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Abstract: In this study, a new method of estimating the leakage positions of cooling water using
a stereo camera for the Fukushima Daiichi Nuclear Power Plant (FDNPP) is proposed. A stereo
camera mounted on an inspection system with a rotating base was inserted into the pedestal below
the reactor pressure vessel (RPV), and the waterdrops from the leakage position were captured using
a stereo camera. We estimated the leakage positions by triangulating the waterdrop trajectory lines in
the stereo image. The main contribution of this study is the extraction and matching of the waterdrop
trajectories in a stereo image in the FDNPP. The radiation noise is intense inside the pedestal because
of the presence of fuel debris. Therefore, we propose a method that is robust against radiation noise.
We assume that the waterdrops drip vertically in indoor environments without wind, such as in the
FDNPP. Hence, the orientation of the stereo camera can be adjusted by the rotating base such that the
vertical lines in the three-dimensional space are also projected as vertical lines in the image planes.
Thereafter, the columns of pixels in the images are treated as image features and used to extract
and match the waterdrop trajectories. We demonstrated the effectiveness of our leakage position
estimation method in a simulated environment of the FDNPP with gamma-ray image noise.

Keywords: leakage position estimation; Fukushima Daiichi Nuclear Power Plant; decommissioning;
stereo camera

1. Introduction

The Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster that occurred in 2011
was caused by earthquakes and tsunamis. Due to the nuclear meltdown, the nuclear fuels
in the reactor pressure vessel (RPV) were melted and mixed with other materials, and a
large amount of fuel debris was formed. Some fuel debris fell into the pedestal below the
RPV, and the rest remained in the RPV. Fuel debris removal is an inevitable mission to
complete the decommissioning of the FDNPP.

Numerous decommissioning activities have been conducted thus far using robot
technology because of the high-dose radiation environment, where it is dangerous for
humans to stay for long [1,2]. Some inspections conducted in the primary containment
vessel (PCV) of Units 1, 2, and 3 of the FDNPP [3,4] revealed that waterdrops were dripping
from the bottom of the RPV into the pedestal. Water was injected into the RPV to cool the
remaining fuel debris that generated decay heat, and the water leaked from the damage
at the bottom of the RPV. Determining the leakage position of the cooling water helped
us estimate the location of the damaged area at the bottom of the RPV, which should be
beneficial for estimating the rough distribution of the fuel debris in the pedestal because
the fuel debris fell through the damage to the bottom of the RPV.

In this study, we propose a method of estimating the leakage position of cooling water
using a stereo camera for the FDNPP. A stereo camera mounted on an inspection system
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with a rotating base is inserted through X-6 penetration into the pedestal below the RPV, as
shown in Figure 1. Figure 1a illustrates the RPV, pedestal, and inspection system inserted
into the pedestal. Water leaks from the damaged area to the pedestal. Figure 1b depicts
the inspection system with a stereo camera, where the orientation of the stereo camera can
be changed using the rotating base. It is assumed that the inspection system includes a
sensor that detects the direction of gravity such that the pan axis of the stereo camera can
be aligned with gravity.

(a)

(b)

X-6 penetration

Inspection system

Reactor pressure vessel

Cooling water

Leaking water 
from hole or crack

 5 m

Rotator

Tilt Stereo camera

Pan

Figure 1. The inspection system inserted into the pedestal below the RPV of Unit 2. (a) Pedestal
where water leaks from the damaged area. The inspection system is inserted into the pedestal through
the X-6 penetration. (b) The stereo camera mounted on the inspection system with a rotating base.

In the proposed method, we capture the waterdrops coming from the leakage posi-
tion using a stereo camera, and the leakage positions are estimated by triangulating the
waterdrop trajectory lines in the stereo image. The main contribution of this study is the
extraction and matching of the waterdrop trajectories in a stereo image in the FDNPP.
In particular, high radiation should be considered in the pedestal because of a severe
high-dose environment owing to the fuel debris. Approximately 10 Gy/h was measured in
the pedestal of Unit 2 according to an investigation [5]. Radiation affects the inspection
system in two ways. First, radiation energy is accumulated in electronic devices and causes
malfunctions. However, the proposed method only requires a few seconds to capture
stereo frames; therefore, malfunctions are not important in this study because ordinary
electronic devices can survive at least a total dose of 100 Gy [6,7]. Second, strong radiation,
especially gamma rays, causes image noise. Gamma rays are a form of light that has a
shorter wavelength than visible light; therefore, image sensors capture gamma rays along
with visible light. Moreover, gamma rays can penetrate matter easily, making it difficult to
prevent gamma rays from being captured by image sensors. Gamma-ray noise appears in
images as salt-and-pepper noise and line-shaped noise; the noise hinders the detection and
matching of waterdrop trajectories from images because waterdrops do not have a strong
color and texture.

