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Abstract: Over the last few years, several techniques have been developed with the aim of imple-
menting one-shot learning, a concept that allows classifying images with only a single image per
training category. Conceptually, these methods seek to reproduce certain behavior that humans
have. People are able to recognize a person they have only seen once, but they are probably not
able to do the same with certain animals, such as a monkey. This is because our brains have been
trained for years with images of people but not so much of animals. Among the one-shot learning
techniques, some of them have used data generation, such as Generative Adversarial Networks
(GAN). Other techniques have been based on the matching of descriptors traditionally used for object
detection. Finally, one of the most prominent techniques involves using Siamese neural networks.
Siamese networks are usually implemented with two convolutional nets that share their weights.
They receive two images as input and can detect whether they belong to the same category or not. In
the field of grocery products, there has been a lot of research on the one-shot learning problem but
not so much on the use of Siamese networks. In this paper, several classifiers are firstly evaluated to
decide on a convolutional model to be used with the Siamese and to improve the baseline results
obtained in the dataset used. Then, two existing techniques are integrated within the Siamese model:
a convolutional net and a Local Maximal Occurrence (LOMO) descriptor. The latter was initially
used for the re-identification of people although it has shown its effectiveness to improve the values
of a traditional Siamese with only convolutional sisters. The whole network is trained on categories
and responds to different categories, showing its strong capacity to deal with the problem of having
only one image per category.

Keywords: one-shot learning; siamese; ResNeXt-101; LOMO; grocery image classification

1. Introduction

Computer vision is one of the disciplines that have seen the greatest increase in the
number of applications in recent years. The development of deep learning along with
the increase in computing capabilities has made it possible to solve problems that were
previously difficult using traditional techniques. A key aspect for the good performance
of modern image classifiers is the number of training samples. While a human being
is able to recognize an object after only seeing it once, computers require datasets with
a lot of images per class to be trained and deliver acceptable results. On an industrial
level, image processing that requires a single example to be implemented is a desire and a
need that, until now, could rarely be fulfilled. These systems expand the possibilities for
implementing new visual inspection systems in the industry.

Siamese networks are one of the techniques that can deal with the problem of one-shot
learning [1], where there is only one image per category. They are commonly implemented
with two convolutional networks that share their weights. They receive two images as
input and can detect whether they belong to the same category or not. Although different
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methods have been applied to the grocery products classification, there has not been so
much research on the use of Siamese nets. In this paper, two existing techniques are
integrated within the Siamese model: a convolutional net and a Local Maximal Occurrence
(LOMO) descriptor. Liao et al. [2] presented the LOMO descriptor as a method for the
Re-ID problem (people re-identification), but our paper has shown its effectiveness for
improving the values of a traditional Siamese with only a convolutional sister. Several
classifiers have been first evaluated to decide on a convolutional model to be used with
the Siamese. This model also improves the baseline results obtained in the baseline of
Grocery Store Dataset [3]. The whole network is trained on categories and responds to new
different classes, showing its strong capacity to deal with the problem of having only one
image per category.

The present paper is structured as follows: Section 2 explores the state-of-art technolo-
gies considered in this paper. Section 3 describes the two procedures carried out. The first
procedure evaluates different classification models that are valid for the Siamese net and
improves the results stated in Grocery Store Dataset [3]. The second procedure presents the
Siamese net integrating a ResNeXt-101 [4] and a LOMO descriptor. Different regularization
mechanisms are evaluated. In Section 4, the different experiments and results obtained
with the system are reported. An overall discussion on the obtained results is set out. Fi-
nally, Section 5 notes the advantages and limitations of the presented system and suggests
future developments.

2. Overview of Related Work

Few-shot Learning (FSL) [5] is the name given to a group of techniques that, using
prior knowledge, can rapidly generalize to new tasks containing only a few samples with
supervised information. Among them, image classification techniques for learning from a
single example are named one-shot learning (OSL) [1]. These techniques make it possible
to train models with many different classes and only one image per class. Common
classification models require a large battery of images for each category whereas OSL looks
for models with a single image per class, in an ideal model or a small number of images.
One-shot learning techniques are based on the idea of inducing new knowledge from
previously obtained knowledge by using a classifier trained with similar cases, emulating
to some extent the way the human brain learns new ideas using knowledge from previous
experiences. As an example, a human distinguishes the face of a person only seen once
because we have prior information about many faces. However, it is much more difficult for
us to distinguish two individuals of other species without having any prior knowledge. An
outstanding work proposed by Held et al. [6] explored the idea of training a classifier with
a different group of categories for train-test. The authors wanted to recognize a grocery
product for which only a single image had been given, but they also wanted to consider
novel viewpoints. They performed a multi-stage training procedure in which they first
trained on a large class-level dataset, followed by an auxiliary multi-view dataset, which
allowed the model to be robust relative to viewpoint changes. Finally, they trained on the
objects they wanted to recognize from just a single image.

2.1. Solving the One-Shot Learning Problem

There are different strategies that have been developed to solve the problem of OSL.
The first strategy, called data augmentation [7], consists of increasing the number of images
in the dataset by carrying out simple transformations on them. For example, this method
allows obtaining large number of images for a category with only a single image of that
class by performing transformations on it (translations, rotations, changes in illumination,
deformations, etc.). This technique is integrated with many data generators that feed
images to the training methods.

