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Abstract: Nonlinear system control belongs to advanced control problems important for real plants
control design. Various techniques have been developed in this field. In this paper we compare two
different approaches to a nonlinear unstable Magnetic levitation system control. The first control
design approach further develops our recent results on robust discrete-time pole-placement, based
on convex DR-regions. The second studied approach is based on feedback linearization and the
simplified development of the corresponding nonlinear control law is provided. Both approaches are
compared and evaluated. The efficiency of robust discrete-time pole-placement controller is shown
as well as its competitiveness in comparison with nonlinear control for Magnetic levitation system.

Keywords: nonlinear control; robust control; pole placement; magnetic levitation; pole regions

1. Introduction

In practice, a control is designed mostly for nonlinear systems, various nonlinear
control approaches have been developed during past decades (sample of excellent books
on nonlinear control is [1,2]). Nevertheless, some kind of linearization is frequently used to
simplify analysis and control design of inherently nonlinear systems. Techniques based on
feedback linearization can be used under certain, not too strict assumptions on nonlinear
system, see e.g., [3,4]. The resulting control design scheme then provides a nonlinear control
law which can be designed based on a transformed linearized closed-loop control system.
Other possibility to control a nonlinear system is to use a linearized uncertain model or its
parameter varying (LPV) alternative and design a corresponding robust, adaptive or gain
scheduling control. A nice survey of robust control techniques is in [5], gain scheduling
approach can be found in [6].

Among various robust control techniques, Linear Matrix Inequality (LMI) approach
attracted notable interest owing to its computational tractability [7–10]. Specifically, when
a polytopic uncertain linear model is used, different robust control algorithms can be
formulated in LMI framework, as Hin f , H2, LQG (Linear–Quadratic–Gaussian) based
controllers and other robust controllers designed using quadratic or parameter dependent
Lyapunov function [8,10,11]. Successful control design has to meet basic requirements
on closed-loop stability and performance. For uncertain system, stability and prescribed
performance is required for the whole uncertainty domain. One of the frequently used
approaches to guarantee the prescribed closed-loop system dynamics is pole-placement
technique [7,12–15] and others. In pole-placement, it can be advantageous to prescribe only
a region, where the closed-loop poles should be placed instead of their exact position. Such
approach is especially useful for robust control of uncertain systems. An appropriate region
can be determined by the prescribed settling time, overshoot, stability degree, relative
damping or other performance indices closely connected with closed-loop pole position [12–
14]. In this field, so called DR region concept have been introduced and used for robust
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control design [7,9,10,16], where DR region is a convex domain in a complex plane, where
the system poles should lie. The corresponding DR stability condition in the form of LMI,
provides computationally efficient way for the respective controller design. The existing
results in literature have been mostly proposed for continuous-time systems [10,14,15,17].
In our recent works [18–20] we developed specific DR regions for discrete-time systems,
motivated by the fact that in real world application, mostly the digital controllers are
implemented. In this paper we aim at the comparison of our recent results on robust pole-
placement discrete-time state feedback control design with a nonlinear control developed
for a laboratory magnetic levitation (ML) plant.

Magnetic levitation principle is widely used in applications, besides transport sys-
tems (as Maglev train) also magnetic bearings, frictionless contacts, microrobotics and
others. Magnetic levitation plant, where a magnetic object is positioned in the air space,
provides a challenging control task owing to strong nonlinearity and inherent instability.
Various methods have been proposed to control the magnetic levitation, as for example
feedback linearization approach in [21,22], adaptive state feedback [23], frequency domain
method [24] or CDM (Coefficient Diagram Method) based design in [4]. Most of them
consider continuous-time control. In [18–20] we proposed DR region based discrete-time
robust pole-placement controller for ML system.

This paper is devoted to a study and comparison of two principal approaches applied
on a laboratory Magnetic levitation system. The first approach is based on feedback
linearization [3,4,22], where an algebraic transformation is applied on nonlinear state
space model together with a nonlinear control law to obtain the linearized closed-loop
system. The second approach employs robust pole-placement controller design for a
system linearized around the working point and described by an uncertain polytopic
system [7,9,18,19]. The main contribution of the paper is in simplified development of
nonlinear control law with novel approximation of nonlinear terms, developed robust
pole-placement controller for different levitating balls, comparison and evaluation of the
obtained results received with nonlinear continuous-time control and discrete-time linear
one. The advantages and disadvantages of both used approaches are summarized for the
studied case.