We propose a leakage position estimation method that is robust against gamma-
ray image noise. The challenge is to distinguish and match waterdrop trajectories from
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images with severe radiation noise. It is assumed that the waterdrops drip vertically in
indoor environments without wind, such as in the FDNPP. Hence, the orientation of the
stereo camera can be adjusted by the rotating base such that the vertical lines in the three-
dimensional (3D) space are also projected as vertical lines in the image planes. Thereafter,
the columns of pixels in the images are treated as image features and used to extract and
match the waterdrop trajectories. Here, waterdrops appear in certain vertical lines in the
images, whereas radiation noise appears in a uniformly distributed location in the images.
Hence, we utilize the statistical difference to distinguish between waterdrops and radiation
noise. Note that we previously proposed a camera orientation estimation method using the
vanishing point of waterdrops [8]. The concept of using waterdrops is similar to the one
in this study; however, this study is completely different because we focus on the leakage
position estimation, and the camera pose is given by the inspection system. Finally, we
demonstrate the effectiveness of our leakage position estimation method in a simulated
environment of the FDNPP with gamma-ray image noise.

2. Related Work

This study focuses on leakage position estimation, which is one of the inspection
tasks for removing fuel debris and decommissioning the FDNPP. Kikura et al. and Wang
et al. developed a remote leakage locating system using an ultrasonic array sensor to
investigate the leakage locations in the FDNPP [9,10]. The ultrasonic array sensor was
placed in the water to detect the water flow for localization of the leakage positions; hence,
for the leakage positions to be applicable to their methods, they needed to be submerged.
However, the bottoms of the RPV of Units 1, 2, and 3 were not submerged; therefore, it was
difficult to estimate the leakage position of the bottom of the RPV using their methods.

Some studies utilized thermographic cameras to detect leakage positions. Penteado
et al. and Pauline et al. employed thermographic cameras to detect the leakage positions
of buried pipes [11,12]. They detected the leakages by capturing the temperature changes
of the soil surface, because water leakage from pipes decreases the temperature of the
soil. However, it is difficult to detect water dripping from the bottom of the RPV using
thermographic cameras because of the small volume of a waterdrop. Moreover, it is unclear
how radiation affects the thermographic cameras.

Compared to ultrasonic array sensors and thermographic cameras, conventional
optical cameras are widely available. Xue et al. proposed a method to estimate the leakage
positions in tunnels from images using a deep learning-based approach [13]. They assumed
that the environment was dry except for areas of the leakage. They used color change,
because areas around the leakage positions had darker colors compared to the dry ones. In
the FDNPP, most of the environment is wet; therefore, their methods cannot be applied.

In this study, we utilized a stereo camera to detect waterdrops and triangulate the
trajectories of the waterdrops to estimate the leakage positions on a two-dimensional
map. In addition, the radiation noise was considered. There are affordable depth sensors
available these days; however, it would be difficult for depth sensors to detect small and
transparent objects such as waterdrops. For instance, the depth sensors would not measure
a waterdrop itself but the wall of the pedestal, based on the study [14] on the performance
in the rain of LiDAR (light detection and ranging). It is worth noting that some studies
have focused on detecting waterdrops that adhere to the protection glass of cameras [15,16].
We assume that the inspection system has wipers to remove the adherent waterdrop on
the camera glass; therefore, we considered the adherent waterdrop as beyond the scope of
this study.

3. Method
3.1. Overview

An overview of the proposed method is shown in Figure 2. First, waterdrops from
the leaking positions are captured by the stereo camera for a few seconds, as shown in
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Figure 2a. The orientation of the stereo camera is adjusted before capturing the waterdrops
such that the trajectories of the waterdrop are vertical lines in the stereo images.

