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Abstract: The ventilation resistance of air flow through rice grain layers is one of the key parameters
affecting drying uniformity as well as the energy consumption of the drying process. In order to
reveal the variation of characteristics of the ventilation resistance with paddy grain moisture content,
the air velocity and the bed layer depth are needed. A second order model was fitted to pressure
drop using the response surface methodology and the results are compared with those of the Ergun
model. The results showed that the pressure drop increases with the increase of paddy grain moisture
content, air velocity and the bed layer depth, and the interactions between the air velocity and the
bed layer depth have the most significant influence on the pressure drop. Moreover, a second-order
polynomial pressure drop model based on RSM was established and compared with the Ergun
model. The results showed that the pressure drop model established by RSM is similar to that of the
Ergun model.

Keywords: paddy grain; pressure drop; response surface methodology; Ergun model

1. Introduction

The pressure drop of the grain bed layer is the key parameter for designing and
optimizing the structure of the drying chamber, and it is also one of the most important
references for selecting the power of a fan [1,2]. During the drying process, owing to the
bed layer porosity as well as the air viscosity, there must be a pressure drop when the
air flows through the bed layer. A high-pressure drop may make it difficult for the air
to flow through the bed layer and further lead to the increase of non-uniformity of the
drying process, while a low-pressure drop may lead to wasting the power of the fan [3].
Accordingly, it is necessary to find out a reasonable pressure drop under the premise of
ensuring product quality and maintaining a reasonable power demand of the fan.

In the last few decades, researchers have done many studies on the ventilation resis-
tance of the grain bed layer by applying the traditional pressure drop models [4–7]. For
example, Gunasekaran and Jackson [8] conducted an experiment on the flow resistance
of sorghum bed layer by applying the Ergun model, the resistance of sorghum moisture
content of 16.5, 18.5, and 23 %w.b. were determined under the grain bed depth of 150 to
1200 mm with the airflow ranges of 0.05 to 0.3 m/s. The results showed that the resistance
of airflow increases with the increase of air velocity and bed layer depth, while resistance
increases with the decrease of moisture content. Li et al. [9] applied the Shedd model
to simulate the flow resistance of the hot air flow through the paddy grain bed layer;
they found that the flow resistance of the hot air increases with the increase of hot air
velocities. Zhang et al. [10] investigated the pressure drop of the air (with velocity ranges
of 0.1 to 0.6 m/s) flow through the bed layer with depth ranges of 100 to 1000 mm, and
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found that the simulation accuracy of the pressure drop using Ergun model is reliable only
when the air velocity is under 0.2 m/s. It can be summarized from the above analyses
that the flow resistance of the grain bed layer are mainly determined by the traditional
models and the characteristics of the air flow resistance are investigated by using single
factor test. Though the works provided some valuable references for guiding the practical
production, the air flow resistance prediction accuracy based on traditional models should
be further improved and the interaction of the parameters on the flow resistance should be
further investigated.

Respond surface methodology (RSM) is one of the most effective modeling tools to
investigate the interactions of two or more variables on the responses, which is widely
adopted to optimize the process parameters in the agriculture field [11,12]. Zeng et al. [13]
conducted an experimental study on the vacuum drying extraction technology of konjac
glucomannan using RSM, and an artificial neuron network (ANN) was also adopted and
then compared with the RSM. The results showed that the model established by RSM
is slightly better than that of an ANN. In order to improve the dynamic performance
of orchard ditching fertilizer and to avoid resonance, Liu et al. [14] adopted the RSM
to optimize the structure of the rack of orchard ditching–fertilizer machine. The results
showed that the optimized structure has a better first-order modal frequency of 38.31 Hz
than that of the traditional structure, and the optimized frequency is far away from the
input frequency (35 Hz) of a tractor, indicating that the frequency of the structure optimized
by RSM can avoid the resonance. Moreover, Kowalczyk et al. [15] adopted the RSM to
optimize the production process of a micro-elemental feed additive for laying hens, the most
favorable enrichment conditions of the process were determined by the model established
by the RSM. It can be summarized that the RSM is widely used in the agricultural field,
and it can be also adopted to model the ventilation resistance of paddy grain layer.

