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Abstract: The effect of risk factors on crash severity varies across vehicle types. The objective
of this study was to explore the risk factors associated with the severity of rural single-vehicle
(SV) crashes. Four vehicle types including passenger car, motorcycle, pickup, and truck were
considered. To synthetically accommodate unobserved heterogeneity and spatial correlation in
crash data, a novel Bayesian spatial random parameters logit (SRP-logit) model is proposed. Rural
SV crash data in Shandong Province were extracted to calibrate the model. Three traditional logit
approaches—multinomial logit model, random parameter logit model, and random intercept logit
model—were also established and compared with the proposed model. The results indicated that the
SRP-logit model exhibits the best fit performance compared with other models, highlighting that
simultaneously accommodating unobserved heterogeneity and spatial correlation is a promising
modeling approach. Further, there is a significant positive correlation between weekend, dark
(without street lighting) conditions, and collision with fixed object and severe crashes and a significant
negative correlation between collision with pedestrians and severe crashes. The findings can provide
valuable information for policy makers to improve traffic safety performance in rural areas.

Keywords: traffic safety; single-vehicle crash; spatial effect; Bayesian estimation

1. Introduction

Different from developed countries, there is serious latent danger in rural areas of
China, such as a complex traffic environment, inadequate infrastructure, high speed,
and sluggish rescue response. These adverse factors increase the possibility of serious
traffic crashes. In 2017, the number of traffic crashes and fatalities in rural areas in China
accounted for 48.43% and 40.59% of the respective totals for all crashes [1]. Thus, rural
crashes have been considered a fatality-concentrated event, especially for rural single-
vehicle (SV) crashes.

Rural SV crashes usually have serious consequences; the number of fatalities has
increased significantly in recent years, showing an average growth rate of 4.8% from 2013
to 2017. Further, there were 24 rural crashes resulting in 10 or more fatalities, including
20 SV crashes [1]. Hence, transportation professionals were encouraged to explore the risk
factors of SV crash severity in rural areas.

Identifying the risk factors of rural SV crash severity are helpful to improve traffic
safety on rural roadways. According to the characteristics of risk factors, targeted measures
can be taken. Hence, numerous severity prediction functions (SPFs) were established [2,3].
However, existing research does not distinguish different motor vehicle types during the
crash severity modeling process.
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There are many types of motor vehicles, such as passenger car, motorcycle, pickup,
and truck, each with its own characteristics. It is expected that the influence of risk factors
on the severity of rural SV crashes may vary across different vehicle types. If the same SPFs
were used for different vehicle types, the variability of crash mechanisms will be ignored
and will also lead to unsatisfactory prediction performance. Conversely, modeling of rural
SV crashes based on different vehicle types is expected to overcome these deficiencies and
can help to visualize the variant impacts of risk factors on crash severity.

In addition, as a crash is the result of many factors, there are always some unobserved
or unobservable factors that will affect crash severity, named unobserved heterogene-
ity [4,5]. Ignoring unobserved heterogeneity may lead to erroneous parameter inference [6].

To capture the effects of unobserved heterogeneity on the severity of rural SV crashes,
several heterogeneity models have been constructed [7,8], such as random parameters logit
model and random intercept logit model. These models allow parameters to vary across
observations, which provides a flexible framework. Theoretically, they can simulate all
selection patterns based on probabilistic propensities [9,10]. However, such approaches
cannot capture the spatial correlation across crashes, which will limit the promotion of
the model. Importantly, the spatial correlation of adjacent crashes has been commonly
recognized in crash rates, crash counts, and traffic conflict analyses [2,11], but this issue
is often overlooked in crash severity analyses, especially for rural SV crashes, which may
lead to the prediction accuracy being substantially undermined.

Based on the above analysis, it is meaningful to establish statistical models across
motor vehicle types for rural SV crash severity and to simultaneously accommodate the
unobserved heterogeneity and spatial correlation. The research results are helpful to
clarify the variable influences of risk factors on rural SV crash severity and create a safer
transportation environment in rural areas.

The rest of this paper is organized as follows. A comprehensive literature review for
rural SV crash analysis is given in Section 2. Section 3 provides detailed information on
the studied crash dataset. The methodological framework in this research is presented
in Section 4, and analysis and discussion of the estimation results are given in Section 5.
Conclusions and potential limitations of this research are described in Sections 6 and 7,
respectively.

2. Literature Review
2.1. Covariates Analysis of Rural Single-Vehicle Crashes

Due to fatality-concentrate, rural SV crashes have attracted extensive interest from
transportation professionals, and various risk factors have been explored. These factors
can be divided into four components—driver characteristics, crash-specific characteristics,
environmental characteristics, and temporal characteristics.

2.1.1. Driver Characteristics

Numerous studies have shown that driver-related characteristics have a significant
influence on the severity of rural SV crashes, including lack of seat belt use, drunk driving,
speeding, fatigue, driver age, and driver gender. For example, the probability of fatal
crashes in rural areas due to seat belts not being used and drunk driving will increase 15.3%
and 36.3%, respectively [12]. It was also suggested that fatigue is associated with severe
rural SV crashes and that increasing rest breaks could reduce crash risk [13,14]. Driver
age was divided into three stages—young drivers (age < 24), mid-age drivers (24–65),
and older drivers (age > 65)—to establish SPFs, suggesting that the probability of severe
crashes varied across age stages [15]. Specifically, compared with mid-age drivers, the
probability of serious crashes of young drivers was reduced by 4.8% and that of old drivers
was increased by 66.2% [16].

There is a significant correlation between driver gender and crash severity, which has
been widely accepted. However, due to the differences of research objects and modeling
methods, inconsistent findings have been shown. A partial proportionality odds model
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and a mixed logit model were established using SV run-off-road crashes to investigate the
factors associated with crash severity. It was found that male drivers were more likely to be
involved in fatal or severe crashes than female drivers [17,18]. Subsequently, a hierarchical
Bayesian random intercept approach and a random parameter hierarchical ordered probit
approach were established and found that female drivers were more likely to be involved
in serious crashes than males [19,20]. Further, weather conditions were divided into five
categories—sun, rain, snow, fog, and overcast—to capture risk factors. The regression
results suggested that male drivers were more likely to be involved in fatal or severe
crashes in sunny and snowy weather than females, but this finding could not be supported
by rainy, foggy, and overcast weather [21]. These findings suggest that there is no definite
conclusion about the impact of driver gender on crash severity. This may be related to the
effect of unobserved heterogeneity on regression results.

2.1.2. Crash-Specific Characteristics

According to previous studies, the severity of rural SV crashes will vary across crash
type (e.g., collision with fixed object, rollover/overturn, collision with pedestrian, collision
with animal) [22]. Collision with a fixed object will increase the probability of serious
crashes by 72.2% compared to collision with a non-fixed object [16]. A similar finding
can be found in other studies [13,23]. In particular, collisions resulting in motor vehicle
overturning were more likely to have serious crash consequences [24]. It is generally
known that animals and pedestrians are vulnerable to motor vehicles; collisions between
motor vehicles and animals or pedestrians usually do not adversely affect drivers, but they
can easily take the lives of animals or pedestrians [25].

Similarly, crash severity is expected to vary across different motor vehicle types,
which are commonly accommodated as candidate risk factors and combined with other
factors [26,27]. Three motor vehicle categories—large vehicle, passenger vehicle, and
motorcycle—were included to establish ordered logistic regression, suggesting that the
consequences of motorcycle crashes were more severe compared with large vehicle crashes,
followed by passenger car crashes [24]. In addition, passenger car crashes and pickup
crashes were negatively correlated with crash severity [16,28].

2.1.3. Environmental Characteristics

Several traffic characteristics, such as speed limit and traffic volume, were demon-
strated to be significantly correlated with rural SV crash severity [29,30]. In detail, crashes
occurring on roadways with speed limits below 35 mph or AADT (Annual Average Daily
Traffic) above 5000 were more likely to result in less serious injury outcomes due to a safe
speed being maintained under car-following conditions [31].

Existing studies have shown that there is a negative correlation between adverse
environmental conditions and crash severity [17,18,30]. It is believed that the reduction of
injury severity is attributable to more careful driving in bad environments. Some contradic-
tory findings were also demonstrated, namely that crashes occurring in rainy and snowy
weather could lead to severe consequences [29]. Some speed limit measures have been
considered to reduce crash severity under inclement weather [32–34]. Meanwhile, in dark
without streetlights conditions, SV crashes are more likely to cause serious injuries [17].

2.1.4. Temporal Characteristics

Drivers are more prone to be fatigued or sleepy in the early morning, a risky behavior
that will have a deleterious effect on traffic safety. Both the frequency and severity of
crashes show an increased trend [17]. In addition, rural SV crashes occurring between
6:00 p.m. and 12:00 p.m. are unlikely to result in serious injury [29,31]. The same research
suggested that serious crashes were more likely to occur during the winter season.