Second, the waterdrops are detected and matched using the proposed method,
as shown in Figure 2b. Waterdrop trajectory detection and matching is explained in
Sections 3.2 and 3.3, respectively.

Finally, the leakage positions are estimated by triangulating the corresponding trajec-
tory lines, as illustrated as dotted lines in Figure 2c. The red and green dots in Figure 2c
represent the leakage positions estimation by the triangulation, which are the relative
positions of estimated leakage with respect to the stereo camera coordinates. We can
estimate the leaking positions from the top view of the pedestal by utilizing the location of
X-6 penetration, which is similar to the location of the stereo camera. This is explained in
Section 3.4.

Figure 2. Overview of the proposed method. (a) Capturing waterdrops for a few seconds using a stereo camera in the
pedestal. Blue eclipses represent waterdrops, and white circles and lines represent the radiation noise in the stereo images.
(b) Waterdrop trajectory detection and matching. The red and green rectangles represent the corresponding trajectories.
(c) Estimation of the leakage position by triangulating the corresponding trajectory lines. The concept of the triangulation is
illustrated as dot lines, and the cyan stars on the inspection system represent the stereo cameras. This figure illustrates a top
view of the pedestal.

3.2. Waterdrop Trajectory Detection

Detecting a waterdrop is difficult because of its transparency, motion blur, etc.; there-
fore, we focus on detecting waterdrop trajectories in this study. It is assumed that water
drips from the leaking position continuously and vertically without wind. Thus, the
waterdrop trajectories are captured as vertical lines in the stereo images after aligning
the pan axis of the stereo camera with gravity. Therefore, waterdrop trajectory detection
can be accomplished by detecting vertical lines in images that belong to the waterdrop
trajectories. The challenge is to distinguish waterdrop trajectories from images with severe
radiation noise.

Waterdrops appear in certain vertical lines in such images. Meanwhile, radiation
noise can be treated as independent and identically distributed (i.i.d.) random noise.
Thus, statistical operations can distinguish between the waterdrop trajectories and radi-
ation noise. Initially, we captured waterdrops for a few seconds using the stereo cam-
era from a fixed position in the pedestal, resulting in Nframe stereo images IL, IR =
{IL

1 , . . . , IL
Nframe

}, {IR
1 , . . . , IR

Nframe
}, where IL

i and IR
i ∈ RH×W represent the grayscale left

and right images with a resolution of H ×W, respectively.
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The remaining detection procedure is illustrated in Figure 3. First, background sub-
traction is applied to the stereo images IL and IR to extract the waterdrops and radiation
noise, as shown in Figure 3a, which is formulated as follows:

FL
i = |IL

i − median(IL)|, (1)

F L = {FL
1 , . . . , FL

Nframe
}, (2)

where FL
i ∈ RH×W denotes the extracted waterdrops and radiation noise, and median(·)

represents the temporal median filter. The same operation is applied to IR, and FR is
obtained. It is worth noting that we also employed a background subtraction method
proposed in [17]; however, their method failed to extract waterdrops because waterdrops
tended to be categorized as background.

(a)
: Images after subtraction

Aggregated 
value    

Colunm index of Colunm index of 
(b) (c)

Figure 3. Waterdrop trajectory detection. (a) Images obtained after background subtraction. Wa-
terdrops and radiation noise are extracted from the images. (b) Vertically ggregated values of F .
(c) Waterdrop trajectory detection followed by non-maximum suppression. The red rectangles
represent the final detection results.

Next, vertical lines that belong to the waterdrop trajectories are detected from F L and
FR using the following approach: The same procedure is applied to F L and FR; hence, we
omit the superscript and describe the extracted waterdrops and radiation noise as F . As
explained above, radiation noise can be treated as i.i.d. random noise, whereas waterdrops
appear in certain vertical lines in the images; therefore, vertically aggregated values of
F show a statistical difference. As can be seen in Figure 3b, the aggregated value gj ∈ R
obtained from the j-th column of F is calculated as follows:

gj =
1

Nframe

1
H

Nframe

∑
n=1

H

∑
i=1

Fn(i, j), (3)

where Fn(i, j) ∈ R is the value of Fn at the i-th row and j-th column.
The final waterdrop trajectory detection result {h1, . . . , hW} is calculated from

{g1, . . . , gW} using Algorithm 1, which is illustrated in Figure 3c. As described in Algorithm 1,
the i-th column aggregated value gi that has higher than gthresh, which is two standard
deviations of the mean, is detected as the water drop trajectory. This threshold value
can be adjusted based on these scenes. Moreover, non-maximum suppression with win-
dow size gwin is applied to the detection result to prevent a waterdrop trajectory from
being detected as multiple lines in the images. Finally, the detection result is obtained as
hL

i , hR
i ∈ {true, false}, where the waterdrop trajectory is detected at the i-th column of the

left image if hL
i is true.
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Algorithm 1: Waterdrop trajectory detection.