The present work adopted the RSM to model the ventilation resistance of paddy
grain layer. In detail, an experiment followed by Box–Behnken Design was conducted
to investigate the influences of the independent variable including paddy grain moisture
content (Mc), air velocity (vair), and paddy layer depth (L) on the pressure drop (∆p). The
influences of the single factor as well as the interactions between any two independent
variables on ∆p were investigated and a ternary quadratic model for ∆p was established
and compared with the traditional Ergun model.

2. Materials and Methods

To fully understand the variation rules of ventilation resistance of the air flowing
through paddy grain layer and further specify the optimization strategy for deep bed
paddy drying process. A laboratory-scale experimental test was conducted based on the
engineering application consideration; the detailed analysis steps are as follows.

2.1. Materials

The paddy grains sample with initial moisture content of 12.2 %w.b. are purchased
from a local farmer at Leizhou Guangdong Province, China. The samples are, respectively
manual humidified to 13.6 %w.b., 14.8 %w.b., 16.2 %w.b., 17.8 %w.b., 18.9 %w.b., 21.3 %w.b.,
22.9 %w.b., 24.5 %w.b., and 25.6 %w.b. according to the methodology introduced in the
literature [16]. Additionally, the prepared samples are sealed in plastic bags and stored in a
refrigerator at approximately 4 ◦C for about 48 h prior to the experiments [13].

2.2. Experimental Apparatus

As can be seen from Figure 1, the apparatus mainly consists of 6 parts including the
centrifugal fan, frequency converter, air supply duct, screen mesh, test pipeline, and the
fixing bracket. There are 10 pressure taps with a diameter of 10 mm on the test pipeline, the
height of the test pipeline is 1100 mm, and the distance between any two adjacent pressure
taps is 100 mm. Moreover, there is one air velocity tap closed to connection between the test
pipeline and air supply duct and the connection is sealed by a rubber ring and silicone [17].
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During the tests, the three levels of air velocities (0.1, 0.35, and 0.6 m/s) are produced by the
centrifugal fan connected with a frequency converter. The air flows through the air supply
duct, then flows cross the screen mesh, further flows cross the grain layer, and finally flows
into the ambient space. The vair was controlled by the frequency converter. The inlet vair
was measured by an anemometer. The air pressure was measured by a digital pressure
gauge. The details of the instruments used in the tests are tabulated in Table 1. Compared
with the industrial dryer—although the physical structure of the laboratory-scale apparatus
is different, the grain bed is dynamic (actually for a single grain bed layer, and the velocities
of the grain bed are very low during the cyclic drying process—the ratio of air volume
to the mass of the bed layer for the industrial dryer and the apparatus are the same [18].
This indicates that the main results obtained by the laboratory-scale apparatus can provide
some references for the industrial dryer, especially for power selection of the fan and to
ascertain of the bed layer depth in the design link of the industrial dryer.
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Table 1. The details of the instruments used for the tests.

Instruments Type Range/Value Precision

Frequency converter Delta VFD002M43B 2.2 kW -
Centrifugal fan XYFL-170 2.2 kW -
Air supply duct Round plastic pipe φ = 300 mm -

Screen mesh Stainless steel screen 2 × 2 mm -
Anemometer SUMMIT-565 0.1–20 m/s 0.1 m/s

Digital pressure gauge DP2000-5 0–1000 Pa 1 Pa
Electronic digital calliper MNT-150 0–200 mm 0.02 mm

2.3. Experimental Design
2.3.1. RSM Design

In the present work, three different paddy grain Mc of 12.2 %w.b., 18.9 %w.b., and
25.6 %w.b.; three different vair of 0.10, 0.35, and 0.60 m/s; three different L of 0.10, 0.55,
and 1.0 m, were considered to be the independent variables, while the ∆p was regarded
as the response. Owing to the fact that the Box–Behnken Design has the advantages of
the less experimental operations comparing with Central Composite Design [19], and by
comprehensive considering that the mass of each test is huge, the Box–Behnken Design
method was adopted to analyze the effects of the interaction of independent variables (Mc,
vair, and L) on the response (∆p) and further optimize the drying process. The experimental
design representing the natural and coded values of independent variables are shown in
Table 2. In order to develop the mathematical relations between the independent variables



Appl. Sci. 2021, 11, 7826 4 of 15

and the response, the second-order polynomial model (Equation (1)) was adopted to
establish the RSM model [20].