Further, the probability of severe crashes on weekdays was higher than on week-
ends [17,35]. It was also pointed out that if off-duty time exceeds 46 h, such as more than a
weekend, the risk of crashing will increase when a driver returns to work [36].
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2.2. Statistical Techniques for Crash Severity
2.2.1. Unobserved Heterogeneity in Crash Analysis

Considering the discrete characteristics of crash severity outcome, several discrete
choice models have been introduced. One of the most commonly used analysis techniques
is a logit approach. Among various logit approaches, the multinomial logit (MN-logit)
model has been widely used due to its simple structure and easy-to-read parameters. For
example, the MN-logit model was calibrated to analyze the risk factors of motorcycle
crashes and pedestrian–vehicle crashes, respectively [37,38]. Subsequently, a binary logit
model was employed to fit roadside accidents and suggested that rural crashes should be
investigated separately [22]. However, the parameters of the MN-logit model are fixed,
which cannot identify the unobserved heterogeneity. This regression pattern may not
be able to exhibit the real contribution of risk factors on crash severity. Therefore, some
advanced modeling techniques, such as random parameters logit (RP-logit) model and
random intercept logit (RI-logit) model, have been recommended.

The RP-logit model is a discrete choice model with high flexibility and adaptability that
captures the unobserved heterogeneity by allowing parameters to vary across observations.
This statistical technique has been known for many years, but it was not fully applicable
until the advent of simulation technology. Up to now, it has developed into a satisfactory
approach for estimating crash severity [2,9]. Milton et al. [39] were among the first to
employ the RP-logit model in accident analysis and suggested that this approach can be
used to verify the distribution of crash severity on roadway segments. Subsequently, the
pedestrian injury severity in pedestrian-vehicle crashes was investigated. It was found
that the effect of pedestrian age on injury severity was normally distributed across crashes
and the probability of fatal injury increased significantly with the increase of pedestrian
age [25,40].

More specifically, the RI-logit model can be regarded as a special form of the RP-
logit model, which addresses the unobserved heterogeneity by allowing model intercept
to vary across individual crashes [11]. Xu et al. [41] used the RI-logit model for traffic
safety analysis earlier. Based on crash data of I–880N in California, crash risk prediction
models were developed for different weather conditions, and the influence of traffic flow
variables on crash risk was captured. It was found that model predictive performance
can be effectively improved by allowing the model intercept to vary across observations.
Additionally, a hierarchical Bayesian approach was proposed to examine the posterior
probability of driver injury severity in rural truck-related crashes [42]. The results indicated
that capturing random effects plays an important role in predicting injury outcomes.

2.2.2. Spatial Correlation in Crash Analysis

Currently, spatial statistical techniques have been highly praised. For example, the risk
factors associated with freeway crashes were explored by developing a spatial generalized
ordered logit model [43]. The results showed that there were several important factors
affecting freeway crash severities, such as vehicle type, season, traffic volume, crash type,
and driver experience. Further, the spatial correlation effect was accommodated using a
spatial structure error term to investigate the risk factors of crash frequency [44]. The results
showed that the model simultaneously considering spatial correlation and unobserved
heterogeneity outperforms the model considering only unobserved heterogeneity. The
same conclusion was obtained by Klassen et al. [45], who used a spatial random intercept
model to explore bicycle-motor vehicle crashes. In addition, there are many other studies
to determine the risk factors of injury outcomes by establishing statistical functions with
spatial error term [46–48]. That research could provide inspiration for this research.

The existing spatial crash severity functions evolved from traditional statistical tech-
niques by constructing a spatial structure term, including the MN-logit model, RI-logit
model, and ordered logit model, etc. The spatial statistical function developed from a
random coefficient model is limited. Numerous research studies have demonstrated that
random coefficient regression functions are superior statistical techniques to fixed coeffi-
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cient functions [2]. Hence, constructing a spatial structure in a random coefficient function
is expected to exhibit a superior regression performance. Lately, some inspiring spatial
random parameters functions have been established, including spatial random parame-
ters Poisson-lognormal regression and spatial random parameters Tobit regression [49,50].
These models were used to investigate crash frequency and crash rate, respectively. Based
on an in-depth review of crash severity studies, few spatial random coefficient models were
found that could fit crash severity. This is a methodological gap in traffic safety analysis
and corresponding research should be conducted to enrich statistical theory.

2.3. The Current Research

Unobserved heterogeneity and spatial correlation have been widely recognized in
accident analysis. Due to the substantial differences between different motor vehicle types,
these two characteristics are expected to vary across vehicle types. Hence, this research was
conducted to comprehensively accommodate the unobserved heterogeneity and spatial
correlation by vehicle types in rural SV crashes to clarify the variable and interesting rela-
tionship between risk factors and injury severity. A novel spatial random parameters logit
(SRP-logit) model with spatial and unstructured error terms is proposed. Three candidate
models—MN-logit model, RP-logit model, and RI-logit model—were also calibrated under
the Bayesian framework and compared with the proposed model. Meanwhile, several risk
factors of crash severity across different vehicle types were identified. This study provides
a reference for traffic safety researchers to determine a satisfactory statistical approach and
provides valuable risk factors across vehicle types for traffic managers to improve rural
traffic safety.

3. Data

This study focused on the analysis of crashes on a rural two-lane highway without
divider or signal controls in Shandong Province, China. In total, 110 rural highways
were selected. A map of the study area is shown in Figure 1. SV crashes related to four
motor vehicle types (passenger car, motorcycle, pickup, and truck) from 2015 to 2020
were collected to calibrate the crash model. The studied dataset was composed of the
information from three different data sources—(1) a crash database extracted from the
Crash Reporting System maintained by the Traffic Administration Bureau of Shandong
Department of Public Security; (2) a real-time meteorological dataset collected from the
Meteorological Information Management System maintained by Shandong Climate Center;
and (3) a geographic dataset of the target road derived from the Traffic Information System
maintained by the Shandong Department of Transportation. A total of 29,814 crashes
were integrated. After removing data with key information errors, 29,525 crashes were
employed for subsequent modeling.

Figure 1. Map of region under study.
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In this research, crash severity and various risk factors were identified as dependent
and independent variables, respectively. Both the dependent and independent variables
were transformed into discrete variables to fit the regression functions. Generally, there
are three methods to determine the crash severity: (1) based on driver injury severity [51];
(2) based on most seriously injured passengers [52]; and (3) based on most serious injury in
a crash [53]. Given the substantial differences in safety awareness among passengers as
well as between drivers and passengers, the latter two approaches may introduce some
additional heterogeneity. Thus, to reduce the potential heterogeneity and improve the
reliability of model parameters, driver injury severity was used to measure crash severity
for subsequent regression analysis.

In the database, crash-related driver injuries were classified into four categories—no
injury (70.0%), slight injury (20.1%), serious injury (7.8%) and fatal injury (2.1%). A driver
passing away within seven days was regarded as a fatal event. Fatality cases were very
limited in the dataset, which may lead to incorrect inference. Considering that the two
adjacent injury categories are similar, the combination of fatality and serious injury, called
FS injuries, was not expected to have a substantial impact on parameters estimation [54,55].
Thus, the dependent variable was a tripartite injury result (no injury, slight injury, FS
injuries), in which the interest response refers to FS injuries, and no injury was considered
as reference variable.

Descriptive statistics of dependent variables across vehicle types are shown in Figure 2.
As shown, a similar proportion of injury severity was maintained by passenger car, pickup,
and truck crashes. The percentages of no injury for passenger car, pickup, and truck crashes
were 87.7%, 87.0%, and 88.5%, respectively, followed by slight injury (9.6%, 9.4%, and
6.9%, respectively) and FS injuries (2.7%, 3.6% and 4.6%, respectively). Further, there is
a significant difference in the proportion of injury severity between motorcycle crashes
and other motor vehicle crashes. The percentage of slight injury (57.5%) was highest in
motorcycle crashes, followed by FS injuries (23.7%) and no injury (18.8%). This may be
related to the fact that motorcycle cannot provide adequate protection for riders.

Figure 2. Statistics of crash severity by vehicle types.

Several risk factors, including driver gender, driver age, drunk driving, weather, road
surface, crash type, week, month, season, light, crash time and traffic control, were recorded
in the crash dataset. Among them, some continuous variables, such as age, month, and
crash time, were discretized. Driver age was divided into three categories, including young
driver (<30), middle-aged driver (30–60), and older adult driver (>60). Middle-aged driver
was identified as the reference variable. The month was also divided into three categories
(early in month, middle of month, and late in month). Note that the beginning of the month
and the middle of the month represent the 1st to 10th and the 11th to 20th of each month;
late in the month represents the remaining days of the month. Crash time was transformed
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into a binary discrete variable, including day and night. Among them, daytime was used
as a reference variable.