Data: Aggregated values G = {g1, . . . , gW}
Result: Detection result {h1, . . . , hW}
// Initialize detection result with false
{h1, . . . , hW} ← false;
// Calculate mean and standard deviation of G
gmean, gstd ← mean(G), std(G);
// Detect waterdrop trajectory
for i← 1 to W do

gthresh = gmean + 2gstd;
hi ← (gi > gthresh);

end
// Non-maximum suppression
for i← 1 to W do

if hi == true then
// Local maximum inside window
gmax ← max(G(i− gwin : i + gwin));
hi ← (gi == gmax);

end
end

3.3. Waterdrop Trajectory Matching

Using the detection result hL
i , hR

i , we define the set of column indices of the waterdrop
trajectories as follows:

CL =
{

i ∈ {1, . . . , W} | hL
i = true

}
, (4)

where CL is the set of column indices of the waterdrop trajectories in the left images.
CR is defined in the same manner as CL for the right images. Therefore, finding the
correspondence between CL and CR is required to match the waterdrop trajectories. In this
study, Nmatch = min(Card(CL), Card(CR)) corresponding trajectories are searched, where
Card(·) denotes the cardinality of a set.

FL
n (:, cL

i ) and FR
n (:, cR

j ) ∈ RH×1 are treated as image features, and the features

FL
n (:, cL

i ) and FR
n (:, cR

j ) are considered to correspond if FL
n (:, cL

i ) and FR
n (:, cR

j ) have the

closest distance in {FR
n (:, cR

j )}cR
j ∈HR . Furthermore, we aggregate the correspondence over

n ∈ {1, . . . , Nframe} to make the matching method robust against radiation noise. Note
that the stereo images are already rectified; hence, the epipolar line is horizontal and at the
same row index in the stereo images.

The matching procedure is summarized in Algorithm 2. Algorithm 2 describes the
procedure for Card(CL) ≤ Card(CR); otherwise, the superscript L is interchanged with the
superscript R. In addition, dist(·, ·) is a function for calculating the L2 distance between
FL

n (:, i) and FR
n (:, j). The final waterdrop trajectory matching result is obtained as a set of

column index pairs Ĉ.
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Algorithm 2: Waterdrop trajectory matching

Data: Detection result column indices CL, CR.
Result: Matching pair result Ĉ
// Initialize matching result with empty set
Ĉ ← {};
foreach cL

i ∈ CL do
// Initialize with empty array
Ctmp ← [ ];
for n← 1 to Nframe do

// Find index of minimum distance

cR∗ = argmincR
j ∈HR dist

(
FL

n (:, cL
i ), FR

n (:, cR
j )
)

;

Ctmp ← Ctmp + [cR∗];
end
// Obtain the most frequent value
ĉR ← mode(Ctmp);
// Prevent duplicate matching
CR ← CR \ ĉR;
// Append matching pair in final result
Ĉ ← Ĉ ∪ {(cL

i , ĉR)};
end

3.4. Leaking Position Estimation

The leaking positions are estimated by triangulating the corresponding trajectory lines,
as shown in Figure 2c. A vertical line l ∈ R3 at column index c in an image is formulated
as follows:

l =

 c
H
1

×
c

0
1

, (5)

and a plane π ∈ R4 calculated from l in the world coordinates is formulated as follows:

π = P>l, (6)

where P ∈ R3×4 is a camera projection matrix that transforms a point u ∈ R3 in the image
coordinates into a point x ∈ R4 in the world coordinates.