Y = β0 +
2

∑
i=1

βiXi +
2

∑
i=1

βijX2
i +

2

∑
i=1

βijXiXj (1)

where Y is the response, Xi and Xj are the independent variables affecting the response, β0,
βi, and βij are the regression coefficients for intercept quadratic liner and interaction terms.

Table 2. Experimental design for the RSM test.

Independent Variables

Code Levels

−1 0 1

Natural Levels

Mc (%w.b.) 12.2 18.9 25.6
vair (m/s) 0.10 0.35 0.60

L (m) 0.10 0.55 1.0

2.3.2. Model Validation

In statistics, the p-value is the probability of obtaining results as extreme as the results
observed from a statistical hypothesis test, assuming that the null hypothesis is correct.
The p-value is used as an alternative to rejection points to provide the smallest level of
significance where the null hypothesis would be rejected [21,22]. A smaller p-value means
stronger evidence for the alternative hypothesis [23].

Based on the analysis above, the p-value is used to validate hypothesis test of the
model. The null hypothesis is defined as the response (∆p) that cannot be explained by the
obtained model, while the alternative hypothesis is defined as the response (∆p) can be
explained by the obtained model.

2.3.3. RSM Model Validation Metrics

In the present work, the statistical indexes including determination coefficient (R2),
mean absolute error (MAE), mean square error (MSE), and root mean square (RMSE) were
adopted to evaluate the fitting performance of the ∆p model developed by the RSM and the
Ergun model, which can be, respectively, calculated followed by the following Equations
(2)–(5) [24]:

R2 = 1−
∑n

i=1 (Ypre,i −Yexp,i)
2

∑n
i=1 (Yexp, i−Ypre,i)

2 (2)

MAE =
1
n

n

∑
i=1

∣∣Ypre,i −Yexp,i
∣∣ (3)

MSE =
∑n

i=1 (Ypre, i−Yexp, i)2

n
(4)

RMSE =
√

MSE (5)

where, Ypre,i is the value predicted by the models, Yexp,i is the experimental value,
−
Yexp is

the mean of the experimental values, and n is the number of the data points. Moreover, the
experimental results are tabulated in Table 3.
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Table 3. Experimental design for the tests.

Standard Run
Independent Variables Response

Mc (%w.b.) vair (m/s) L (m) ∆p (Pa)

12 1 18.90 0.60 1.00 689.56
15 2 18.90 0.35 0.55 194.26
3 3 12.20 0.60 0.55 255.21
1 4 18.90 0.60 0.10 83.13
1 5 12.20 0.10 0.55 1375
2 6 25.60 0.10 0.55 60.58
4 7 25.60 0.60 0.55 485.12

11 8 18.90 0.10 1.00 42.52
14 9 18.90 0.35 0.55 167.28
7 10 12.20 0.35 1.00 182.54
9 11 18.90 0.10 0.10 12.62

16 12 18.90 0.35 0.55 158.76
5 13 12.20 0.35 0.10 17.11
6 14 25.60 0.35 0.10 38.82

17 15 18.90 0.35 0.55 168.76
13 16 18.90 0.35 0.55 166.46
8 17 25.60 0.35 1.00 396.69

2.3.4. ANOVA Validation: Anderson-Darling (AD) Test for Normality

According to some of the literature, the distribution of residuals for a set of data can
reflect the validity of a predicted model [25]. In detail, if the residuals follow a normal
distribution (occurrences are random), the established model has a well-predicting capacity.
The Anderson–Darling (AD) test is the statistical tool used to quantify the deviation for a
set of residuals from a normal distribution. The validity of the distribution of residuals in
the AD test at a 5% level of significance was used to confirm the model accuracy and to
determine if a sample data set was taken from a population with a specific distribution [26].
In the present work, the AD test was conducted by the software Minitab 17.0, the null
hypothesis is defined as the distribution of the residuals that do not follow the normal
distribution, and the hypothesis can be rejected if the test statistic (AD value) is greater
than a critical value [27].

2.3.5. Single Factor Experiments

In order to investigate influence of each independent variable on the response, the ∆p
under ten levels of Mc, vair, and L were, respectively, measured followed by the 3 sets of
experimental design, the single factor experiment design and the corresponding results are
tabulated in Table 4.

Table 4. Experimental design for the single factor tests.

