data of the sampling point (GX10 referenced as an example)
on the sensing date of the satellite is shown in Table 8.

Table 8. Climate data of the sampling point (GX10) on the sensing date of the satellite.

Date Temperature Wind Direction Wind Strength

14 April 2015 14.3 SE <3
23 October 2015 27.2 S <3

3 June 2016 31.2 S <3
28 December 2016 18 N 1
14 February 2017 17.44 N 1

2 March 2017 17.22 SW 1
28 October 2017 25.72 N 3–4

5. Conclusions

Using Landsat 8 OLI remote sensing images combined with measured Chl-a con-
centrations, the GBDT model was used to study the coastal waters of the Beibu Gulf in
Guangxi and analyze the spatial–temporal distribution of the Chl-a concentration. The
main research results are as follows:

1. Compared with the performance of different models, the GBDT model can signifi-
cantly improve the accuracy of Chl-a concentration inversion, proving that it can be a
new method for remote sensing inversion of the water quality parameters. When B4,
B3 + B4, B3, B1 − B4, B2 + B4, B1 + B4, and B2 − B4 were considered the characteristic
variables of the GBDT model, the inversion accuracy of the model was the highest
(MAE = 0.998 µg/L, MAPE = 19.413%, RMSE = 1.626 µg/L, and R2 = 0.778).

2. The spatial distribution of the Chl-a concentration was highest in the nearshore and
lowest in the offshore waters in the Beibu Gulf in Guangxi. The Chl-a concentration
was highest in the summer, and the concentration in autumn was lower, while concen-
trations in spring and winter were the lowest. The ranking of Chl-a concentrations,
from high to low, across multiple bays was as follows: Nanliu River Estuary Bay,
Dafeng River Estuary Bay, Qinzhou Bay, Beihai Pearl Harbor, and Fangcheng Bay.

Limited by the revisiting period of the satellite and the quality of the satellite images,
the data used to train and validate the GBDT model may be relatively small in size, which
may have influenced the inversion accuracy of the model. To estimate and learn the spatial
and temporal distribution of Chl-a concentrations more precisely, an increased amount of
data may be included in future work in combination with multi-source satellite remote
sensing data.
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