A second technique consists of generating fictitious databases from knowledge ex-
tracted from classes of similar objects. Within this group, Generative Adversarial Networks
(GAN) [8–10] are capable of generating images of unknown classes, such as the case of a
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face of an unknown person. Regarding the grocery products, Tonoono and Di Stefano [11]
proposed an end-to-end architecture comprising a GAN with a generator and a discrimina-
tor. The GAN augmented the training set with samples similar to those belonging to the
test domain while simultaneously produced hard examples for the embedding network.
They performed recognition by means of a k-Nearest Neighbor (kNN) search against a
database consisting of only one reference image per product. The same approach using data
augmentation generation by means of a GAN has been recently proposed by Wei et al. [12].

A third technique uses a probabilistic approach and consists of calculating the proba-
bility that an object belongs to a specific class by analyzing the characteristics of the image
that have been useful in the classification of objects of the same type [13]. This probability
is obtained by calculating the distance between the feature vector of a new object and
those in the available database. In order to introduce a new class into the system for which
only a single image is available, the feature vector of the new class must meet certain
characteristics in order to be distinguishable from the rest.

A fourth technique consists on feature extraction and matching, creating descriptors
such as SIFT [14], SURF [15] or ORB [16]. These methods are slow because matching has to
be performed with all possible images. In addition, they do not generalize as well as other
methods. Regarding this technique, a fine-grained grocery product recognition method has
been explored by Geng et al. [17], who addressed the OSL problem by presenting a hybrid
classification approach that combined feature-based matching and one-shot deep learning
with a coarse-to-fine strategy. The candidate regions of the product instances were firstly
detected and coarsely labeled by recurring features in the product images without any
training. They generated attention maps to guide the classifier to magnify the influences of
the features in the candidate regions. However, the authors used a dataset with grocery
packages that did not include products without fixed landmarks, such as fruits. They
selected the logo regions on product packages to be able to clearly match descriptors.

Finally, a fifth technique involves the use of neural networks and, more specifically,
Siamese Neural Networks (SNNs) [18]. SNNs usually compare the features output of two
convolutional nets to infer whether two images belong to the same class or not. The
comparison is carried out using the feature vectors obtained before the last classification
layers. Each of the two input images is channeled through one of the convolutional nets,
which share models and weights. They started to be used by Bromley et al. [19] in signature
verification work. They have also been used for different kinds of problems, such as the
evaluation of source code similarity [20], cyber attack detection [21], object tracking [22],
chromosome classification [23] and even animal sound classification [24]. More recently
and regarding the grocery products, Ciocca et al. [25] have applied a Siamese network to
capture the relations between iconic and natural images in the Grocery Store Dataset [3].
They evaluated several Siamese models with different Convolutional Neural Networks
(CNNs), obtaining the best results with a DenseNet-169 [26] backbone.

2.2. Integration of Multiple Classifiers

The integration of multiple classifiers or object detectors has been previously explored.
Xue et al. [27] developed a sort of Siamese net that integrated features from two nets: a
VGG-16 to perform a contour detection and a YOLOv3 to detect objects. This network
was able to track objects benefiting from both classifiers. However, this model was not
proposed for an OSL problem.

2.3. Grocery Datasets

Regarding the grocery store products, several datasets have been created during the
last few years, such as the Grocery Store Dataset [3], the MVTec D2S dataset [28], the Retail
Product Checkout dataset (RPC) [29] or the Freiburg groceries dataset [30]. Among them,
MVTec D2S, RPC and Freiburg datasets are focused on the problem of object detection
rather than classification. The Grocery Store Dataset [3] contains image data of grocery
items in fine and coarse categories and is valid for our OSL and classification problems.
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The Grocery Store Dataset is composed of 5125 images of 81 different kinds of fruit,
vegetables and carton items (e.g., juice, milk and yogurt). All images were taken with
a smartphone camera in different grocery shops. In addition to the fine categories (81),
there are 43 coarse categories where, for example, the fine class Royal Gala and Granny
Smith belong to the same coarse class Apple. In addition to the natural images, there are
iconic images, which represent the product taken in controlled lighting conditions and
without the supermarket background. In the classification experiments, the authors have
connected the feature vector prior to the connection of the dense layers to an SVM classifier.
By testing different CNNs such as AlexNet, VGG16 or DenseNet, the authors obtained
72.5% accuracy, using directly a model trained with ImageNet [31] and 85% accuracy on
test using a model on which they performed fine tuning. In these winner cases, the authors
used a DenseNet-169. In the same way, they tested a DenseNet-169 classification network
without using SVM. In this case, they obtained 84% accuracy. Our first experiments have
consisted in improving their classification baseline to drive the creation of our Siamese.
Next, different configurations of the combined Siamese net are evaluated to show the
improvement over using a traditional Siamese with only CNNs.

3. Analysis of the System

Two procedures have been carried out. The first procedure explained in Section 3.1
consisted of searching for a CNN able to improve the results stated in the classification
baseline of the Grocery Store Dataset [3] paper. This result helped us designing the Siamese
network. The second procedure explained in Section 3.2 describes the integration of a
classifier and a descriptor into the Siamese model, improving the results obtained in the
OSL approach with only a CNN.