Level
Single Factor Test 1 Single Factor Test 2 Single Factor Test 3

Mc
(%w.b.)

vair
(m/s)

L
(m)

Mc
(%w.b.)

vair
(m/s)

L
(m)

Mc
(%w.b.)

vair
(m/s)

L
(m)

1 12.2

0.35 0.5 18.9

0.1

0.5 18.9 0.35

0.1
2 13.6 0.15 0.2
3 14.8 0.2 0.3
4 16.2 0.25 0.4
5 17.8 0.3 0.5
6 18.9 0.35 0.6
7 21.3 0.4 0.7
8 22.9 0.45 0.8
9 24.5 0.5 0.9

10 25.6 0.6 1.0
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2.4. Ergun Model

Ergun model is one of most effective tools for revealing the relationship between fluid
properties and porous media properties, which has been widely used in Hydrodynamics,
thermodynamics, and engineering [28]. In order to investigate the ventilation resistance
characteristics of the air flow through the paddy bed layer as well as to verify the ∆p model
developed by the RSM. The most widely used Ergun model (∆pEur) was applied in the
present work, which can be expressed as following expressions [29–31]:

− ∆pEur
L

=
150µ(1− ε)2

d2
gε3 vair +

1.75ρ(1− ε)

dgε3 v2
air (6)

where µ is the dynamic viscosity of the air, 1.81 × 10−5 kg/(m·s) [32]; ρ is the density of
the air, ρ = 1.205 kg/m3 [33]; ε is the porosity of the bed layer; and dg is the equivalent
diameter of a single paddy grain, m. The ε for different Mc levels of the paddy grains can
be determined by a self-developed porosimeter; the details of the porosimeter can be found
in our previous work [34].

On the other hand, the dg for a single paddy grain with different Mc can be calculated
according to the length (L0), width (W0), and height (H0) of the paddy grain. The calculation
methodology introduced by Mohsenin et al. [35] are expressed as follows:

dg = 3L0W0H0(L0W0 + L0H0 + W0H0)
−1 (7)

Each parameter used for calculating the dg was measured 3 times and the average
value was used for the calculation. The dg and ε for different Mc used for calculation in the
Ergun model are shown in Figure 2.
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Figure 2. The variations of the dg and ε with Mc.

3. Results
3.1. ANOVA Analysis

In the present work, the software Design Expert 8.0.6 was applied to analyze the
experimental results and the ANOVA analysis was employed to analyze the significance of
the Mc, vair, and L on the ∆p. The results are tabulated in Table 5. It can be seen from the
table that the sum of squares, mean square, F-value, and p-value for each of the terms of
the model were calculated, of which the F-value and p-value are the criteria for evaluating
the fitting performance of the specific term [36]. Specifically, the larger the F-value is, the
more significant the term is and the better the fitting performance is; on the other hand, the
p-value with the range of (0.01 < p < 0.05) indicates the term is significant (characterized by
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the symbol “*”) while a p-value less than 0.01 indicates that the term is extremely significant
(characterized by the symbol “**”).

Table 5. ANOVA evaluation of linear, quadratic, and interaction terms for response and coefficient of
∆p model.

Source Sum of
Squares df Mean

Square F-Value p-Value

Model 5.480 × 105 9 60,885.15 148.56 <0.0001 **
Mc 32,848.69 1 32,848.69 80.15 <0.0001 **
vair 2.393 × 105 1 2.393 × 105 583.84 <0.0001 **
L 1.681 × 105 1 1.681 × 105 410.13 <0.0001 **

Mc · vair 8379.57 1 8379.57 20.45 0.0027 **
Mc · L 9255.40 1 9255.40 22.58 0.0021 **
vair · L 83,096.71 1 83,096.71 202.76 <0.0001 **

Mc 2 256.14 1 256.14 0.62 0.4551
vair

2 6858.82 1 6858.62 16.74 0.0046 **
L 2 85.53 1 85.53 0.21 0.6616

Residual 2868.84 7 409.83
Lack of Fit 2138.59 3 712.86 3.90 0.1106 (NS)
Pure Error 730.26 4 182.56
Std. Dev 20.24

Mean 184.31
R2 0.9948

Adj R2 0.9881
Pred R2 0.9358

Adep Pre 43.223
C.V.% 10.98
PRESS 35,358.41

Note: The symbol “**” indicates the term is extremely significant.