A line in a 3D space drawn by a waterdrop trajectory is calculated by intersecting
two planes π from the left images and π′ from the right images, which is formulated as
follows:

L =

[
π>

π′>

]
, (7)

where L ∈ R2×4 is the null space and span representation of a line [18]. The final estimated
leakage position from the top view xleak = [xleak, yleak]> ∈ R2 is calculated as follows:

L


xleak
yleak

0
1

 =

[
0
0

]
, (8)

where Equation (8) is well-posed because there are two equations with two unknown
variables. It should be noted that the left and right camera projection matrices are defined
such that the gravity direction is the z-axis in the world coordinates.
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4. Experiments

We conducted experiments to demonstrate the effectiveness of the proposed method
in a simulated environment. The pedestal in Unit 2 of the FDNPP was simulated using
Blender [19], as shown in Figure 4. The pedestal was approximated as a cylinder with a
diameter of 5.0 m, and a textured rusty metal was added to the cylinder. The waterdrops
were dripped continuously from three leakage positions, as shown in Figure 4. The
coordinate system in a simulated environment is shown in Figure 5. A stereo camera was
placed near the X-6 penetration in the pedestal. The baseline of the stereo camera was set to
0.5 m, as the width of X-6 penetration is 0.6 m [20]. Specifically, the left and right cameras
were located at [−2.4 m, 0.25 m]> and [−2.4 m, −0.25 m]>, respectively (note that z values
were omitted). Both cameras faced in the same direction as the x-axis. A single point light
source was also added above the stereo camera to the environment.

Stereo camera

Light source Waterdrop

Figure 4. The simulated pedestal of Unit 2 in FDNPP for the experiment. A stereo camera was placed
in the pedestal using a single light source. Waterdrops were dripping from above.

X-6 
penetration

Stereo camera

Pedestal

Figure 5. The coordinate system of the simulated environment. The origin of the coordinates is at the
center of the pedestal where the z-axis is in the direction of gravity.

The stereo camera images were rendered at 12 frames per second using physically-based
rendering software called Cycles [21]. Both cameras had a resolution of 960× 540 pixels
with a horizontal field of view of 70◦. Thereafter, radiation noise was added to the images
using the method proposed in [22]. In particular, we added 662 keV gamma rays caused
by Cesium-137, which is a common radioactive material in the FDNPP, using Monte Carlo
simulation called Geant4 [23,24]. In [22], the parameters for generating radiation noise
were estimated using cameras capturing 12 frames per second. Therefore, the same frame
rate was chosen for rendering stereo images to generate gamma-ray radiation noise that
was as realistic as possible. Three different intensities of the radiation noise, namely, low
level (L), middle level (M), and high level (H), were applied to images to evaluate the
robustness of the proposed method against the radiation noise levels. The intensity of the
high level radiation noise was determined based on the air dose rate of approximately
10 Gy/h to simulate the actual environment [5]. We set the radiation noise levels of M and
L as 33% and 17% of H, respectively.
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In this study, Nframe was set to 24, implying that the stereo cameras captured the scene
for two seconds as the input stereo images. Moreover, gwin was set to 10 pixels.

The evaluation was conducted using the Euclidean distance between the ground truth
and the estimation from the top view, which is formulated as follows:

Ei =
√
(xi − x̂i)2 + (yi − ŷi)2, (9)

where [xi, yi]
> and [x̂i, ŷi]

> are the ground truth and the estimation of the corresponding
leakage position, respectively.

We conducted evaluations in three different settings, namely three separated waterdrops,
three crowded waterdrops, and multiple waterdrops, which are described below. Please watch
the video of the simulated environment (https://drive.google.com/drive/folders/11A_
bxKxLl5pt04pVg3M_m2giJNoZCaUx?usp=sharing, accessed on 21 August 2021). In all
settings, leakage positions were generated in the right semicircle of the pedestal in Figure 5.
We limited the generated leakage positions to the right semicircle of the pedestal because we
wanted to capture the waterdrops in both left and right cameras to evaluate the proposed
method properly. If the waterdrops were generated in the left semicircle, the waterdrops
were close to the stereo camera; therefore, it was highly likely that the waterdrops appeared
to only one camera or none of the cameras.

4.1. Three Separated Waterdrops

Ten different scenes were rendered with random three leakage positions for the three
separated waterdrops evaluation. In this evaluation, we generated scenes that were easy
for our proposed method. In the scene generation process, a scene was rejected if the
distances between the leakage positions were closer than 0.5 m, because if two waterdrops
were generated close together, our method would not detect two waterdrops but one
waterdrop, an estimation error. We evaluated a scene where the distances between the
leakage positions were closer than 0.5 m in Section 4.2. As mentioned above, three different
levels of radiation noise were applied to each scene, which resulted in 30 pairs of stereo
videos for the evaluation.