The paper is structured as follows. Section 2 describes the Magnetic levitation plant, its
nonlinear model and parameters. Section 3 is devoted to state feedback control design, two
approaches are presented, Section 3.1 recalls our recent results on a discrete-time DR region
based controller design, in Section 3.2, nonlinear control law is developed following the
concept introduced in [22]. Section 4 presents designed controllers for Magnetic levitation,
the discrete-time robust pole-placement controllers in Section 4.1 and continuous-time
nonlinear controller in Section 4.2. Comparison and assessment of the designed controllers
is provided in Section 4.3, paper contribution is briefly summarized in Conclusion.

2. Nonlinear Magnetic Levitation System

This paper studies and compares control designs for Magnetic levitation laboratory
plant (ML), Figure 1. Magnetic levitation is inherently unstable system with fast dynamics
corresponding to electromagnetic forces [19,25]. In our laboratory plant, the aim is to
position the levitating ferromagnetic ball (sphere) within the air-space between two elec-
tromagnets. Below, we consider the upper coil serving as an actuator which compensates
gravitation of the ball.
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Figure 1. Laboratory Magnetic Levitation Plant from INTECO [25] having 2 electromagnets (coils).
A levitating sphere ball should be positioned in the air-space.

The ML nonlinear model below can be derived using Lagrange function. More
details can be found in [26]. We omit argument t to improve readability. For the readers
convenience we recall the basic steps of the development. Lagrange function (the difference
between kinetic and potential energy) T is used in the form

T =
1
2

m(
dx
dt

)2 +
1
2

L(x)(
dq
dt

)2 +
1
2

∫ t

0
R(

dq
dt

)2dt + mgx + qu (1)

where x is a distance of the sphere from electromagnet (position), q is electric charge, m
is a mass of the sphere, R is a resistance of the electromagnet coil, L(x) is dependence of
inductance of the coil on x, I = dq/dt is a current in the coil, g is acceleration of gravity, u
is voltage on the coil. From Lagrange equations, the following equations are obtained

d2x
dt2 =

1
2m

dL
dx

I2 + g

dI
dt

=
1
L

(
−dL

dx
dx
dt

I − RI + u
)

.
(2)

For inductance L, the next approximation is used

dL
dx

= −aL1 exp(−ax) (3)

The term dI
dt is approximated by experimentally received expression

dI
dt

=
1

f1(x1)
(k1u + c1 − I), (4)

k1, c1 can be directly measured, f1(x1) is approximated analogically to (3). Substituting (3)
and (4) into (2), splitting the first equation from (2) into two first order equations and
introducing denotation

a ≈ 1
FemP2

, L1 ≈ FemP1,
dL
dx
≈ − FemP1

FemP2
exp(− x1

FemP2
),
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the nonlinear ML model (5) is obtained

dx1

dt
= x2

dx2

dt
= − Fem1

2m
+ g

dx3

dt
=

1
f1(x1)

(k1u + c1 − x3)

(5)

where
Fem1 = x2

3
FemP1

FemP2
exp(− x1

FemP2
), f1(x1) =

f1P1

f1P2
exp(− x1

f1P2
),

state variables are: x1= x—position of the ball, x2—velocity of the ball, x3= I—current in
the upper electromagnet coil, control input u is the voltage on the upper coil, output is the
position of the ball x1 measured as a distance from the upper coil.

Values for FemP1, FemP2, f1P1, f1P2, k1, c1 are inherent plant parameters, their values are
specific for the concrete coil; see Table 1 for the considered ML.

All parameters are summarized in Table 1. The mass of the ball is 0.016 kg for the
small ball, 0.023 kg for the medium ball and 0.039 kg for the big ball.

Table 1. ML plant parameters used in nonlinear state model.

Parameters Values Units

m 0.016; 0.023; 0.039 kg
g 9.81 m/s2

FemP1 0.017521 H
FemP2 0.0058231 m
f1P1 1.4142 × 10−4 ms
f1P2 4.5626 × 10−3 m
c1 −0.4 A
k1 4.4 A
iMIN 0.03884 A
iMAX 2.38 A
uMIN 0.00498 MU

3. Control Design

A nonlinear system control design frequently uses linearization techniques, which
provide powerful tools to simplify analysis and design. The main idea behind linearization
approaches is to apply appropriate transformation to the nonlinear system so that the
simplified—linearized model is obtained, for which some of many existing control design
methods can be used.