As can be seen from Table 5, the ∆p model F value of 148.56 corresponds to a low
p-value (p < 0.0001), which implies that the model was significant as the test failed to
accept the null hypothesis that variations in the response could not be explained by the
model. This indicates that the ∆p model developed by the RSM is significant, and the
experimental ∆p can be explained by the obtained model. Moreover, the values of R2, Adj
R2, and Pred R2 are similar and all close to 1 [37], which also indicates that the ∆p model is
in a well-fitting performance and can be used to predicted the ∆p. The value of the C.V.%
term is 10.98%, indicating that there are only 10.98% of the experimental data that cannot
be explained by the ∆p model developed by the RSM, in statistics, if the value of the C.V.%
is greater than 15%, the data may be abnormal and should be eliminated [19]. On the
other hand, the predicted residual sum of squares (PRESS) is a measure of how well the
∆p model fits each point in the design. The high PRESS value (35358.41) in the present
work may be caused by the abnormal 10.98% data. The influences of Mc, vair, and L on
the ∆p model can be determined by the F-value as well as the p-value. It can be obviously
summarized that the terms of Mc, vair, L, Mc·vair, Mc·L, vair·L, and vair

2 have significant
influences on the ∆p while the Mc2 and L2 have no influence on the ∆p. For the significant
terms, by estimating the corresponding F-value, the contributors to the ∆p, in ascending
order of significance, are as follows: vair

2, Mc·vair, Mc·L, Mc, vair·L, L, and vair.

3.2. Anderson-Darling Normality Test Results

In the present work, the residuals are the difference between the experimental ∆p and
the predicted ∆p by the established model (Equation (2)). The AD test was conducted by
the software Minitab 17.0, and the probability distribution plot of the residuals is shown
in the following Figure 3. As can be seen from the figure, the obtained AD value (0.484)
is less than a critical value of 0.752, and the associated p-value (0.594) of the AD test is
significant at a 5% level (p-value > 0.05) [25]. The results indicate that the residuals follow
a normal distribution, and the deviation between the experimental ∆p and predicted ∆p
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are random [26]. Accordingly, it can be concluded that the null hypothesis can be rejected
and the model predictions are correlated with the experimental data over the factor-space
under evaluation in the present work.
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3.3. The Interactions of the Independent Variables on the Pressure Drop

Based on the ANOVA analysis in Section 3.1, the Mc·vair, Mc·L, and vair·L, respectively,
have significant influences on the ∆p. The response surface as well as its corresponding
contour plots are depicted in the following Figures 4–6. As can be seen from Figure 4a, the
∆p increases with the increase of vair under constant Mc, which might be due to the fact that
the inertia resistance of the air increases with the increase of vair, just as reported by Zhang
et al. [10]. On the other hand, the ∆p increases with increase of Mc under constant vair,
which might be caused by the increased ε in high Mc, just as reported by Li et al. that the ε
of paddy layer increases with increase of paddy moisture content [38]. Though the suitable
∆p for the engineering application should be further investigated by comprehensively
considering the power of the fan, the contours shown in Figure 4b can be the reference for
the single factor analysis.
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Figure 5 depicts the interaction of Mc and L on the ∆p, similar with the trend shown in
above Figure 4. ∆p increases with increase of L, which might be caused by the fact that the
path of air flow through the paddy grain layer increases with the increase of L and further
lead to the increase of ∆p; a similar finding has been reported by Rocha et al. for ∆p of
paddy rice layer [39]. On the other hand, the ∆p increases with increase of Mc; the same
reason analyzed in Figure 4 can be also used to explain the trend. Interestingly, the ∆p
under different Mc with the L under 0.4 m almost remains constant, indicating that the ∆p is
slightly affected by the Mc when the L is small, which can be regarded as a design reference
of the bed layer depth. Moreover, it can be seen from Figure 5a that the ∆p linearly varies
the single factor L or Mc, while the ∆p non-linearly varies with the interaction terms of
Mc·L, just as shown in the following Figure 5b.