4.2. Three Crowded Waterdrops

We evaluated the performance of the proposed method when the distances between
the leakage positions were smaller than 0.5 m. Eight different scenes with three leakage
positions were rendered and the leakage positions are listed in Table 1. As can be ob-
served in Table 1, the minimum distance between the leakage positions was 0.05 m for
scenes 1 and 4, which we knew would be hard for the proposed method. Three different
levels of radiation noise were applied to each scene, which resulted in 24 pairs of stereo
videos for the evaluation.

Table 1. Leakage positions (m) of three crowded waterdrops.

Scene Leakage 1 Leakage 2 Leakage 3

1 [0.0, 0.05] [0.0, 0.0] [0.0,−0.05]

2 [0.0, 0.1] [0.0, 0.0] [0.0,−0.1]

3 [0.0, 0.2] [0.0, 0.0] [0.0,−0.2]

4 [0.0, 0.3] [0.0, 0.0] [0.0,−0.3]

5 [1.0, 0.05] [1.0, 0.0] [1.0,−0.05]

6 [1.0, 0.1] [1.0, 0.0] [1.0,−0.1]

7 [1.0, 0.2] [1.0, 0.0] [1.0,−0.2]

8 [1.0, 0.3] [1.0, 0.0] [1.0,−0.3]

https://drive.google.com/drive/folders/11A_bxKxLl5pt04pVg3M_m2giJNoZCaUx?usp=sharing 
https://drive.google.com/drive/folders/11A_bxKxLl5pt04pVg3M_m2giJNoZCaUx?usp=sharing 
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4.3. Multiple Waterdrops

To further investigate the limitations of the proposed method, experiments with more
than three leakage positions were conducted. In the experiments, scenes with five and
seven leakage positions were rendered randomly, and four scenes were generated for each
number of the leakage positions. Only a high level of radiation noises was applied to each
scene, which resulted in eight pairs of stereo videos for the evaluation.

5. Results
5.1. Results with Three Separated Waterdrops

Examples of input stereo images, images after background subtraction F , and aggre-
gated values ofF are shown in Figure 6. Even though it is difficult to observe waterdrops in
the input stereo images, the proposed method can detect the vertical lines of the waterdrop
trajectories. Note that color stereo images are presented in Figure 6a for reference, although
the grayscale images were processed using the proposed method. In addition, the contrast
of the images was adjusted in Figure 6b for visualization.

(a)

(b)

Left image Right image

Left image after subtraction Right image after subtraction

(c)

Figure 6. Intermediate representation of proposed method. (a) Input stereo image with radiation
noise. Please check the supplemental video. (b) Images obtained after background subtraction, F .
(c) Vertically aggregated values of F .

The results of the number of the detected leakages using the proposed method are
shown in Table 2. As can be seen in Table 2, the proposed method detected 26 out of
30 leakage positions, and the noise level did not affect the results. We investigated the
failed cases and found out the waterdrops were out of the field of view of the stereo
cameras. Therefore, the proposed method can detect and match water trajectories correctly
if the waterdrops are captured by both stereo cameras.

The accuracy of the estimated leakage position is presented in Table 3. The accuracy
was evaluated using the mean and standard deviation (SD) of 26 leakage positions at each
radiation noise level. As can be observed in Table 3, the proposed method estimated the
leakage positions robustly in the face of radiation noise. Besides, it was surprising that
the SD was smaller when the noise level was high. Therefore, the ground truth and the
estimated leakage positions of each noise level are illustrated in Figure 7 for further clarity.
In Figure 7, the yellow lines represent the estimation errors, and the error distributions are
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almost the same for all noise levels. Besides, the difference in the SD is relatively small. It
can be estimated that the waterdrop trajectory estimations of the stereo images were a few
pixels different with different noise levels. Thus, it can be considered that the differences in
SD were just perturbations caused by the radiation noise.

Table 2. Results of the leakage detection of three separated waterdrops.

Noise Level Detected Number (Max 30) Detected Rate [%]

L 26 86.7

M 26 86.7

H 26 86.7

Table 3. Results of leakage position estimation of three separated waterdrops (N = 26).