Further, the categorical variables in the raw data were reasonably combined to slim
down the model. More specifically, rain, snow, and fog were combined as non-clear
weather; hence, clear and non-clear identified the weather condition. Driver gender and
drunk driving were determined based on traffic police records and were classified as binary
variables. Wet pavement, muddy pavement, and snowy pavement were combined as
non-dry road surface; two categories—dry and non-dry pavements—were shown as road
surface conditions. More than 20 crash types were recorded in the raw data that were
combined into four categories—collision with fixed object, collision with non-fixed object,
collision with pedestrian, and other. Similar independent variable classification can be
found in Wei et al. [51]. Lighting conditions were divided into three categories—daylight,
dark (with street lighting), and dark (without street lighting)—to explore the impact of risk
factors on crash severity across different vehicle types. In addition, several traffic control
modes are included in the original records, such as traffic lights, police direction, speed
limit monitoring, and other traffic infrastructure. These traffic control modes were marked
as traffic control, otherwise marked as no traffic control. The descriptive statistics of the
independent variables are shown in Table 1.

Table 1. Descriptive statistics of model variables across vehicle types.

Variables Categories
Count(Ratio/%)

Passenger Car Motorcycle Pickup Truck

Number 11,419 9703 2913 5489
Driver gender Male 9858 (86.3) 8995 (92.7) 2734 (93.8) 5478 (99.7)

Female * 1561 (13.7) 708 (7.2) 179 (6.1) 11 (0.2)
Driver age <30 3515 (30.8) 2204 (22.7) 783 (26.9) 687 (12.5)

30–60 * 6214 (54.4) 4064 (41.8) 1722 (59.1) 4219 (76.8)
>60 1690 (14.8) 3435 (35.4) 408 (14.0) 583 (10.6)

Drunk driving Yes 1718 (15.0) 2512 (25.8) 264 (9.1) 33 (0.6)
No * 9701 (85.0) 7191 (74.2) 2649 (90.9) 5456 (99.4)

Weather Non-clear 1575 (13.7) 1219 (12.5) 445 (15.3) 866 (15.7)
Clear * 9844 (86.2) 8484 (87.4) 2468 (84.7) 4623 (84.2)

Road surface Non-dry 1293 (11.3) 984 (10.1) 315 (10.8) 632 (11.5)
Dry * 10,126 (88.7) 8719 (89.9) 2598 (89.2) 4857 (88.5)

Crash type Non-fixed object * 8984 (78.6) 7766 (80.0) 2252 (77.3) 4058 (73.9)
Fixed object 838 (7.3) 1087 (11.2) 188 (6.4) 937 (17.0)

Collision with pedestrian 1492 (13.0) 766 (7.8) 434 (14.8) 445 (8.1)
Others 105 (0.9) 84 (0.8) 39 (1.3) 49 (0.8)

Week Monday–Tuesday 3314 (29.0) 2780 (28.7) 844 (29.0) 1525 (27.8)
Wednesday * 1591 (13.9) 1419 (14.6) 419 (14.3) 767 (13.9)

Thursday–Friday 3330 (29.2) 2810 (29.0) 841 (28.9) 1653 (30.1)
Weekend 3184 (27.9) 2694 (27.7) 809 (27.8) 1544 (28.2)

Month Early in month 3788 (33.1) 3145 (32.4) 933 (32.0) 1783 (32.4)
Middle in month * 3730 (32.7) 3249 (33.5) 965 (33.2) 1809 (33.0)

Late in month 3901 (34.2) 3309 (34.1) 1015 (34.8) 1897 (34.6)
Season Spring * 2872 (25.2) 2632 (27.1) 762 (26.1) 1532 (27.9)

Summer 2805 (24.6) 2539 (26.1) 676 (23.2) 1415 (25.7)
Fall 3094 (27.0) 2614 (26.9) 782 (26.8) 1573 (28.6)

Winter 2648 (23.1) 1918 (19.8) 693 (23.8) 969 (17.7)
Light Daylight * 7314 (64.0) 6011 (61.9) 1966 (67.5) 2946 (53.6)

Dark (with street lighting) 2485 (21.7) 1661 (17.1) 465 (15.9) 798 (14.5)
Dark (without street lighting) 1620 (14.2) 2031 (20.9) 482 (16.5) 1745 (31.7)

Crash time Day * 6561 (57.5) 5345 (55.1) 1780 (61.1) 2550 (46.5)
Night 4858 (42.5) 4358 (44.9) 1133 (38.9) 2939 (53.5)

Traffic Controlled 7603 (66.5) 6376 (65.7) 1874 (64.3) 3668 (66.8)
control Uncontrolled * 3816 (33.4) 3327 (34.2) 1039 (35.6) 1821 (33.1)

Note: * indicates that variable was reference variable in model.
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From Table 1, it can be seen that the proportion of risk factors varies with the types of
motor vehicles. In detail, the proportions of female drivers in passenger car, motorcycle,
pickup, and truck crashes were 13.7%, 7.2%, 6.1%, and 0.2%, respectively, highlighting a
trend of gradual decrease. Furthermore, motorcycle crashes had higher percentages of
older adult drivers (35.4%) than crashes of any other vehicle type, 14.8% for passenger car,
14.0% for pickup, and 10.6% for truck. Drunk driving was found to have similar effect
on percentage value in crashes of the four vehicle types—25.8% for motorcycle, 15.0% for
passenger car, 9.1% for pickup, and 0.6% for truck.

However, a completely different phenomenon is represented by collision with fixed
object. The proportion of collisions with fixed object related to truck crashes was 17%
and was the highest, followed by motorcycle (11.2%), passenger car (7.3%), and pickup
crashes (6.4%). The proportion of dark (without street lighting) condition in different
motor vehicle types remained largely consistent with collision with fixed object. Finally, the
ratio of weather, road surface, week, month, season, and traffic control remained basically
consistent among different vehicle types.

These statistics showed that the proportion of risk factors varies significantly across dif-
ferent vehicle types, which may lead to unstable regression coefficient; thus, it is necessary
to investigate different vehicle types separately.

Of note is that the proportion of some variables in Table 1 is less than 1%, such as
female driver and drunk driving involved in truck crashes. These variables may lead to
unstable model estimation and were eliminated.

4. Methodology

As discussed, the driver injury severity of a rural SV crash is specified to be one of
three discrete categories—no injury, slight injury, and FS injuries. Given these three discrete
crash severity levels, statistical models can be derived that can be used to determine the
probability of a vehicle crash with a specific severity level. To verify the differences of fit
performance between different crash severity models and identify the factors that have a
significant influence on the severity of rural SV crashes, four logit models were constructed
under the Bayesian framework, including the MN-logit model, the RP-logit model, the
RI-logit model, and the SRP-logit model. The specific model structures are as follows.

4.1. Model Specifications
4.1.1. Multinomial Logit Model

The MN-logit model formulation was discussed in Shankar and Mannering [56]. For
a given dataset of rural SV crashes, the probability of driver injury level k in crash i is
given as:

Pw
i,k = P(Uw

i,k ≥ Uw
i,j) ∀k 6= j, (1)

where Pw
i,k denotes the probability of ith crash with injury level k on the wth road segment;

j is the set of possible injury severities; Uw
i,k is a propensity function of covariates that

determines the likelihood of crash i resulting in crash severity k. To clarify this likelihood, a
function that defines the severity probability needs to be specified and a linear function
was assumed:

Uw
i,k = βkXw

i +εi,k, (2)

βkXw
i = βk,0+βk,1xw

i,1+βk,2xw
i,2 + . . .+βk, Lxw

i,L = βk,0 +
L

∑
l=1

βk,l xw
i,l , (3)

where Xw
i is a vector of independent variables, such as driver gender, driver age, drunk

driving, weather, road surface, etc., which determines the injury outcome k; xw
i,l is the

value of predictive variable l for ith crash; βk denotes a vector of estimable coefficient
corresponding to the injury outcome k; βk,l is the coefficient of the predictive variable l;
βk,0 denotes the model intercept; εi,k is an error term, which follows type I extreme value
distribution.
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As noted, the dependent variable was a tripartite injury result; hence, we have
Yw

i = (Y w
i,1, Yw

i,2, Yw
i,3

)
; Yw

i = 1 denotes no injury and was considered as the reference
category, while Yw

i = 2 and Yw
i = 3 indicate slight injury and FS injuries, respectively. Let

Pw
i,k = Pr

(
Yw

i = k
)

denote the probability of Yw
i = k. Therefore, we have:

Yw
i ∼ categorical(P w

i,1, Pw
i,2, Pw

i,3

)
. (4)

Assuming that the probabilities (P w
i,1, Pw

i,2, Pw
i,3

)
of crash severity obey a multinomial

logistic distribution, the structure of MN-logit model can be shown as follows.

logit
(

Pw
i,k

)
= log

Pw
i,k

Pw
i,1

= βk,0 +
L

∑
l=1

βk,l xw
i,l , (k = 2, 3), (5)

where all variables in Equation (5) are the same as those defined earlier.