The interaction of vair and L on the ∆p are shown in the following Figure 6. As can
be seen from Figure 6a that the ∆p varies from the minimum 17.11 Pa to the maximum
689.56 Pa, the variation range is much larger than that of the interaction terms of Mc·L and
Mc·vair, indicating that the influence of term L·vair on ∆p is more significant than that of
Mc·L and Mc·vair, just as analyzed in Section 3.1. Accordingly, in order to reach the objective
of the efficient and energy-saving drying, efforts should be firstly made to optimize the
drying parameters related to the L and vair in the engineering drying application. Especially
when the air with high vair flow through the bed layer with large L, the ∆p rapidly increases
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with the interaction term of L·vair (as shown in Figure 6b, in other words, the larger driven
force for supplying the drying medium is needed when the L·vair is high.

3.4. The Comparison of the ∆p Model Developed by RSM and Ergun Model

In order to verify the feasibility of the ∆p model developed by RSM, the comparison
analysis focused on the RSM experiments for the ∆p model developed by RSM and Ergun
model was conducted, and the statistical indexes including R2, MAE, MSE, and RMSE
were calculated. The detailed analysis is in Section 3.4.1.

3.4.1. The Comparison of the ∆p in the RSM Experiments

Based on the ANOVA analysis results shown in Table 5, the second-order polynomial
expression of the ∆p model developed by the RSM (∆pRSM) are expressed as following
Equation (8):

∆pRSM = 174.60194− 2.20717Mc− 981.35993vair − 403.3567L + 27.32537Mc·vair
+15.95439Mc·L + 1281.17778vair·L− 0.17375Mc2 + 645.768v2

air − 22.25679L2 (8)

The 17 sets of independent variables tabulated in Table 5 were substituted into the
above ∆pRSM model and the predicted ∆pRSM values were obtained. On the other hand,
the 17 sets of independent variables were also substituted into the ∆pEur model shown in
Equation (2) by transmitting the Mc into the corresponding ε (just as tabulated in Figure
2), and the predicted ∆pEur values were obtained and compared with the corresponding
predicted ∆pRSM. The comparison between the ∆pRSM and the ∆pEur were evaluated by the
validation metrics (Equations (2)–(5)), and the statistical results are tabulated in Table 6.

Table 6. The statistical results of the RSM experiment for comparing ∆pRSM and ∆pEur.

Statistical Indexes
RSM Model Ergun Model

∆ pRSM ∆ pEur

Determination coefficient (R2) 0.9948 0.9868
Mean-square error (MSE) 10.9021 15.7041

Mean absolute error (MAE) 2868.9372 7292.4115
Root-mean-square error(RMSE) 12.9908 20.7115

As can be seen from Table 6, the index R2 (0.9948) of the RSM model is higher than that
of the Ergun model (0.9868), while the indexes MAE, MSE, and RMSE of the RSM model
are, respectively, lower than the corresponding index of the Ergun model, which indicates
that the pressure drop model developed by the RSM is better fitted than the Ergun model.

3.4.2. The Single Factor Analysis of the ∆p

In order to validate fitting performance of the ∆pRSM and ∆pErg. The second-order
polynomial RSM model was transmitted into three first-order quadratic models by sub-
stituting the independent variables shown in Table 3 into Equation (8), the single factor
pressure drop models based on the ∆pRSM are as follows:

∆pMc = −72.8038915 + 19.7482445Mc− 0.17375Mc2 (9)

∆pvair
= 14.4119253 + 175.678453vair + 645.768v2

air (10)

∆pL = −12.72658565 + 346.593494L− 22.25679L2 (11)

Based on the above Equations (6), (9)–(11), the variations of ∆p with Mc, vair, and L
can be obtained and, respectively, depicted in the following Figures 7–9. As can be seen
from Figure 7 that the ∆p is proportional to the Mc, and the variation range of the ∆p was
ascertained to be 86.38–197.57 Pa. It can be summarized from Figure 2 that the equivalent
diameter dg increases with the Mc while porosity of the bed layer ε decreases with the
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increase of the Mc, indicating that the volume of the air pathways decreased with the
increase of Mc [40], and further lead to the flow resistance of the air passing through the
bed layer will be increased with the increase of the Mc. On the other hand, it can be seen
from Figure 7 that the ∆pRSM are more closed to the experimental ∆p than the ∆pErg.
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Figure 8 depicts the variations of ∆p with vair under the constant Mc of 18.9 %w.b.
and L of 0.5 m. Similar with the variation trend of the ∆p shown in the above Figure 7,
∆p also increases with increase of vair, and the variation range of the ∆p was ascertained
to be 38.44–352.92 Pa. Moreover, it can be seen from Figure 8 that the ∆pErg with the
vair of 0.1 m/s and 0.15 m/s are more closed to the corresponding experimental ∆p than
the ∆pRSM, indicating that the Ergun model has a better prediction performance than the
developed RSM model when the vair is under 0.2 m/s. The same conclusions have been
made by Mahmood et al. [41] and Ye et al. [10]. However, in this case, the developed ∆pRSM
model has a better performance than the Ergun model when the vair is above 0.2 m/s,
which may be more suitable for guiding the actual process.