In this section, two different approaches to a nonlinear system control design are
presented. The first one is based on the classic linearization approach using Taylor series
(Jacobian) around the appointed working point. To guarantee stability around the working
point, the resulting linearized model is then represented as a polytopic uncertain system.
For such system model, we recall a robust pole region approach introduced in [9] and briefly
summarize our recent results for a discrete-time domain [18,19]. Robust pole-placement
control is designed directly in a discrete-time domain since control implementation uses
digital controller. In the second part of this section a nonlinear continuous time control law
motivated by [22] and based on feedback linearization is developed for magnetic levitation.
Presented result further develops nonlinear control law from [22] and uses approximation
of lumped exponential terms by a rational function to simplify the resulting control law.
The main motivation is to compare these two approaches and assess the qualities of recently
developed, relatively simple robust pole-placement control [19].
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3.1. Robust Pole Placement—Pole Region Approach

Robust control will be designed for a linearized model, considering three balls of
different sizes and their corresponding masss.

The first step is to linearize the nonlinear model (5) around the determined working
point using standard Jacobian method. In the following we will use the closed-loop
response comparison for the position control of the ball at pos = 0.01 m. The resulting
continuous-time linear state space model is:

dx
dt

= Acx(t) + Bcu(t) =

 0 1 0
a21 0 a23
0 0 a33

x(t) +

 0
0
b3

u(t)

y(t) = Ccx(t) =
[
1 0 0

]
(6)

where

a21 = 1
2m

FemP1
F2

emP2

(
x2

30exp
(
− x10

FemP2

))
a23 = − x30

m
FemP1
FemP2

(
x2

30exp
(
− x10

FemP2

))
a33 = − 1

fi(x10)

b3 = k1
1

fi(x10)

x10 = pos, x20 = 0, x30 =

√(
2mgFemP2

FemP1
)
)

exp
(
− x10

FemP2

)
.

The control will be designed in discrete time domain, therefore, in the next step
continuous time model (6) is discretized for appropriate sampling period Ts = 0.001 s.
Since we consider three different balls, the uncertain parameter corresponds to their mass m.
The resulting discrete-time linearized model is then represented by a polytopic system (7)
and (8), where the polytope vertices are obtained for different ball masses.

3.1.1. Robust Control Problem Formulation

Robust pole-placement controller is designed for a polytopic uncertain linear discrete-
time dynamic system.

x(k + 1) = A(ξ)x(k) + B(ξ)u(k), (7)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input, ξ ∈ RN denotes the
vector of uncertainty parameters corresponding to uncertainties belonging to the convex
polytope described as follows

(A(ξ), B(ξ)) ∈ {
N

∑
i=1

(Ai, Bi)ξi,
N

∑
i=1

ξi = 1, ξi ≥ 0} (8)

matrices Ai, Bi are constant and have corresponding dimensions. It is assumed that all
states can be used for feedback control

u(k) = Kx(k) (9)

The control design goal is to find such feedback gain matrix K that the corresponding
closed-loop system (10) is stable and conform to the prescribed performance limits, in our
case it has all poles in the prescribed region in the convex plane.

x(k + 1) = (A(ξ) + B(ξ)K)x(k) = ACL(ξ)x(k). (10)
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3.1.2. DR Regions and DR Stability

Robust pole-placement belongs to efficient tools for uncertain system control design.
So called DR region approach, introduced in [9] provides computationally tractable LMI
condition which can be used for a robust controller design for uncertain polytopic systems.
We start with definition of basic notions. A definition of DR region in the complex plain as
set of points conforming to the specified matrix inequality is taken from [9].

DR = {z ∈ C : R11 + R12z + RT
12z∗ + R22zz∗ < 0}. (11)

To get convex formulation transformable to LMI, we assume that R22 is positive
definite (semidefinite). A generalized-DR stability notion can be defined for a specific DR
domain determined for system poles. Matrix ACL(.) is said to be DR stable if and only if all
its eigenvalues lie in the DR region defined by (11). Standard Lyapunov stability condition
can be then generalized for the DR stability in the form of matrix inequality as summarized
in the following lemma.