4.1.2. Random Parameters Logit Model

The MN-logit model believes that the impact of predictors remains constant for
all crashes. This phenomenon violates the fact that the influence of risk factors may
vary across observations [16]. Hence, the RP-logit model was established by setting the
fixed parameters (βk,0, βk,1, . . . , βk,L) in the MN-logit model to be random parameters
(βi,k,0, βi,k,1, . . . , βi,k,L) to accommodate the variable influence of risk factors on crash
severity. We have:

logit
(

Pw
i,k

)
= log

Pw
i,k

Pw
i,1

= βi,k,0 +
L

∑
l=1

βi,k,l xw
i,l , (k = 2, 3). (6)

Assuming that the possible random coefficients are normally distributed as
βi,k∼ N(µ k, ϕk), where:

βi,k =


β0

i,k
β1

i,k
· · ·
βL

i,k

, µk =


µ0

k
µ1

k
· · ·
µL

k

, ϕk =


(ϕ k

0,0

)2
(ϕ k

0,1

)2
· · · (ϕ k

0,L

)2

(ϕ k
1,0

)2
(ϕ k

1,1

)2
· · · (ϕ k

1,L

)2

· · · · · · · · · · · ·
(ϕ k

L,0

)2
(ϕ k

L,1

)2
· · · (ϕ k

L,L

)2

. (7)

The diagonal element
(

ϕk
l,l

)2
is the variance of random parameter βi,k,l . The off-

diagonal element
(

ϕk
l1,l2

)2
, (l1 6= l2) is the covariance between βi,k,l1 and βi,k,l2.

The model coefficient is regarded as random across observations if the posterior
estimation variance is different from zero at a significance level of 10%. Otherwise, the
coefficient is treated as fixed across observations.

4.1.3. Random Intercept Logit Model

The RI-logit model is a special form of the RP-logit model and only allows the intercept
to vary randomly across individual observations. It is not as flexible as the RP-logit model,
but it is also widely accepted by traffic safety professionals [41,42,57].

The structure of RI-logit model can be expressed as:

logit
(

Pw
i,k

)
= log

Pw
i,k

Pw
i,1

= βi,k,0 +
L

∑
l=1

βk,l xw
i,l , (k = 2, 3). (8)
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The intercept βi,k,0 is set as a random parameter across observations and follows a
normal distribution as:

βi,k,0∼ N(µ k,0, σ2
k,0

)
. (9)

4.1.4. Spatial Random Parameters Logit Model

Both the RP-logit model and the RI-logit model can identify the unobserved het-
erogeneity across crashes effectively. Nevertheless, some critical issues still need to be
resolved. A typical representative is to identify the spatial correlation of crashes. Hence, the
SRP-logit model was proposed to comprehensively accommodate the spatial correlation
and unobserved heterogeneity and the derivation process is as follows.

To address the potential variations across road segments, an unstructured error term
was constructed. The RP-logit model can be modified to:

logit
(

Pw
i,k

)
= log

Pw
i,k

Pw
i,1

= βi,k,0 +
L
∑

l=1
βi,k,l xw

i,l+uw
k , (k = 2, 3)

uw
k ∼ N(0, σ2

uk

)
,

(10)

where the error term uw
k was accommodated to permit the potential within-segment corre-

lation and cross-segment heterogeneity and followed normal distribution. σ2
uk

represents
the variance of unstructured error term.

In most cases, the existence of spatial correlation is reasonable because the adjacent
segments will have similar geometric features and environments [47,54]. This may lead
to certain factors shared among adjacent crashes [11]. As demonstrated by El-Basyouny
and Sayed [58], random variations across sites may be structured spatially due to the
complexity of traffic interactions around crash sites. To this end, a structured spatial error
term sw

k was included in the regression function, resulting in the final SRP-logit model:

logit
(

Pw
i,k

)
= log

Pw
i,k

Pw
i,1

= βi,k,0 +
L

∑
l=1

βi,k,l xw
i,l+uw

k +sw
k , (k = 2, 3). (11)

An effective and commonly used joint density function for the spatial effect term sw
k

was in terms of pairwise differences in errors and a spatial variation term σ2
sk

[59]:

P(sk) ∝ exp

[
−0.5η−1 ∑

w 6= w′

(
sw

k −s w′
k

)2
]

, η = σ2
sk

. (12)

A valid conditional prior following a normal distribution was implied for sw
k condi-

tioning on the impact of s w′
k on the remaining observation road segments. Hence, we have:

sw
k

∣∣∣s w′
k ∼ N

(
sw

k ,
σ2

sk

∑w 6= w′ δw, w′

)
, sw

k =
∑w 6= w′

(
δw, w′ s w′

k

)
∑w 6= w′ δw, w′

, (13)

where ∑w 6= w′ δw, w′ denotes the total number of neighbors of road segment w; δw, w′

represents the un-normalized weight between segments w and w′, which is an adjacency-
based measure. The most common neighboring structure is the first-order neighbors, which
can be defined as all road segments that are directly connected with the one in question [11].
Specifically, if a directly connected relationship is presented between segments w and w′, we
have δw, w′ = 1; otherwise, δw, w′ = 0. The conditional variance is inversely proportional to
the number of adjacent segments, and the conditional mean is the mean of the neighboring
spatial effects. A similar procedure was discussed by Karim et al. [60].
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The spatial correlation was evaluated by calculating the ratio of spatial variation in the
whole heterogeneity variation, denoted as τsk . The specific calculation process is as follows.

τsk =
σ2

sk

σ2
sk
+σ2

uk

, (14)

where σ2
sk

is the spatial variance; σ2
uk

is the posterior variance of unstructured error term.
Spatial correlation is confirmed to be significantly present when τsk is above 0.5 [61]. The
spatial correlation for no injury, slight injury, and FS injuries are denoted by τ1

s , τ2
s , and τ3

s ,
respectively.

To visually reveal the differences and connections among different collision models
proposed in this study, statistics on the characteristics of the four crash severity modeling
approaches are shown in Table 2.

Table 2. Characteristics statistics of crash severity model proposed in this research.

Models Types Characteristics

MN-logit model Fixed effects model Cannot capture unobserved heterogeneity and
spatial correlation.

RP-logit model

Random effects
model

Captures unobserved heterogeneity by allowing
parameters of risk factors to vary randomly and

cannot capture spatial correlation.

RI-logit model
Captures unobserved heterogeneity by only

allowing the intercept to vary randomly and cannot
capture spatial correlation.

SRP-logit model

Captures unobserved heterogeneity by allowing
parameters of risk factors to vary randomly and
captures spatial correlation by structured spatial

error term.

4.2. Model Transferability

Some differences maybe exist among various vehicle types. Therefore, it is necessary
to calculate the SPF transferability, which can verify the superiority of cross-vehicle type
modeling. As discussed by Guo et al. [48], transfer index (TI) criterion is an effective
technique to evaluate the transferability of the SPFs, which can be expressed as:

TIa(β b) =
LLa(β b)− LLa(β reference. a )

LLa(β a)− LLa(β reference. a )
, (15)

where TIa(β b) denotes the TI value of the SPF established from vehicle type b and being
applied to vehicle type a. LLa(βb) denotes the log-likelihood of the SPF, which is established
from the vehicle type b and being applied to the vehicle type a. LLa(β a) denotes the log-
likelihood of the full SPF established from the vehicle type a. LLa(β reference. a) denotes the
log-likelihood of the constant-only SPF established from the vehicle type a.

The TI value has an upper limit of 1.0 and no lower limit [62]. The closer the TI value
is to 1, the better the transferability of the SPF from the vehicle type b to the vehicle type
a. A negative TI value indicates that the SPF of the vehicle type b cannot be transferred
directly to the vehicle type a.

4.3. Model Diagnosis

The fitting performance of a crash model cannot be illustrated by regression coeffi-
cients. To effectively diagnose the usefulness of statistical techniques for fitting rural SV
crashes, deviance information criterion (DIC) and classification accuracy (CA) values were
calculated to determine the goodness-of-fit and prediction accuracy of the crash model,
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respectively. Meanwhile, these methods have been widely used to test full Bayesian model
and the detailed explanations can be found in Spiegelhalter et al. [63] and Zeng et al. [43].