Noise Level Error (Mean ± SD) [m]

L 0.22 ± 0.25

M 0.22 ± 0.24

H 0.22 ± 0.23

Another interesting fact can be observed in Figure 7: that the estimation errors were
large near the wall. It turned out that the shadows caused large errors in the proposed
method. In our scenarios, a single light source was available above the stereo camera;
therefore, when waterdrops were generated near the wall of the pedestal, the waterdrops
cast shadows on the wall. In the proposed method, the shadows could be detected as wa-
terdrops after background subtraction, which prevented the trajectory estimation module
from estimating the centers of the waterdrops accurately. Thus, the estimation errors near
the wall were large. The shadows could be removed by using multiple light sources in the
environment; however, we will leave adding additional light sources as future work.

x

y

x

y

x

y

(a) (b) (c)

Figure 7. Ground truth and estimated values of the leakage positions of three separated waterdrops. The results of all ten
different scenes are combined together. Only detected waterdrops are illustrated. (a) Noise level L. (b) Noise level M.
(c) Noise level H. The red and blue dots indicate the ground truth and estimated leakage positions, respectively. The yellow
lines illustrate the correspondence of the ground truth with the estimated leakage positions. The camera positions are also
illustrated as the greed dots for reference.

We conducted another experiment on three separated waterdrops with the H noise level,
where different Nframe were used to estimate the leakage positions. As shown in Table 4,
the larger the Nframe, the more accurate the estimation results. However, the larger the
Nframe, the longer the stereo cameras were placed without moving; therefore, too large an
Nframe is not realistic. Besides, the improvement in the accuracy saturated with enough
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Nframe (in this case, 18 or 24 frames). Surprisingly, fewer Nframe got better results in terms
of the detection rate. We further investigated the aggregated value of the column pixels of
different Nframe, and it was revealed that larger Nframe made the peak of the plot smoother
(wider width), which means it is harder for the proposed method to distinguish two
waterdrops generated close together. In this study, we prioritized the accuracy; thus, we
set Nframe as 24, assuming that placing the stereo camera for two seconds without moving
is acceptable.

Table 4. Result of leakage position estimations with different Nframe.

Nframe Detected Number (Max 30) Detected Rate [%] Error (Mean ± SD) [m]

3 27 90.0 0.37 ± 0.78

6 27 90.0 0.36 ± 0.84

12 27 90.0 0.34 ± 0.67

18 26 86.7 0.22 ± 0.24

24 26 86.7 0.22 ± 0.23

5.2. Results with Three Crowded Waterdrops

We conducted experiments for difficult scenarios where the distances between the
leakage positions were closer than 0.5 m. The detection rates and the estimated errors
are listed in Table 5. The detection rate was the same across the different radiation noise
levels, which demonstrates the robustness of the proposed method against the radiation
noise. The proposed method only failed to detect the leakage positions when the distance
between the leakage positions was 0.05 m.

The mean errors in Table 5 were considerably low compared to Table 3 because
waterdrops were not generated near the walls, which means there were no shadows of
the waterdrops in the rendered images. As can be observed in Table 5, the high radiation
noise affected the accuracy; however, the mean errors only increased by 0.01 m, which
demonstrates the robustness of the proposed method against radiation noise. We believe
the proposed method can handle even higher radiation noise, as long as waterdrops are
visible in the stereo cameras.

Table 5. Results of leakage position estimations with three crowded waterdrops.

Noise Detected Number (Max 24) Detected Rate [%] Error (Mean ± SD) [m]

L 22 91.7 0.05 ± 0.05

M 22 91.7 0.05 ± 0.06

H 22 91.7 0.06 ± 0.07

5.3. Results with Multiple Waterdrops

We conducted experiments to evaluate the performance of the proposed method in
scenarios with more than three leakage positions. The results of scenarios with five and
seven waterdrops are presented in Figure 8. In Figure 8, the detections and mean errors
of the estimated leakage positions are indicated above the figures, and the yellow lines
represent the estimation errors. Similarly to the result with three separated waterdrops, the
errors were small if waterdrops were not generated near the walls, which indicates the
number of waterdrops does not affect the accuracy of the leakage position estimation.
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Seven waterdrops

Five waterdrops

Figure 8. Ground truth and estimated leakage positions. The first row and second row are the
results with five and seven leakage positions, respectively. The number of detections and mean
error of the estimated leakage positions are indicated above each figure. The red and blue dots
indicate the ground truth and estimated leakage positions, respectively. The yellow lines illustrate
the correspondence of the ground truth with the estimated leakage positions. The leakage positions
that were not detected are represented as the purple dots. For reference, the camera positions and the
fields of the view are illustrated as the greed dots and the cyan lines, respectively.