3.1. Improving the Classification Base Line

Neural networks for image classification allow inferring which category an input
image belongs to. These networks use layers of different types, including convolutions
that apply a given convolution matrix (kernel) with a sliding window over the image or
pooling layers that allow the dimensionality of matrices to be reduced, e.g., by obtaining
the maximum of a sliding 2 × 2 matrix. Deep neural networks use many consecutive
convolution layers to capture salient elements of the images, from the most generic to the
most particular.

One of the early problems with deep networks was that the accuracy started to
saturate at one point and eventually degrade. In addition, the model did not converge
due to vanishing gradients. These problems were partly solved by the use of residual
blocks [32] that connect the input of a block to the output of that block via an aggregation.

Another problem with deep convolutional networks was the high growth of the
number of parameters when the number of layers increased. The ResNet architecture [33]
included residual bottleneck blocks. This model was a variant of the residual block, which
uses 1 × 1 convolutions to create a bottleneck. The use of a bottleneck reduces the number
of parameters and matrix multiplications without noticeably altering the result. The idea
was to make the residual blocks as thin as possible to increase the depth and to possess
fewer parameters.

The ResNeXt-101 [4] is based on a ResNet model but replaces the 3 × 3 convolutions
within the ResNet model by 3 × 3 convolutions grouped together. This grouping is a
technique inherited from AlexNet [34]. The ResNeXt-101 bottleneck block splits a single
convolution into multiple smaller parallel convolutions. The concept of cardinality refers to
the number of parallel convolutions. As an example, in ResNeXt-101-32x8d, the cardinality
is equal to 32 (number of parallel convolutions), and the bottleneck width is equal to eight
(number of convolution filters). A notable difference from ResNet models is that ResNeXt
uses aggregation instead of concatenation in the original Inception-ResNet block.

In order to improve the results given by Klasson et al. [3], two recent convolutional
networks have been evaluated. ResNet-152 [33] and ResNeXt-101 [4] have been trained
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to classify the 81 supermarket products. As shown in the Experiments Section 4, these
networks directly improve on the baseline set by the authors. The networks have been
modified to add a dropout before Full-Connected layers in order to increase generalization
and improve the results.

During the experiments, we noticed that two fruits, oranges and satsumas became
very confused as they were very similar. In order to overcome this problem, a cascade
classifier has been proposed, as shown in Figure 1, to classify oranges and satsumas again
if the result of the first classifier was one of these two fruits. The result of the first classifier
has 81 outputs (c1, c2, . . . , c81), while the second classifier only has two outputs (c1

′
and c2

′
).
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Figure 1. Cascade classifier based on ResNeXt-101-32x8d.

The classification results obtained during this first part allowed us to choose a model
to continue with the OSL problem using Siamese nets.

3.2. Integration of Multiple Classifiers into a Siamese Network

The second proposed procedure allows using Siamese networks to solve the one-shot
learning problem. In an OSL problem, a single image is available for each category. An
approach to solving this problem consists of training the model with some classes of the
dataset and to validate it with a different group of classes. The test is finally carried out
with a third group of classes. Figure 2 shows the category split that has been made. There
are 50 classes for training, 18 for validation and 13 for test (81 totals).

Three approaches based on Siamese nets have been evaluated: a traditional Siamese
net with a CNN, a Siamese net using a LOMO descriptor [2] and a Siamese net integrating
a CNN and a LOMO descriptor.

In the first approach to solving the problem, a Siamese net with a ResNeXt-101-
32x8d [4] has been used. A Siamese net compares the feature layer of two CNNs to infer
whether two images belong to the same class or not. Each of the two input images of
the network is channeled through one of the convolutional sisters, which share models
and weights.

Figure 3 shows the scheme of this architecture. Each of the sister subnets shares the
same ResNeXt-101 model with the same parameters. The model receives two images
as input. The convolutional part of the ResNeXt-101 produces a feature vector in the
last layer (u1, u2, . . . , u64). In a classification problem, this vector is connected to the Full-
Connected (FC) layer with a Softmax activation. However, in this case, this vector is
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transformed into a single dimension (Flatten) and compared by Euclidean distance with
the vector produced for another image (v1, v2, . . . , v64). In Figure 3, dE(u, v) represents the
Euclidean distance. The distance is then connected to another layer with a single neuron
and sigmoidal activation, responsible for inferring whether the two images belong to the
same category “1” or whether they belong to a different category “0”.

Train classes 

One Shot Learning 
Different classes for Training/Validation and Test 

Siamese Neural Network 

1. Alpro-Blueberry-Soyghurt 
2. Alpro-Shelf-Soy-Milk 
3. Anjou 
4. Arla-Ecological-Medium-Fat-Milk 
5. Arla-Lactose-Medium-Fat-Milk 
6. Arla-Medium-Fat-Milk 
7. Arla-Mild-Vanilla-Yoghurt 
8. Arla-Sour-Milk 
9. Arla-Standard-Milk 
10. Asparagus 
11. Aubergine 
12. Avocado 
13. Banana 
14. Beef-Tomato 
15. Bravo-Apple-Juice 
16. Cabbage 
17. Conference 
18. Cucumber 
19. Floury-Potato 
20. Garant-Ecological-Standard-Milk 
21. Garlic 
22. Ginger 
23. God-Morgon-Apple-Juice 
24. Green-Bell-Pepper 
25. Honeydew-Melon 