The DIC is considered as a Bayesian generalization of Akaike’s information criterion,
which comprehensively accommodates model complexity and goodness-of-fit. According
to Spiegelhalter et al. [63], the DIC can be defined as:

DICvalue = D + pD, = pD = D− D̂, (16)

where D denotes the unstandardized deviance; D denotes the posterior mean deviance of
D which can be employed to evaluate model fitness; pD denotes the number of effective
parameters which can be used to test model complexity; D̂ denotes the point estimation
of model parameters. A smaller DIC value is associated with a better goodness-of-fit.
Typically, differences of more than 10 can exclude models with higher DIC; differences
between 5 and 10 are substantial; if the difference in DIC is less than 5 and the model
inferences are substantially different, then it is misleading to determine the fit performance
by the DCI value.

In addition, CA value of crash severity k was calculated as a supplement to the model
evaluation criterion. The CA value in this research was divided into two parts, including
the CA value of the whole dataset and the CA value of a specific severity k. The larger the
CA value, the better the prediction accuracy of the model.

The CA value of the whole dataset was defined as the proportion of accurately pre-
dicted samples in the whole dataset. The specific calculation method was shown below.

CAwhole =
∑Ŷi =Yi

Ŷi

∑i Yi
× 100%, ∀i ∈ {1, 2, . . . , I} , (17)

where Ŷi and Yi respectively represent the predicted and the real outcome of severity level
for crash i.

The CA value of a specific severity k was defined as the proportion of accurately
predicted samples to all observations associated with severity k, which can be expressed as:

CAk =
∑Ŷi =Yi =k Ŷi

∑Yi =k Yi
× 100%, ∀k ∈ {1, 2, 3} . (18)

In this research, no injury, slight injury, and FS injuries were denoted by CA1, CA2,
and CA3, respectively.

During the process of diagnosing the fit performance, the DIC value will be checked
first and models with larger DIC will be excluded if the difference in DIC is greater than 5;
the CA value is then used to calibrate the decision. If the difference in DIC is less than 5,
then the model performance will be directly determined by the CA value.

4.4. Average Marginal Effect

Model parameters can reflect the correlation between observed risk factors and crash
severity (positive or negative correlation), but cannot measure how risk factors affect
the probabilistic change in crash severity. Hence, the average marginal effect of the risk
variables was calculated. Since the independent variables are transformed into binary
indicator variables, the calculation rules are as follows:

EProb(k)
xil =

1
I

I

∑
i=1

(Prob(k |xil = 1 )− Prob(k |xil = 0 )), (19)

where EProb(k)
xil represents the average marginal effect to be calculated and can measure

the probability change of crash severity when a variable is changed; xil = 1 denotes the
value of the l-th independent variable related to i-th crash is 1; Prob(k |xil = 1 ) denotes the
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probability that crash severity is k when xil = 1; similarly, Prob(k |xil = 0 ) is the probability
that crash severity is k when xil = 0. The term I denotes the total number of crashes.

5. Modeling Results and Discussion
5.1. Full Bayesian Estimation

A Full Bayesian (FB) approach has been widely recommended for determining the
unknown parameters of a crash model [4,11]. The FB approach treats unknown parameters
as random variables, and the corresponding distribution characteristics are defined by prior
distribution. The core is to obtain posterior distribution by combining prior distribution
and traditional likelihood function [43]. Hence, it is unavoidable to specify the prior
distribution of (hyper-) parameters. In this study, a non-informative prior distribution was
adopted due to lack of relevant knowledge. Specifically, a diffused normal distribution
was specified for fixed parameters (β l , β0) and random parameters (β i,l , βi,0), which can
be expressed as:{

βl∼ normal(0τ , 104 Iτ)

β0∼ normal(0τ , 104 Iτ)
,
{

βi,l∼ normal(0τ , 104 Iτ)

βi,0∼ normal(0τ , 104 Iτ)
, (20)

where 0τ denotes a zero vector of the form τ× 1. Iτ denotes a unit matrix of the form τ× τ.
Meanwhile, the prior distribution of precision parameters (ϕk, σ2

k,0, and σ2
uk

) and σ2
sk

adopted the inverse gamma distribution and gamma distribution, respectively, which can
be expressed as: 

ϕk∼ inverse gamma(0.001, 0.001)
σ2

k,0∼ inverse gamma(0.001, 0.001
)

σ2
uk
∼ inverse gamma(0.001, 0.001

)
σ2

sk
∼ gamma(1+∑ vw

2 , 1+ n
2

) , (21)

where 0.001 indicates the parameter of the inverse gamma distribution. vw represents the
term contributed by each road segment, and the corresponding calculation rule is exhibited
as follows [11]:

vw =
(
∑w 6= w′ δw, w′

)
sw

k

(
sw

k − sw
k

)
. (22)

The computation of high-dimensional integrals in FB inference is difficult. Hence, a
MCMC (Markov Chain Monte Carlo) simulation technique based on Metropolis-Hastings
sampling was employed. The MCMC technique generates samples from posterior dis-
tribution and provides an efficient way to estimate the FB model. Considering the high
complexity, 3 parallel MCMC simulation chains were created, and 30,000 iterations were
maintained for each chain. The mean value of prior distribution was used as the initial
value of model parameter and the real value was obtained by sufficient sampling simu-
lation and removal of the burn-in period [11]. The first 15,000 iterations were discarded
as the burn-in period because the posterior distribution achieves convergence after that;
the other iterations were used for model estimation. Meanwhile, an intermittent sampling
method was adopted to reduce sample correlation—that is, 1 of every 10 samples was
reserved. The model estimation was implemented through the free software WinBUGS.

Several test measures were performed to determine the convergence of the MCMC
chain and the relevance of the samples. First, the MCMC dynamic plot traces were visually
checked. If parameter values lie within a region without strong periodicities, the conclusion
of MCMC chain convergence can be drawn. Second, if all Brooks-Gelman–Rubin (BGR)
statistics were lower than 1.2, the MCMC chains are considered to be convergent. The
conclusion of model convergence can be obtained when both diagnostics are satisfied
at the same time [64]. In addition, the autocorrelation plots (autocorrelation functions)
were carefully examined to determine that the iterative chains were adequately close to
independent and identically distributed (IID). If the autocorrelation value converged to
zero soon after the iteration, the IID characteristic could meet the requirements.
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To avoid the high correlation among risk factors, a Pearson’s correlation test was
implemented to determine the appropriate independent variables. There was no obvious
correlation between the two variables if the absolute value of Pearson’s correlation coef-
ficient was less than 0.3 [55]. The correlation analysis showed high correlation between
weather and road surface conditions and between crash time and lighting conditions,
suggesting that these variables should be selected appropriately in the modeling process.
The different covariates were accommodated separately in the model and the DIC values
were compared to determine the superior independent variables. The Pearson’s correlation
coefficients are shown in Figure 3. Only variables with no significant correlation were
exhibited and used for subsequent modeling.

Figure 3. Coefficients of Pearson’s correlation test.

5.2. Model Comparison

The fitting performance indicators (DIC, pD, and D) and classification accuracy (CA)
value of the crash model across vehicle types are shown in Table 3; Table 4 exhibits the
parameters of the MN-logit model and the RI-logit model, and Table 5 illustrates the
coefficients of risk factors in the RP-logit model and the SRP-logit model. The interest
response variable in this research is FS injuries; thus, the parameters that have a significant
effect on FS injuries are given. Parameters are considered significant if the 90% Bayesian
Credit Interval (90% BCI) does not contain zero. Otherwise, the parameters are found to be
insignificant.

Table 3. Comparison results of model diagnosis.

Index
MN-Logit Model RP-Logit Model RI-Logit Model SRP-Logit Model

PA MO PI TR PA MO PI TR PA MO PI TR PA MO PI TR

D 8797 8599 2104 4176 8712 8496 2037 4112 8756 8553 2068 4158 8683 8479 2014 4067
pD 62 58 51 54 115 119 91 93 83 78 69 73 138 131 112 117
DIC 8859 8657 2155 4230 8827 8615 2128 4205 8839 8631 2137 4217 8821 8610 2126 4184

CA1/% 79.5 22.0 68.1 75.2 82.5 30.2 73.6 79.1 81.2 29.4 69.5 74.1 84.6 36.4 79.1 81.3
CA2/% 28.1 64.9 17.4 29.1 26.3 73.0 20.8 30.1 27.3 62.0 15.4 32.9 32.2 80.5 27.6 30.7
CA3/% 6.4 28.1 9.2 11.6 10.4 33.9 8.9 18.7 9.5 29.1 10.7 16.5 16.0 38.2 15.2 22.6

CAwhole/% 72.6 47.9 61.5 68.3 75.2 55.7 66.3 72.1 74.1 48.5 62.3 68.2 79.1 62.1 75.8 74.5

Note: PA = Passenger car; MO = Motorcycle; PI = Pickup; TR = Truck.
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Table 4. Estimation of the parameters of the MN-logit model and the RI-logit model.