However, the detection rates were low if the number of waterdrops was large because
the chances of waterdrops occluding each other increasing. If waterdrops were occluded
in the stereo images, the proposed method failed to detect them as separate waterdrops.
Furthermore, the proposed method failed to estimate the leakage positions outside of the
fields of view of the stereo cameras, as can be seen in Figure 8, where the fields of view
of the stereo cameras are illustrated as the cyan lines. It is worth noting that the use of a
wider field of view camera would improve the detection rate of the proposed method.

In conclusion, the proposed method can estimate multiple leakage positions if the
waterdrops are captured by both cameras and not occluded in the stereo images.

6. Conclusions

In this study, we proposed a method for estimating the leakage positions in the
pedestal of the FDNPP using a stereo camera. The leakage positions are estimated by
detecting, matching, and triangulating waterdrop trajectories in the stereo images. The
leakage position estimation is important because the estimation would give the rough
distribution of the unknown fuel debris on the floor of the pedestal, which should be
removed for decommissioning. The challenge was to distinguish and match waterdrop
trajectories from images with severe radiation noise owing to fuel debris in the pedestal.
We assumed that the waterdrops fell vertically without wind; therefore, the waterdrop
trajectories could be captured as vertical lines in the images by aligning the pan axis of
the stereo camera with gravity. As a waterdrop appeared at a certain column index in an
image, a vector of the column pixels was utilized as an image feature. In this study, the
aggregated value of the column pixels was employed to detect the waterdrop trajectory
lines in the images, and the vector of the column pixels was used to match the waterdrop
trajectories between the left and right images. We simulated the pedestal in Unit 2 of the
FDNP, and the proposed method succeeded in estimating the leakage positions from stereo
images with severe radiation noise.

During the experiments, our method only failed to detect waterdrops due to two
conditions: if the waterdrop only appeared to only one of the stereo cameras or none
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of them; second, if the waterdrops were occluded in the stereo images. Therefore, the
radiation noise did not affect the detection rate, which demonstrates the robustness of the
proposed method against radiation noise.

The worst mean error of the estimated leakage position was 0.37 m, and 0.37 m is 7.4%
of 5 m, which is the diameter of the pedestal. In the current FDNPP situation with a lot of
uncertainty, we believe errors lower than 10% would be beneficial for decommissioning.
Furthermore, the experimental results suggested that shadows degrade the accuracy of the
proposed method. Thus, there is room for improvement in deciding on the locations of
multiple light sources. Therefore, we believe that the proposed method would be beneficial
for estimating the rough distribution of the fuel debris that fell through the damage to
the bottom of the RPV. We hope that our proposed system can be applied to the actual
pedestal in the FDNPP and help with decommissioning.

The proposed method was specifically designed for scenarios with leakages and
high radiation noise. At the moment, the FDNPP is the only applicable situation for the
proposed method. However, in the future, there might be a similar nuclear accident where
a hydrogen explosion occurs, followed by the nuclear meltdown; therefore, the proposed
method might be useful in the future.

As future work, in addition to using multiple light sources, investigating the optimal
frame rate for the stereo cameras is worth exploring. On one hand, capturing at a lower
frame rate produces longer waterdrop trajectories, which would be helpful for detecting
and matching the trajectories using our method. However, the stereo images would have
more accumulated radiation noise. On the other hand, capturing at a higher frame rate
produces shorter waterdrop trajectories, which would make it difficult for the proposed
method to detect and match the trajectories. In contrast, the total radiation noise in the
image would be lower due to a shorter exposure time. It is worth noting that less radiation
noise in an image does not necessarily mean less noise in the images because the gain of
the cameras also increases with a shorter exposure time, which might emphasize noise that
is not noticeable with a fewer frame rate. Therefore, extensive investigation on the optimal
frame rate will be required.
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