26. Kaiser 
27. Kiwi 
28. Nectarine 
29. Oatly-Natural-Oatghurt 
30. Orange 
31. Orange-Bell-Pepper 
32. Papaya 
33. Peach 
34. Pineapple 
35. Pomegranate 
36. Red-Beet 
37. Red-Bell-Pepper 
38. Regular-Tomato 
39. Royal-Gala 
40. Satsumas 
41. Solid-Potato 
42. Tropicana-Apple-Juice 
43. Tropicana-Juice-Smooth 
44. Valio-Vanilla-Yoghurt 
45. Vine-Tomato 
46. Watermelon 
47. Yellow-Bell-Pepper 
48. Yoggi-Strawberry-Yoghurt 
49. Yoggi-Vanilla-Yoghurt 
50. Zucchini 

1. Alpro-Fresh-Soy-Milk 
2. Alpro-Vanilla-Soyghurt 
3. Arla-Natural-Mild-Low-Fat-Yoghurt 
4. Arla-Natural-Yoghurt 
5. Arla-Sour-Cream 
6. Bravo-Orange-Juice 
7. Cantaloupe 
8. Galia-Melon 
9. Garant-Ecological-Medium-Fat-Milk 
10. God-Morgon-Orange-Red-Grapefruit-Juice 
11. Golden-Delicious 
12. Leek 
13. Lemon 
14. Pink-Lady 
15. Plum 
16. Red-Delicious 
17. Red-Grapefruit 
18. Tropicana-Mandarin-Morning 

Validation classes 

1. Arla-Ecological-Sour-Cream 
2. Brown-Cap-Mushroom 
3. Carrots 
4. God-Morgon-Orange-Juice 
5. God-Morgon-Red-Grapefruit-Juice 
6. Granny-Smith 
7. Lime 
8. Mango 
9. Oatly-Oat-Milk 
10. Passion-Fruit 
11. Sweet-Potato 
12. Tropicana-Golden-Grapefruit 
13. Yellow-Onion 

Test classes 

Figure 2. Category split to test the OSL problem.
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Figure 3. First approach: Siamese net with ResNeXt-101-32x8d.

In the second approach, a descriptor integrated within the Siamese net has been used
(see Figure 4). In this case, the descriptor has no trainable parameters, but the rest of
the model does. The LOMO descriptor was initially defined by Liao et al. [2] for the
ReID problem (Re-identification of people). This descriptor first processes the images
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with Retinex [35], with the aim of adjusting both the color constancy and dynamic range
compression automatically, achieving a good approximation to human visual perception.
From the images obtained with Retinex images, LOMO uses the HSV color histogram
to extract color features. In addition, the Scale Invariant Local Ternary Pattern (SILTP)
descriptor [36] is used for the description of the lighting invariant texture. SILTP is an
improved operator of the well-known Local Binary Pattern (LBP) [37]. While LBP is
invariant relative to certain transformations, it is not robust relative to noise. SILTP
improves LBP by introducing a scale-invariant local comparison tolerance, achieving
invariance relative to intensity scale changes and robustness relative to image noise.

0 

Positive and  
Negative pairs 
• Positive  
       (Same class) 
 
• Negative 
       (Different class) 

𝑑𝐸(𝑢, 𝑣) =  𝑢𝑖 − 𝑣𝑖 2
𝑛

𝑖=0

 

FC 
“1 “ 

Sigmoid 

… 

Siamese Network  
(Same model and  

Weights) 

1 

LOMO descriptor 
generator 

D
en

se
 (

4)
 

𝑣
1
,𝑣
2
,𝑣
3
 ,𝑣
4

 

LOMO descriptor 
generator 

D
en

se
 (

4)
 

𝑢
1
,𝑢
2
,𝑢
3
 ,𝑢
4

 

Figure 4. Second approach: Siamese net with LOMO descriptor.

LOMO works with 10 × 10 sliding windows, with an overlap of five pixels, to process
local blocks in 128× 48 images. Within each window, two SILTP histogram scales (SILTP0.3

4,3
and SILTP0.3

4,5 ) and a joint HSV histogram of 8 × 8 × 8 cells are extracted. SILTPτ
N,R(xc, yc)

is equal to the concatenation of N binary strings, obtained for N neighborhood pixels
equally spaced on a circle of radius R with respect to the pixel (xc, yc). The binary strings
are calculated by using the τ scale factor. From k = 0 to k = N − 1, the binary string is ”01”
when Ik > Ic · (1 + τ), ”10” when Ik < Ic · (1− τ) and ”00” otherwise. Ik and Ic are the
gray intensities of pixels k and c, respectively. Figure 5 graphically shows an example of
how SILTP is calculated.
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Figure 5. Example of SILTP code calculation.

Each cell of the histogram represents the probability of occurrence of a pattern in a
sub-window. LOMO is able to deal with viewpoint changes because all sub-windows
are checked at the same horizontal location, and the local occurrence of each pattern
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is maximized. The resulting histogram manages to be invariant to viewpoint changes
while, at the same time, captures the local characteristics of the bins of an image. In
addition, the descriptor constructs a pyramid representation of three scales. Finally, the
descriptor applies a logarithmic transformation to suppress the large values of the bins,
and a normalization of the HSV and SILTP features is performed. As will be shown in the
Experiments Section 4, this descriptor also produces results almost comparable to the CNN
model used for our particular problem. Other descriptors that were evaluated, such as the
known Histogram of Oriented Gradients (HOG), did not offer acceptable results.