Variables
MN-Logit Model RI-Logit Model

PA MO PI TR PA MO PI TR

Male 0.320 ** –0.150 *** 0.160 ** – 0.311 ** –0.139 *** 0.142 * –
No—clear −0.435 * 0.305 ** −0.284 * −0.250 ** −0.442 * 0.317 ** −0.253 * −0.241 *
Controlled 0.174 * – – – 0.177 * – – –
Age > 60 0.334 ** 0.376 *** 0.488 ** – 0.342 ** 0.351 *** 0.504 ** –

Drunk driving 0.345 *** 0.161 *** 1.349 ** – 0.339 *** 0.159 *** 1.296 *** –
Weekend – 0.087 * 0.154 * 0.710 * 0.235 ** 0.101 * 0.147 * 0.716 *

Early in month – – 0.161 * −0.172 ** – – 0.157* −0.178 **
Late in month – – – 0.157 * – – – 0.161 *

Fall – −0.071 * – −0.246 * – −0.083 * – −0.239 *
Winter 0.376 * 0.144 * 0.198 * – 0.395 * 0.160 ** 0.202 * –

Dark (with street lighting) – 0.327 ** – – – 0.355 * – –
Dark (without street lighting) 0.831 * 0.349 * 0.708 * 0.718 ** 0.836 * 0.352 ** 0.764 * 0.737 *

Collision with fixed object 1.231 ** 1.105 *** 1.315 * 0.498 * 1.248 ** 1.124 *** 1.307 ** 0.510 *
Collision with pedestrian −2.126 ** −2.401 * −1.125 * −1.105 ** −2.092 ** −2.437 * −1.164 * −1.094 ***

Intercept −2.441 ** 0.698 * −2.273 * −1.386 *** −2.608 ** 0.762 ** −2.494 * −1.327 ***
s.d. intercept – – – – 0.632 0.455 0.318 0.269

Note: * indicates 90% credit interval; ** indicates 95% credit interval; *** indicates a credit interval above 95%; “–” indicates that the risk factor is insignificant or is not included in the model.
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Table 5. Estimation of the parameters of the RP-logit model and the SRP-logit model.

Variables
RP-Logit Model SRP-Logit Model

PA MO PI TR PA MO PI TR

Male 0.317 ** −0.144 *** 0.157 * – 0.315 ** −0.147 *** 0.152 * –
s.d. male 1.218 0.497 0.937 – 1.197 0.503 1.043 –

Non–clear −0.447 * 0.312 ** −0.255* −0.236 * −0.439* 0.342 *** −0.261 * −0.239 *
s.d. non–clear 0.134 – 0.107 0.513 0.140 – 0.210 0.522
Controlled 0.181 * – – – – – – –
Age > 60 0.340 ** 0.349 *** 0.494 ** – 0.357 ** 0.346 *** 0.473 ** –

Drunk driving 0.340 *** 0.166 *** 1.251 *** – 0.343 ** 0.163 *** 1.248 *** –
s.d. drunk driving – 1.552 – – – 1.408 – –

Weekend 0.237 ** 0.105 * 0.165 * 0.712 * 0.232 ** 0.092 * 0.151 * 0.707 **
s.d. weekend – 0.371 – 1.030 – 0.401 – 1.206

Early in month – – 0.167* −0.169 ** – – 0.165 * −0.167 **
Late in month – – – 0.168 * – – – 0.165 *

Fall – −0.066 * – −0.232 * – −0.057 * – −0.238 *
Winter 0.393 ** 0.168 ** 0.227 * – 0.358** 0.157 ** 0.219* –

Dark(with street lighting) – 0.324 * – – – – – –
Dark(without street lighting) 0.847 * 0.341 ** 0.693 * 0.769 * 0.845 * 0.347 ** 0.725 * 0.771 *

Collision with fixed object 1.257 ** 1.151 *** 1.240 * 0.509 * 1.268 ** 1.147 *** 1.251 * 0.512 *
Collision with pedestrian −2.125 ** −2.409 * −1.094 ** −1.065 *** −2.157 ** −2.416 * −1.119 ** −1.061 ***

Intercept −2.637 ** 0.519 * −2.179 * −1.270 *** −2.590 *** 0.507 * −2.165 ** −1.238 ***
τ1

s – – – – 0.712 – 0.723 0.595
τ2

s – – – – 0.543 0.691 – 0.749
τ3

s – – – – – 0.850 – –

Note: * indicates 90% credit interval; ** indicates 95% credit interval; *** indicates a credit interval above 95%; “–” indicates that the risk factor is insignificant or is not included in the model.
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Among the crash models calibrated in this study, all parameters of the MN-logit
model are fixed value (Table 4) because it cannot capture heterogeneity. In the RI-logit
model, the coefficients of risk variable are fixed value, but the coefficient of intercept is
random (Table 4). The heterogeneity in crash data is captured by the random variation
of the intercept. Further, in the collision model established by the RP-logit function, both
random coefficients and fixed coefficients are included (Table 5). Meanwhile, the number of
random coefficients and fixed coefficients varies with vehicle types. In the SRP-logit model,
three types of coefficients are accommodated, including the fixed coefficients, random
coefficients, and coefficients of spatial variation (Table 5). Hence, the collision models
established in this study accommodate the coefficients that can demonstrate the respective
characteristics. The comparison of the fitting performance of these models is shown below.

From Table 3, some substantial differences in DIC and CA values across different logit
approaches were found. First, passenger car crash function constructed by the MN-logit
model had a higher DIC value (8859) than other models and the differences in DIC is
greater than 5, 8827 for the RP-logit model, 8839 for the RI-logit model, and 8821 for
the SRP-logit model. Similar phenomena were exhibited in the crash severity models of
motorcycle, pickup, and truck. Meanwhile, the CA values associated with the MN-logit
model were lower than other models, which remained stable across motor vehicle types.
These findings indicated that the RI-logit model, the RP-logit model, and the SRP-logit
model perform better than the MN-logit model and highlighted that the fitting performance
and classification accuracy of the model can be improved by accommodating unobserved
heterogeneity in crash severity analysis. Ye et al. [40] reached the same conclusion and
gave a detailed discussion.

Second, among the three candidate heterogeneity models (RP-logit model, RI-logit
model, SRP-logit model), the SRP-logit model was a superior approach for fitting rural SV
crash severity, followed by the RP-logit model and the RI-logit model, and these findings
were supported by all the vehicle types in this research.

More specifically, in the SRP-logit model, the RP-logit model, and the RI-logit model,
the DIC values of passenger cars were 8821, 8827, and 8839, respectively, and of motorcycles
were 8610, 8615, and 8631, respectively, and of trucks were 4184, 4205, and 4217, respectively.
According to the statistical results, the DIC values of the three candidate models can be
expressed in descending order, as follows—RI-logit model, RP-logit model, and SRP-logit
model—and this finding remained stable across the three vehicle types. Furthermore, the
differences in DIC were greater than 5. Hence, for passenger car, motorcycle, and truck
crashes, the SRP-logit model exhibited the best fit performance, followed by the RP-logit
model and the RI-logit model. Similar findings can be obtained by checking the CA values
of such three vehicle types.

For pickup crashes, the DIC values of the SRP-logit model, RP-logit model, and RI-
logit model were 2126, 2128, and 2137, respectively. It was found that the RP-logit model
outperformed the RI-logit model. Note that the differences in DIC values between the
SRP-logit model and the RP-logit model was less than 5; thus, DIC cannot be used for
model diagnosis and CA values were adopted to determine the fitting performance. The
values of CA1, CA2, CA3, and CAwhole in the SRP-logit model were 79.1%, 27.6%, 15.2%,
and 75.8%, respectively, and in the RP-logit model were 73.6%, 20.8%, 8.9%, and 66.3%,
respectively. It can be easily found that the prediction accuracy of the SRP-logit model
outperforms that of the RP-logit model.

These findings suggested that simultaneously accounting for the unobserved hetero-
geneity across individual observations and spatial correlation among adjacent crashes
could further improve the model fit. Similar findings were found by Yan et al. [65] and
Zeng et al. [66] who pointed out that ignoring spatial correlation and unobserved hetero-
geneity in crash analysis will lead to biased estimates and incorrect inferences. Meanwhile,
the significant spatial variations exhibit in Table 5 can further confirm the importance of
accommodating spatial effects in rural SV crash severity analysis. In detail, the spatial
variation ratios of no injury and slight injury associated with passenger cars were 0.712
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and 0.543, respectively. In motorcycle crashes, the proportions of spatial variation in slight
injury and FS injuries were statistically significant (the values were 0.691 and 0.850, respec-
tively). The spatial variation of no injury in pickup collisions was significant (0.723) and
of no injury and slight injury in truck crashes were significant (the values were 0.595 and
0.749, respectively).