Lemma 1 ([9]). Closed-loop matrix ACL(ξ) ∈ Rn×n is DR stable if and only if there exists a
positive definite matrix P(ξ) ∈ Rn×n such that

R11⊗ P(ξ) + R12⊗ (P(ξ)ACL(ξ)) + RT
12⊗ (ACL(ξ)

T P(ξ)) + R22⊗ (AT
CL(ξ)P(ξ)ACL(ξ)) < 0. (12)

It is important to note that the DR stability condition (12) can be for state feedback
control directly converted to LMI which significantly reduces computational effort.

Standard domains for stable poles and matrices Rij defining the corresponding DR
regions (11) can be listed as:

(I) open left-half plane of the complex plane, R11 = 0, R12 = 1, R22 = 0 (continuous-
time systems),

(II) interior of the unit circle, R11 = −1, R12 = 0, R22 = 1 (discrete-time systems),
(III) shifted left-half plane of the complex plane corresponding to stability degree λ,

R11 = 2λ, R12 = 1, R22 = 0 (continuous-time systems),
(IV) interior of the circle centered in [0, 0] with radius r = 1/sqrt(α) corresponding to

stability degree sqrt(α), R11 = −1/α, R12 = 0, R22 = 1 (discrete-time systems),
(V) interior of the convex cone with vertex angle 2ϕ, corresponding to the relative

damping (given by a ratio of the imaginary and real part of the complex pole in
continuous-time systems)

R11 = R22 =

[
0 0
0 0

]
, R12 =

[
sin(ϕ) cos(ϕ)
−cos(ϕ) sin(ϕ)

]
.

The domains (I) and (II) correspond to basic stability, domains (III) and (IV) to stability
degree, which influences the speed of system response and also robustness, domain (V)
determines the relative damping, belonging to important performance indices since it
is related to oscillations of the system response. Recall that the stability degree defines
the distance to the standard stability border, for continuous-time systems it given by the
biggest real part of system poles—see (III); for discrete time system it is given by the inverse
of radius of the circle where all system poles lie—see (IV).

3.1.3. Robust Pole-Placement Controller Design

Below, we recall the LMI formulation of DR stability condition for closed-loop uncer-
tain system (12) which can be directly used to compute feedback gain matrix K for robust
pole placement controller, more details can be found in [27].
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Lemma 2 ([9]). Consider the uncertain polytopic system with state feedback control (12). If there
exist positive definite matrices Pi ∈ Rnxn and any matrices H ∈ Rnxn, S ∈ Rmxn such that the
following inequality holds [

M11i M12i
MT

12i M22i

]
< 0 i = 1, ..., N (13)

where

M11i = R11 ⊗ Pi + R12 ⊗ (Ai H + BiS) + RT
12 ⊗ (Ai H + BiS)T

M22i = R22 ⊗ (Pi − H − HT)

M12i = RT
12 ⊗ (Pi − HT) + R22 ⊗ (Ai H + BiS),

(14)

and the state feedback controller matrix is computed as

K = SH−1. (15)

then the closed-loop system (10) is DR stable for stability region (11).

Frequently, the integration term, or PI controller is required to eliminate the steady-
state error of the controlled output variable. Then, the robust pole-placement controller
design presented in Lemma 2 can be applied for the augmented state model which includes
also the integration dynamics of PI controller. The augmented discrete-time system can be
then described as

Aiaug =

[
Ai 0
C I

]
, Biaug =

[
Bi
0

]
, i = 1, . . . , N (16)

where matrix C corresponds to those outputs which are considered in the integration
controller part. The state feedback gain matrix K is then in the following form

K =
[
Kp KI

]
, (17)

matrices Kp and KI correspond to proportional and integral gains of the PI controller. More
details can be found in [27].

For the magnetic levitation system, the ball position is required to track the reference
value, therefore in this case, the system output represented by the state x1 enters the
integration term and C = [1 0 0].