A dense layer of four neurons was connected to the output of the descriptor (78,858 elements)
and was, in turn, used to calculate the Euclidean distance. Although experiments were performed
with different numbers of dense layers (two or three) and different numbers of neurons in those
layers (2000, 1000, 500, 64, 16, 8, 4 and 2), the model performed slightly better than with other
configurations with the value of four neurons. The use of a dense layer reduces the cost of
directly comparing two vectors of 78,858 elements. It also improves the accuracy of the model.
The choice of the hidden neurons and the number of hidden layers was made by a batch grid
search, testing different configurations and keeping the best one. A value of hidden neurons was
initially calculated following some rule of thumb, such as 2/3 size of input and output layer [38],
or some used in previous works [39] that also related to the number of samples. However, taking
as input 78,858 elements of the LOMO vector and as output four as the number of elements to
be compared, the hidden neurons represented a value too high that caused our model to fail
to load into the memory of our GPUs. Then, this number was lowered to 2000 neurons and
hierarchically distributed into the different layers. Despite this rule of thumb, we found that the
model worked best with a single layer and with only four neurons. This approach was also used
in the next presented model.

Finally, in a third approach, a Siamese has been constructed by integrating a ResNeXt-
101 and a LOMO descriptor on each side (see Figure 6). The idea of this model is that
the network learns the strengths of each of the two methods. In this particular case,
the output of the ResNeXt-101 and LOMO generator has been concatenated. Then, a
dropout layer is applied to reduce overfitting with respect to the training set. Next, a dense
layer with eight neurons is connected. This layer represents the new descriptor vector
that is compared between two images. In fact, the sister net can operate in isolation to
produce this vector, and it can be compared with other vectors to perform the classification.
This model has been evaluated with and without regularization. Together with dropout,
regularization is one of the mechanisms that reduce overfitting, bringing the training curve
closer to the validation curve. Regularizers apply penalties on layer parameters during
optimization. These penalties are summed into the loss function that the network optimizes.
L2-regularization, also named ridge regression, adds the sum of the squared coefficients
multiplied by a regularization factor to the loss function.

As in the previous model, different network configurations were evaluated. For
example, in another case, the two descriptors of the LOMO images were concatenated,
and their distances were calculated. On the other hand, they were connected to a layer
of a single neuron. In the same manner, the distance of the ResNeXt-101 feature vectors
was calculated, and the same vectors were concatenated and connected to a layer of one
neuron. These single-neuron layers could discriminate the weight of each distance to
consider either LOMO or ResNeXt-101. However, the selected architecture produced the
most promising results.
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Figure 6. Third approach: Siamese net with ResNeXt-101-32x8d and LOMO descriptor.

4. Experiments and Results Discussion

Two different sorts of experiments have been carried out. The first experiment
(Section 4.1) consisted of improving the baseline classification set by the authors of the
Grocery Store Dataset [3]. The second experiment (Section 4.2) has consisted in integrating
multiple classifiers into a Siamese network to show how this method improves the current
OSL techniques. Section 4.3 shows the Results Discussion.

4.1. Improving the Classification Base Line

The authors of the Grocery Store Dataset [3] trained a DenseNet-169, connecting the
feature vector to an SVM classifier. They obtained 85% accuracy on test by using a model
on which they performed a fine tuning. In the same manner, they tested a DenseNet-169
classification network without using SVM. In this case, they obtained 84% accuracy.

In our experiment, two recent models have been evaluated: a ResNeXt-101 with
cardinality 32 and a bottleneck width of eight [4] and a ResNet-152 [33]. The ResNeXt-101
model has been modified by readapting the input shape to 600 × 600 × 3. We have divided
the training set, composed of 2640 images, into 1820 images for training (68.94%) and
820 for validation (31.06%). The reason for this distribution is that we have balanced the
distribution, to try to distribute 30% of the images of each category to validation in a
random manner. The test set consists of 2485 images, and it has been pre-defined by the
authors of the Grocery Store Dataset [3].

The training of the ResNeXt-101 has been performed by using an Adam optimizer
with a learning rate of 0.00005. The feature vector was connected to an output dense layer
of 81 categories with a softmax activation function. The initial weights used were those of
ImageNet [31]. A batch size of eight was used, and the model was trained for 40 epochs,
reaching the highest validation accuracy at epoch 30. The training accuracy was 99.78%,
while the validation accuracy was 99.76% in epoch 30. The evaluation of the model was
performed by using the test set. The test accuracy was 90.80%, with a precision of 92.50%,
recall of 92.10%, balanced accuracy of 92.09% and F1-Score of 92.30%. The same experiment
was carried out with a ResNet-152. However, despite the depth of this network, the results
were slightly worse. The test accuracy was 89.90%, with a precision of 91.60%, recall of
91.10%, balanced accuracy of 91.09% and F1-Score of 91.30%.
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The next experiment consisted in adding a dropout layer with a random deactivation
of 20% to the input of the last classification layer of the ResNeXt-101. This modification
of the model improved the result up to 91.60% test accuracy, 93.60% precision, 92.20%
recall, 92.18% balanced accuracy and 92.18% F1-Score. Figure 7a shows the training and
validation accuracy, while Figure 7b shows the loss of this model.

(a) ResNeXt-101 training/validation accuracy
with 20% dropout.

(b) ResNeXt-101 training/validation loss
with 20% dropout.

Figure 7. ResNeXt-101 training with 20% dropout.