Third, the numbers of effective parameters (pD) of passenger car crash functions estab-
lished by the MN-logit model, RI-logit model, RP-logit model, and SRP-logit model were
62, 83, 115, and 138, respectively, highlighting a progressive increasing trend. This finding
suggested that the SRP-logit model had higher complexity than other models because
both the unstructured error term and the structured spatial error term were considered.
Xu et al. [54] obtained similar conclusions and pointed out that capturing spatial effects
through the first-order neighborhoods will generate a larger number of effective parameters
and a better model fit compared to other definition methods. Interestingly, the greater
number of effective parameters did not exhibit a negative effect for the fitting performance
of the SRP-logit model. Because the posterior mean deviance (D) in the SRP-logit model has
a greater degree of reduction; the posterior mean deviance of the MN-logit model, RI-logit
model, RP-logit model, and SRP-logit model for passenger car crashes were 8797, 8756,
8712, and 8683, respectively. Similar conclusions can be drawn by checking the number of
effective parameters and the posterior mean deviance of other vehicle types. This may be
related to the fact that both the unobserved heterogeneity and the spatial correlation were
contained in the SRP-logit model [54].

Finally, considering spatial correlation will result in some significant risk factors not
being identical. According to the regression results of the SRP-logit model, there was no
significant correlation between traffic control and FS injuries in passenger car crashes and
between dark with street lighting and FS injuries in motorcycle crashes, but they became
totally significant once spatial effect was not accommodated. This inconsistency may be
due to model misspecification, including omission of spatially relevant variables [61].

5.3. Discussion

Compared with the MN-logit model, RP-logit model, and RI-logit model, the SRP-logit
model has better fitting performance and classification accuracy. Hence, only the average
marginal effects of significant risk factors in the SRP-logit model were calculated, and only
the marginal effects associated with FS injuries were calculated.

Inspired by Lešnik et al. [67] and Mongus et al. [68], a histogram (Figure 4) was
designed as a figure to represent the marginal effects, instead of a table. The aim is to
interpret the model estimation results in a user-friendly way. Note that the marginal effects
of risk factors that have no significant impact or have been artificially removed are denoted
by zero. According to Figure 4, (1) for the same motor vehicle type, different risk factors
have different impacts on FS injuries of rural SV crashes; (2) the effect of the same factor
on FS injuries varies across motor vehicle types; and (3) among the various risk factors,
collision with a fixed object has the greatest effect on FS injuries, which has remained
stable across different vehicle types. A detailed discussion of risk factors based on the
parameter estimation results and the average marginal effects of the SRP-logit model is
provided below.
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Figure 4. Average marginal effect of significant risk variables.

There is significant correlation between male driver and FS injuries in rural SV crashes.
However, the sign of correlation (positive or negative correlation) varies with motor
vehicle type. Male drivers are significantly and positively associated with FS injuries
in passenger car and pickup crashes, with average marginal effects of 1.01% and 4.27%,
respectively. A similar finding was obtained by Lawrence et al. [69], who noted that male
drivers were 2.18 times more likely to result in serious passenger car crashes than females.
However, there is a significant negative correlation between male drivers and FS injuries
in rural motorcycle SV crashes, with average marginal effects of −2.73%. Vajari et al. [37]
reached a similar conclusion by analyzing the severity of motorcycle crashes at Australian
intersections. These findings are of interest to comprehensively elucidate the variable
effects of male driver on rural SV crash severity and validate the necessity of regression
analysis based on different vehicle types. Further, for all vehicle types, the parameters of
male driver exhibit random effects obeying a normal distribution. This finding is supported
by many research studies [16,21] and highlighted that capturing unobserved heterogeneity
is indispensable during the crash severity modeling process.

For motorcycle crashes, non-clear weather is significantly and positively associated
with FS injuries in rural SV crashes (marginal effect 4.52%), which is consistent with
previous research [37], because rural China has poor traffic conditions, such as waterlogged
and narrower roads. In addition, motorcycles do not have satisfactory stability because of
two tires [70]. Hence, serious motorcycle crashes occur frequently in non-clear weather.
However, there is a significant negative correlation between non-clear weather and FS
injuries for other vehicle types. The probability of serious rural SV crashes caused by
passenger car, pickup, and truck under non-clear weather conditions is reduced by 0.99%,
0.33%, and 0.74% respectively. Shaheed et al. [71] and Cerwick et al. [72] reached the same
conclusion and pointed out that this phenomenon was caused by cautious driving under
unsatisfactory weather conditions.

For passenger car, motorcycle, and pickup crashes, the relationship between older
adult driver (age > 60) and FS injuries is significant at the 95% BCI, and the probability
of serious injury caused by older adult drivers increased by 2.07%, 4.10%, and 2.23%,
respectively, compared to mid-age drivers (30–60). The same conclusion was reached
by Xie et al. [15] and Abdel-Aty [73] and noted that the physical capabilities of older
drivers are not satisfactory, as they require more reaction time in case of an emergency,
which result in a greater susceptibility to serious crashes [74]. However, this variable
becomes totally insignificant once truck crashes are accommodated. Cai et al. [59] obtained
a similar conclusion by analyzing rural SV crashes in China and believed that more driving
experience may be a dominant factor in determining crash severity. Hence, government
departments may consider providing regular training and driving skills tests for older
adults, with the aim of improving their traffic safety performance.

The impact of drunk driving on traffic safety cannot be ignored. In passenger car,
motorcycle, and pickup crashes, drunk driving will result in a significant increase in
the probability of severe rural SV crashes (marginal effects 2.36%, 3.95%, and 4.99%,
respectively). This finding is confirmed in the existing literature [75,76], which points out
that if a driver is under the influence of alcohol, it is difficult to maintain a satisfactory
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driving status and is more likely to be involved in serious rural SV crashes. These findings
demonstrate the detrimental effects of drunk driving on rural traffic safety to policymakers
and the general public. Furthermore, traffic management and road infrastructure in
rural China are inadequate, which further increases the probability of serious collisions.
The percentage of drunk driving in the whole dataset is as high as 15.33%; hence, the
management of drunk driving should be strengthened. Note that drunk driving in the
model of truck crashes was artificially deleted because it had only 33 observations (0.6%).
The statistical results show that truck drivers have superior safety awareness compared
to other motor vehicle types; a similar finding was pointed out by Cerwick et al. [72]. In
addition, the parameter of drunk driving in the model of rural motorcycle SV crashes
follows a normal distribution with a mean of 0.163 and a standard deviation of 1.408.
However, there is no heterogeneity for this variable in other vehicle types. Hence, by
establishing rural SV crash models under different vehicle types, the source of heterogeneity
of risk factors in the whole dataset can be clarified.

The impact of the weekend on the severity of rural SV crashes is significant, which
remained stable across different vehicle types. Weekend driving resulted in a 0.81%, 1.48%,
2.69%, and 1.07% increase in the probability of FS injuries in passenger car, motorcycle,
pickup, and truck crashes, respectively. This is generally consistent with the previous
studies. For example, Vajari et al. [37] and Cerwick et al. [72] analyzed motorcycle crashes
and truck crashes, respectively, and both suggested that the probability of a serious crash
was significantly higher on weekends than on weekdays. These findings underscore the
importance of educating drivers to remain vigilant after long off-duty hours, such as
on weekends, and provide theoretical references for formulating scientific management
measures. For example, traffic management in weekends should be strengthened.

There is a significant correlation between early in the month and FS injuries in pickup
and truck crashes. Interestingly, this variable is positively correlated with FS injuries
in rural pickup SV crashes (marginal effect 0.36%) and is negatively correlated with FS
injuries in rural truck SV crashes (marginal effect −0.51%). In addition, late in the month
has a significant positive influence on FS injuries in rural truck SV crashes (marginal
effect 1.28%) but no significant impact was found on other vehicle types. Based on in-
depth understanding of the literature, few research studies considered the impact of this
variable on crash severity. Hence, these novel and interesting discoveries can further
enrich existing research and can be used to effectively assign law enforcement duties—for
example, increased supervision of pickups in the first 10-day period of a month and of
trucks in the last 10-day period of a month in rural areas.