The variations of ∆p with L under the constant vair of 0.35 m/s and Mc of 18.9 %w.b.
are depicted in Figure 9. It can be seen from the figure that the ∆p linearly increases with
the increase of L, and the ∆p gets the minimum (27.68 Pa) and maximum value (276.83 Pa),
respectively, at the L of 0.1 and 1m. On the other hand, it can be also seen from Figure 9
that, for the all levels of L, the fitting performance of the ∆pRSM is better than that of the
∆pErg. In order to further investigate the fitting performance of the ∆pRSM and the ∆pErg in
the above three single factor experiment, the statistical indexes mentioned in Section 2.3.3
were also calculated and the results are tabulated in the following Table 7.

Table 7. The statistical results for the single factor experiments.

Statistical Indexes
RSM Model Ergun Model

∆pMc ∆pvair ∆pL ∆pMc ∆pvair ∆pL

Determination
coefficient (R2) 0.9755 0.9909 0.9918 0.8539 0.9846 0.9737

Mean-square error
(MSE) 35.9195 89.4276 64.5378 213.7543 151.9289 206.1363

Mean absolute error
(MAE) 5.6094 8.4528 6.3943 13.9521 10.1731 12.6444

Root-mean-square
error (RMSE) 5.9933 9.4566 8.0335 14.6203 12.3259 14.3574

As can be seen from Table 7 that the R2 value of each single factor model based on
the ∆pRSM is higher than that of the corresponding model based on the ∆pErg, while the
other indexes (MSE, MAE, and RMSE) of each single factor model based on the ∆pRSM are
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lower than the corresponding index of the corresponding model based on the ∆pErg. Which
indicates that the single factor model ∆pMc, ∆pvair, and ∆pL based on the ∆pRSM has better
fitting performance than that of the corresponding single factor model based on the ∆pErg.
By combining the results obtained in Section 3.4.1, it can be concluded that the developed
ventilation resistance model based on the RSM has a better predicting performance than
the traditional Ergun model.

4. Conclusions

By considering the moisture content (Mc), air velocity (vair), and grain bed layer depth
(L) as the key factors affecting the ventilation resistance of the air, one must regard the
pressure drop (∆p) as the key index characterizing the ventilation resistance of the air. The
present work investigated the influences of each factor and the interactions of the factors
on the pressure drop; a second-order polynomial model was also obtained based on the
RSM. The detailed conclusions depending on the main results are listed as follows:

(1) The relations among the Mc, ε, and dg were revealed and the mathematical expressions
were also given in the present work.

(2) The ∆p increases with the increase of Mc, vair, and L and the contributors to the ∆p, in
ascending order of significance, are as follows: Mc < L < vair.

(3) The interaction analysis indicates that the interactions of the vair and L has the most
significant influence on the ∆p, and the match principle between the vair and L should
be firstly considered when optimizing the drying process.

(4) A second-order polynomial ∆p model based on the RSM was obtained, and its fitting
performance was verified to be better than that of the traditional Ergun model by
evaluating the R2, MSE, MAE, and RMSE.

(5) The developed ∆p model based on the RSM shows a better fitting performance than
the Ergun model when the vair ≥ 0.2 m/s, while the Ergun model shows better when
the vair is under 0.2 m/s.

The present work revealed the influences of the variables that can be directly measured
in an engineering drying application on the pressure drop and established a prediction
model of the pressure drop. Thus, the main results would be helpful for further optimizing
the drying process. Further study is recommended to investigate the pressure drop varia-
tion characteristics by taking the air temperature as well as the paddy grain flow velocity
into consideration.
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