A Precision-Recall curve with the average precision score micro-averaged over all
classes is displayed in Figure 8. In addition, a Multi-Class Precision-Recall curve with all
classes is displayed in Figure 9. The evaluation of the model shows a good performance,
resulting in the 96% AUC (Area Under the Curve).

Figure 8. Precision-Recall curve with the average precision score micro-averaged over all classes.

The confusion matrix of this model is shown in Table 1. For the sake of space, instead
of showing the 81 fine classes, we show the 43 coarse categories where the results have
been grouped. Although the overall results have improved, the confusion matrix shows
two categories that the model is not able to detect properly: oranges and satsumas.

In order to avoid confusion between oranges and satsumas, another model has been
trained to distinguish between oranges and satsumas, again with a ResNeXt-101 with a
20% dropout layer. When the result of the first model is oranges or satsumas, the image is
sent to the second classifier. The training/validation and test sets are the same as those
used for the first model but only filtering these two classes. The training result of this
second model has been 98.86% training accuracy and 94.87% validation accuracy. The test
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accuracy in the detection of oranges/satsumas has been 79%, 79% precision, 78.5% recall,
78.5% balanced accuracy and 78.8% F1-Score.

By staggering the two models, the test accuracy has increased to 92%. Table 2 shows
the summary of the results. Our model significantly improves the results obtained and
established as a baseline in the Grocery Store Dataset [3] article, improving from 85% in the
model they trained with a tuned DenseNet-152 and an SVM classifier to 92%.

A Precision-Recall curve for the tiered model with the average precision score, micro-
averaged over all classes, is displayed in Figure 10. In addition, a Multi-Class Precision-
Recall curve with all classes is displayed in Figure 11. The evaluation of the model shows
good performance, resulting in the 96% AUC (Area Under the Curve).

Figure 9. Multi-Class Precision-Recall curve.



Appl. Sci. 2021, 11, 7839 12 of 20

Table 1. Confusion Matrix of the ResNeXt-101 model with 20% dropout.
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Apple 0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Asparagus 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Aubergine 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Avocado 0.0 0.0 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Banana 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Brown-Cap-Mushroom 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cabbage 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Carrots 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cucumber 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.07

Garlic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ginger 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Juice 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kiwi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Leek 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lemon 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.59 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lime 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mango 0.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Melon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Nectarine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Oat-Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Oatghurt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Onion 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Orange 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.09 0.27 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Papaya 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Passion-Fruit 0.0 0.0 0.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Peach 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pear 0.04 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pepper 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0

Pineapple 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Plum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pomegranate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Potato 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Red-Beet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Red-Grapefruit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.62 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Satsumas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.54 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Sour-Cream 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.93 0.05 0.0 0.0 0.0 0.0 0.0

Sour-Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Soy-Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Soyghurt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

Tomato 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Yoghurt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Zucchini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 2. Comparison of different classification models (% except for loss).

Metric ResNeXt-101
without dropout

ResNeXt-101
with dropout

Tiered Model
ResNeXt-101
with dropout

ResNet-152 DenseNet-169
with SVM [3]

Training accuracy 99.78 1.00 1.00/1.00 1.00
Training loss 0.0149 0.0047 0.0047/0.0044 0.0062
Validation accuracy 99.76 99.88 99.88/1.00 99.63
Validation loss 0.0139 0.0082 0.0082/0.0089 0.0169
Test accuracy 90.80 91.60 92.00 89.90 85.00
Balanced test accuracy 92.09 92.18 93.06 91.09
Precision 92.50 93.60 93.50 91.60
Recall 92.10 92.20 93.10 91.10
F1-SCORE 92.30 92.18 93.30 91.30
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Figure 10. Precision-Recall curve for the tiered model with the average precision score micro-
averaged over all classes.

Figure 11. Multi-Class Precision-Recall curve for the tiered model.

As observed in the confusion matrix of this tiered model (Table 3), the detection of the
oranges and satsumas has been improved.
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Table 3. Confusion Matrix of the tiered ResNeXt-101 model (with 20% dropout).
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Apple 0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Asparagus 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Aubergine 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Avocado 0.0 0.0 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Banana 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Brown-Cap-Mushroom 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cabbage 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Carrots 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cucumber 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.07

Garlic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ginger 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Juice 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kiwi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Leek 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lemon 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.59 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lime 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mango 0.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Melon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Nectarine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Oat-Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Oatghurt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Onion 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Orange 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.09 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Papaya 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Passion-Fruit 0.0 0.0 0.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Peach 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pear 0.04 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pepper 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0

Pineapple 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Plum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pomegranate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Potato 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Red-Beet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Red-Grapefruit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.62 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Satsumas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.84 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Sour-Cream 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.93 0.05 0.0 0.0 0.0 0.0 0.0

Sour-Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Soy-Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Soyghurt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

Tomato 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Yoghurt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Zucchini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

4.2. Integration of Multiple Classifiers into a Siamese Network

Three approaches based on Siamese nets have been evaluated: a traditional Siamese
net with a CNN, a Siamese net using a LOMO descriptor [2] and a Siamese net integrating
a CNN and a LOMO descriptor.