According to the regression results, the probability of FS injuries in rural SV collisions
varies with the seasons. More specifically, motorcycle and truck crashes in autumn are less
likely to result in serious injuries (marginal effects −0.72% and −1.08%, respectively). This
finding can be proved by existing research; for example, it was found that the probability
of severe truck crashes and severe motorcycle crashes in autumn reduced by 0.07% [72]
and 0.03% [77], respectively. The coefficient of autumn is not statistically significant
in other motor vehicle types. Further, passenger car, motorcycle, and pickup are more
likely to be involved in severe rural SV crashes during the winter, with corresponding
probabilities increasing by 1.04%, 1.94%, and 2.65%, respectively. However, there is no
significant correlation between FS injuries and winter in rural truck SV crashes. These
findings are indispensable and demonstrate the effectiveness of modeling rural SV crashes
based on motor vehicle type to reveal the variable effects of risk factors. Meanwhile, the
research results indicate that the traffic safety performance of rural roadways in winter is
unsatisfactory and underscore the importance of traffic management during winter.

A significant positive correlation between dark (without street lighting) condition
and FS injuries in rural SV crashes was determined, which is supported by all vehicle
types. The probability of FS injuries in dark (without street lighting) conditions increased
by 3.81%, 3.90%, 3.47%, and 4.30% for passenger car, motorcycle, pickup, and truck crashes,
respectively. A largely consistent finding can be found in [69], which represents this
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variable by complete darkness. Furthermore, there is no significant correlation between
street lighting and FS injuries, which is supported by all vehicle types considered in this
research. This can be confirmed by previous research [78]. These findings are valuable
to improve the safety performance in rural areas. For traffic managers, the installation
of streetlamps on rural roadways is indispensable; for ordinary drivers, cautious driving
should be maintained under dark (without street lighting) condition.

Almost all researches concluded that there is a significant positive correlation between
collision with fixed object and severe rural SV crashes [21,76,79]; the same conclusion
is drawn in this study. By modeling injury severity of rural SV crashes across different
vehicle types, the destabilizing effects of risk variables can be revealed. In passenger car,
motorcycle, pickup, and truck crashes, the probability of FS injuries caused by collision
with fixed object increased by 7.37%, 26.13%, 8.98%, and 5.43%, respectively. Among
them, the highest probability is maintained by motorcycle due to it not providing adequate
protection. Further, rural SV collisions between motorcycle and fixed object could easily
result in rollovers, which will cause riders to collide violently with hard objects such as the
road surface and significantly increase the likelihood of serious injury. It has been widely
reported that the principal cause of fatality among motorcyclists is head injury [80]. Wearing
a helmet can effectively protect motorcyclists from head injuries [75]; however, 60.1% of
riders in motorcycle crashes do not use helmets. Hence, it is necessary to strengthen
the management of riders. In addition, roadside fixtures such as stone pillars in traffic
infrastructure, which can effectively guide traffic operations, are a potential traffic safety
hazard due to the collision energy that cannot be absorbed by the fixed object. Therefore,
the use of roadside facilities with a buffering function, such as plastic guardrails, may be a
superior choice.

There is a significant negative correlation between collision with pedestrians and
FS injuries in rural SV crashes, which remained stable across different vehicle types. For
passenger car, motorcycle, pickup, and truck crashes, the marginal effects are −2.8%,
−3.25%,−3.12%, and−3.49%, respectively. This finding is reasonable and can be confirmed
in existing studies. For example, SV crashes under foggy weather and clear weather
were analyzed and the probabilities of serious driver injury resulting from collision with
pedestrians were reduced by 8.5% and 13.3%, respectively [51]. Generally, pedestrians are
vulnerable compared to motor vehicles, and collisions with pedestrians are not expected to
result in serious injury to motorists. On the contrary, there is a high probability to take the
life of pedestrians [25].

5.4. Model Transferability

The goodness-of-fit and prediction accuracy of the SRP-logit model are optimal com-
pared to other models developed in this study; hence, the transferability of the SRP-logit
model across different vehicle types was investigated. The calculation results of TI values
are shown in Table 6.

Table 6. The calculation results of model transferability.

Application Data
Established Model

Passenger Car Motorcycle Pickup Truck

Passenger car 1 −1.260 0.329 −0.895
Motorcycle −0.378 1 −0.437 −1.139

Pickup 0.417 −0.917 1 −0.743
Truck −0.129 −2.031 −0.154 1

The diagonals in Table 6 have a value of 1, as they represent the respective local
conditions. In addition, most of the transfer indices on both sides of the diagonal are
negative, suggesting that the local constant-only model outperforms the transfer model.
The exception is that the transfer indices between passenger car and pickup show a positive
relationship. This may be related to the similar structure of the passenger car and pickup.
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Nonetheless, the transferability indices indicate that the SPFs of passenger car and pickup
cannot be transferred directly in traffic safety analysis (the transfer indices are 0.417 and
0.329, respectively, which are much smaller than 1) [62]. Therefore, a separate SPF for each
vehicle type is needed in rural safety diagnosis.

5.5. Recommendations

The usefulness and implications of this research mainly includes two parts:
(1) the SRP-logit model was proposed to comprehensively accommodate the unob-

served heterogeneity and the spatial correlation and to improve the fitting performance of
the statistical model for rural SV crashes. This finding promotes the development of the
statistical theory in traffic safety analysis and can provide a satisfactory model framework
for traffic safety professionals.

(2) Based on different types of motor vehicles, rural SV crash severity models were
established to identify factors that have a significant impact on FS injuries. According to the
regression results and previous practical experience, targeted measures can be implemented
to remind drivers and improve traffic safety performance in rural areas. The details are
shown as follows.

First, there is a significant correlation between driving behavior and severe collisions.
Some risky driving behaviors, such as drunk driving, fatigue, and speeding, can affect
the probability and severity of crashes in different ways. Legal measures can effectively
reduce risky driving behaviors. Installing electronic police and speed limit signs on rural
roadways can effectively remind drivers and improve rural traffic safety. Safety education
for drivers is also essential.

Second, the impact of roadside fixtures on rural traffic safety cannot be ignored. Traffic
managers should consider installing a soft protective cover on the surface of roadside
infrastructure to absorb collision energy. In addition, streetlights should be installed along
rural roads because they can improve traffic safety in rural areas by providing a good view.

Finally, motorcycles cannot provide adequate protection for drivers. Therefore, more
education and encouragement for riders should be implemented to improve their traffic
safety awareness. Some legal measures should be formulated to increase the percentage of
helmet wearers.

6. Conclusions

This study investigated the influence of risk factors on the severity of rural SV crashes
across different vehicle types (passenger car, motorcycle, pickup, and truck). To accom-
modate the cross-road segments heterogeneity, a novel SRP-logit model accounting for
both unobserved heterogeneity and spatial correlation under a Bayesian framework was
proposed.

Five years of SV crash data in a rural area were used to calibrate the proposed model.
Three candidate logit approaches—MN-logit model, RP-logit model, and RI-logit model—
were established and compared with the SRP-logit model. The model comparison shows
that the SRP-logit model exhibits the best fit performance, followed by the RP-logit model,
RI-logit model, and MN-logit model. This finding suggests that it is necessary to capture
the unobserved heterogeneity in the rural SV crash analysis, which can initially improve
the fitting performance of the crash model. The model fit can be further improved by si-
multaneously accounting for the unobserved heterogeneity across individual observations
and the spatial correlation among adjacent crashes.

Several risk factors are significantly associated with FS injuries in rural SV crashes, and
the impacts of risk factors on crash severity varies across different vehicle types. Specifically,
in passenger car and pickup crashes, there is a positive association between male drivers
and FS injuries; however, a significant negative correlation is shown in motorcycle collisions.
Non-clear weather maintains a significant negative effect on FS injuries in passenger car,
pickup, and truck crashes and a significant positive effect on FS injuries in motorcycle
crashes. Similar findings can be found in the coefficients of season and early in month.
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In addition, there is a significant positive correlation between weekend, dark (without
street lighting) conditions and collision with fixed object and FS injuries. Collisions with
pedestrians are not expected to cause serious injury to drivers. These findings are shared
across different vehicle types.

7. Limitations of This Study

There are some limitations of the current study, which will be resolved in future
research:

(1) Although many potential risk factors are considered in this research, some real-time
factors that may also have effects on the severity of rural SV crashes are unavailable
in police collision reports, such as real-time traffic volume and vehicle speed. It is
expected that the fitting performance of the SRP-logit model can be improved if these
variables are accommodated. Transportation facilities are not perfect in rural areas of
China, which leads to a lack of traffic data; hence, some data collection equipment
should be set up in specific rural locations for further research.

(2) The insignificant variables were removed from the final model, which may introduce
omitted variable bias. We will consider optimizing the statistical modeling framework
to propose more reasonable judgments.

(3) The research results showed that the transferability of the crash severity model
between different vehicle types is unsatisfactory. This may be due to substantial
differences between different motor vehicle types. In the future, more advanced
methods need to be explored to improve model transferability. Further, due to the
differences in cultural backgrounds and driving habits among different countries, the
applicability of statistical methods proposed in this research needs to be explored.
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