In order to train these models, training and test data from the original dataset have
initially been placed together. This is because the original division of the dataset is prepared
for classification. However, for the OSL problem, the list of classes has been completely
split into training, validation and test, as explained in the analysis. Then, some classes have
been moved to training (50), some to validation (18) and some to test (13). This division
has been the same for the evaluation of the three models. During training, groups of pairs
of images are processed in batches. For each image in the dataset, a positive pair and a
negative pair have been randomly chosen. In the positive pair, there is an image from a
class and a different random image from the same class. In the negative pair, there is an
image from a class and another one from a different random category.

Figure 12a shows the training and validation accuracy for the Siamese net based on
ResNeXt-101. Figure 12b shows the loss of this model. This model has been trained with
an image shape of 299 × 299 for 30 epochs, and the weights for the first layers have been
blocked using pre-trained weights for ImageNet [31]. The size of the batch has been 16,
using a binary cross entropy loss and an Adam optimizer with a learning rate of 0.001. The
best validation accuracy has been obtained in epoch five. The same parameters have been
used for the LOMO and the ResNeXt-101+LOMO models.
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(a). Training/validation accuracy for
ResNeXt-101-based Siamese network.

(b). Training/validation loss for
ResNeXt-101-based Siamese network.

Figure 12. Siamese network training with ResNeXt-101.

Figure 13a shows the training and validation accuracy for the Siamese net based on
LOMO. Figure 13b shows the loss of this model. The descriptors for each image are pre-
calculated since their parameters are not trainable within the model. The best validation
accuracy has been obtained in epoch 29.

(a). Training/validation accuracy for
LOMO-based Siamese network.

(b). Training/validation loss for LOMO-based
Siamese network.

Figure 13. Siamese network training with LOMO.

Figure 14a shows the training and validation accuracy for the Siamese net based
on ResNeXt-101+LOMO. Figure 14b shows the loss of this model. The best validation
accuracy has been obtained in epoch five. Again, the LOMO descriptors for each image are
pre-calculated and the ResNeXt-101 part received images with shape 299 × 299.

These last graphs allow us to observe how the integration of the two sub-models
within the Siamese model improves the behavior of the two previous models. Thus,
for example, the validation accuracy increases with respect to the two previous models
while the loss stabilizes, which is something that did not occur in the LOMO model. The
validation loss increased from epoch eight onward in that model.

Another modification has included an L2-regularization in the dense layer. This
technique is used to reduce model overfitting. The regularization has applied a penalty on
the layer’s kernel and on the layer’s bias. For both penalties, the L2-factor has been 0.001.
This regularization has reduced the gap between training and validation. Figure 15a shows
the training and validation accuracy for the Siamese net based on ResNeXt-101+LOMO
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with L2-regularization. Figure 15b shows the loss of this model. The best validation
accuracy has been obtained in epoch 10, with a maximum accuracy value of 0.95 and a
maximum validation accuracy of 0.89.

(a). Training/validation accuracy for
ResNeXt-101+LOMO-based Siamese network.

(b). Training/validation loss for
ResNeXt-101+LOMO-based Siamese network.

Figure 14. Siamese network training with ResNeXt-101+LOMO.

(a). Training/validation accuracy for
ResNeXt-101+LOMO-based Siamese network
with L2-regularization.

(b). Training/validation loss for
ResNeXt-101+LOMO-based Siamese network
with L2-regularization.

Figure 15. Siamese network training with ResNeXt-101+LOMO and L2-regularization.

The results of the four models are shown in Table 4. The ResNeXt-101+LOMO com-
posite model improves the results of the other two models. The evaluation has been carried
out by means of five random test groups (k = 5) where there are positive and negative pairs
of images. The neural network learns to consider the best aspects of each sub-model to
globally improve the result. Since the test set is previously balanced, the result of the test
accuracy and balanced test accuracy is equal.

The best results are produced when using regularization in the model. Table 5 shows
the success rate for each class with pairs of images from the same and different category.
Although the negative detection performance of some classes is worse in the ResNeXt-
101+LOMO model than in the ResNeXt-101 alone, the overall values improve, as previously
shown. These combined models significantly improve recall, drastically reducing the false
negatives that occur when comparing images of the same category. In the case of using
L2-regularization, the recall improves even more but at the cost of penalizing the precision
as the number of false positives increases. For this reason, the negative pair detection
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performs slightly worse as the detection of false positives increases. However, the precision,
the balanced accuracy and F1-score are globally improved.

Table 4. Comparison of different proposed Siamese networks.

Metric ResNeXt-101 LOMO ResNeXt-101
+ LOMO

ResNeXt-101
+ LOMO

(with L2-Regularization)

Test accuracy (k = 5) 84.5 78.0 86.5 88.2
Balanced Test accuracy (k = 5) 84.5 78.0 86.5 88.2
Precision (k = 5) 83.9 73.6 84.6 82.7
Recall (k = 5) 85.5 87.3 89.2 96.5
F1-score (k = 5) 84.7 79.9 86.8 89.1

Table 5. Success rate by category of the proposed Siamese networks (%).

Test Category
ResNeXt-101

Positive
Pairs

ResNeXt-101
Negative

Pairs

LOMO
Positive

Pairs

LOMO
Negative

Pairs

ResNeXt-101
+ LOMO

Positive Pairs

ResNeXt-101
+ LOMO

Negative Pairs

ResNeXt-101
+ LOMO

Positive Pairs
(with

L2-Regularization)

ResNeXt-101
+ LOMO

Negative Pairs
(with

L2-Regularization)

Arla-Ecological-Sour-Cream 97.31 83.85 94.23 84.62 94.23 83.08 99.62 85.77
Brown-Cap-Mushroom 64.87 88.46 61.28 63.33 87.18 87.95 93.59 80.26
Carrots 72.24 99.29 88.0 61.65 92.0 95.76 92.94 82.12
God-Morgon-Orange-Juice 88.0 82.67 96.44 60.0 95.11 93.33 99.56 83.56
God-Morgon-Red-Grapefruit-Juice 97.0 79.0 100.0 61.5 98.5 87.5 100.0 73.5
Granny-Smith 97.78 84.44 84.27 78.97 85.81 83.25 95.9 86.84
Lime 94.1 77.38 76.39 80.0 85.57 82.3 97.38 69.84
Mango 99.05 71.11 75.24 66.03 82.22 73.33 99.05 70.16
Oatly-Oat-Milk 86.67 85.08 95.87 82.86 86.03 84.44 98.41 83.81
Passion-Fruit 46.91 85.09 89.09 51.64 83.27 76.36 88.0 78.91
Sweet-Potato 86.43 75.71 98.21 54.29 91.43 74.64 97.86 72.5
Tropicana-Golden-Grapefruit 99.55 82.73 99.55 74.55 91.36 87.27 99.09 87.27
Yellow-Onion 86.67 82.13 96.8 64.27 94.67 78.67 98.4 76.8

The training sessions have been carried out on an i9-10900K server with 128 GB RAM
and 2 GPU RTX-3090 with 24 GB GDDR6X. This server required 187 min for training the
ResNeXt-101+LOMO-based Siamese net.

4.3. Results Discussion

Two different sorts of experiments have been carried out. The first experiment im-
proved the baseline classification set by the authors of the Grocery Store Dataset [3]. They
obtained a test accuracy of 85% using a DenseNet-169 model. A ResNeXt-101 with cardi-
nality 32, a bottleneck width of eight [4] and a 20% dropout layer has improved the result
up to 91.60% test accuracy. As the model was confused between oranges and satsumas,
another tiered model was trained and added to reduce this error. By staggering the two
models, the test accuracy has increased to 92%. This cascade modeling technique allows
improving the model performance when there is a certain error in the detection of some
specific classes.

Recently, a paper published by Leo et al. [40] has surpassed these values by using
a technique known as Ensemble of networks. Considered an ensemble of M models, this
technique chooses the output according to a maximum number of occurrences among the
M individual networks. As an example, the Ensemble C uses the following models simulta-
neously: ResNet-50, ResNet-101, ResNet-152, EfficientNet-b1, DenseNet-121, DenseNet-161
and DenseNet-201. The problem with this approach is that it requires the training of a large
group of models, not only increasing the time in training but also in prediction.

The second experiment has consisted in integrating multiple classifiers into a Siamese
network in order to show how this new method improves the current OSL techniques.
The results of four Siamese models have been shown, one including a ResNeXt-101 in
each sister, one using a LOMO descriptor, one including a ResNeXt-101 together with a
LOMO descriptor and one similar to the previous model but using a L2-regularization.



Appl. Sci. 2021, 11, 7839 18 of 20

The L2-regularization has been used to reduce the overfitting detected in the model with
ResNeXt-101 and LOMO.

The integration of a descriptor and a CNN into the Siamese improves the model
initially defined by Koch et al. [18] and can be easily applied to other problems, such as
medical image classification [41] or people re-identification [42]. The F1-score obtained
using a traditional Siamese with a deep CNN has been 84.5%, while the score obtained
with the composite architecture has been 89.1%. This technique is open to using different
descriptors or classifiers and even can integrate more than two within the same network.

5. Conclusions

This paper presents the integration of a classifier and a descriptor generator into a
Siamese network. This promising combination of techniques within a Siamese net allows
solving the problem of one-shot learning. The OSL problem uses a single image per
category to classify new images in a dataset. The chosen dataset is very interesting for this
problem because grocery products can be classified with a single image. This problem has
been traditionally solved by means of data augmentation, including Generative Adversarial
Networks or feature descriptors and matching. Siamese nets solve the problem in a different
way, emulating the behavior of humans. People are able to distinguish another person they
have only seen once, but they are not able to distinguish a monkey. This is because our
brains have been trained by the observation of many people throughout our lives.

Siamese nets are usually composed of two sisters that implement convolutional
networks, sharing the same weights. In this article, a LOMO descriptor, together with a
ResNeXt-101, has been integrated within the Siamese, showing how the results improve
with respect to the use of a single classifier. The LOMO descriptor was previously created
for people re-identification and is robust against color and viewpoint changes. The model
is trained with a group of categories, validated with another group of categories and finally
evaluated with another different group. The data are split into positive and negative pairs,
where the positive pair represents two images that belong to the same category and the
negative pair to a different one. The evaluation has been carried out by means of five
random test groups where there are positive and negative pairs of images. In order to carry
out the choice of the convolutional part of the model, the baseline classification of the used
dataset has been improved. The computational cost of this technique is as low as descriptor
generation, and image inference can be performed in real time.

The idea of using a descriptor together with a CNN is open to using multiple classifier-
s/descriptors simultaneously within the Siamese. Other authors have combined multiple
classifiers for a classification problem, and it shows promising results. Future works will
consist in integrating multiple classifiers and different descriptors into a Siamese model
and to try to solve different types of problems where these techniques can be used, such as
the case of re-identification of people.
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