In robust-pole placement, it is very important to appropriately prescribe the required
closed-loop pole region. For ML we aim at achieving the determined stability degree and
relative damping. The relative damping belongs to basic closed-loop (CL) performance
requirements, however, in this case, the corresponding discrete-time region is no more
convex, given by a logharitmic spiral and has a “cardioid” shape. This nonconvex region
can be advantageously approximated using convex inner approximations which then
enables controller design via LMI solution. Here, the inner ellipse and angle-ellipse
approximations, which we developed recently [18,19] will be considered. The detailed
description of considered pole regions is as follows.

(A) Standard Stabilizing Controller (Unit Circle)
In the first controller design, based on LMI approach, we will use a standard stabilizing

controller from [28]: [
H + HT − Pi (Aiaug H + Biaug S)T

Aiaug H + Biaug S Pi

]
≥ 0

Pi > 0, i = 1, . . . , N.

(18)

the state feedback controller matrix is then computed by (15).
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(B) Discrete-time Robust Pole-placement Controller Design Using Ellipse Approx-
imation (Ellipse)

In this design of a discrete robust controller, we will use the DR region for the ellipse,
corresponding to the prescribed relative damping. Note, that the inner elliptic approxima-
tion of the originally nonconvex domain is less conservative as the circle one. The interior
of the ellipse centered in [xs, 0] with semi-axes 1/c and 1/d for damping ϕ prescribed in
continuous-time domain [29] is described by (11) with

R11 =

[
−1 −cxs
−cxs −1

]
, R22 =

[
0 0
0 0

]
, R12 =

[
0 (c− d)/2

(c + d)/2 0

]
, (19)

where c = 1
amaj

, d = 1
amin

, xs = e−ϕ/tg(ϕ)cos(−ϕ)

amaj = xs + e−π/tg(ϕ), amin = e−ϕ/tg(ϕ)sin(−ϕ).

Using (19) and (13)–(15) we can design controllers for prescribed angles of damping.

(C) Discrete-time Robust Pole-placement Controller Design Using Angle-Ellipse
Approximation (AE)

We have recently developed new convex inner approximation of the nonconvex
cardioid domain [18]. This approximation is referred to as angle-ellipse (AE) and is defined
as an intersection of the cone end ellipse. The cone is defined by its vertex [1, 0] and the
intersection point with cardioid [xe, ye]; the ellipse is centered in the middle of the cardioid
x-axis, with the y-semi-axis derived so that the ellipse intersects the cardioid in [xe, ye].
The common extreme point of the cardioid and ellipse, in the left half plane is denoted as
x0. The corresponding DR region (11) matrices for AE inner approximation are

R11 =

[
R11e Z

Z R11v

]
, R12 =

[
R12e Z

Z R12v

]
, R22 =

[
R22e Z

Z R11v

]
. (20)

where Z is 2× 2 zero matrix; matrices R11e, R12e, R22e correspond to the ellipse centred in
xse with semiaxes ak, bk given as
xse = (1 + x0)/2, ak = (1− x0)/2, bk = ye · ak/sqrt(ax2 − (xe− xse)2)

R11e =
[
−1 − xse

ak
− xse

ak −1

]
, R12e =

[
0 1

2·ak −
1

2·bk
1

2·ak +
1

2·bk 0

]
, R22e =

[
0 0
0 0

]
; (21)

matrices R11v, R12v, R22v correspond to the cone (shifted angle) given as
γ = atan(ye/(1− xe))

R11v =

[
−2 · xv · sin(γ) 0

0 −2 · xv · sin(γ)

]
, R12v =

[
sin(γ) cos(γ)
−cos(γ) sin(γ)

]
, R22v =

[
0 0
0 0

]
. (22)

Using (20) and (13)–(15) we can design controllers for prescribed angles of damping.

3.2. Nonlinear Control of Magnetic Levitation Using Feedback Linearization

The nonlinear control based on feedback linearization and result from [22] is devel-
oped in this section. A nonlinear control law compensating the nonlinear terms is combined
with the corresponding state space transform to convert the nonlinear closed-loop control
to the pole-placement control for a transformed linearized model. The resulting control law
aims at shaping the closed-loop system dynamics according to the poles prescribed for the
linear system. All the developments are performed for an original continuous nonlinear
state space ML model (5). To eliminate the steady-state control error when positioning
the levitating ball, additional state is considered corresponding to the controller integra-
tion term. To simplify computations and implementation of a resulting nonlinear control
law, the nonlinear terms including exponential functions are approximated by rationale
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functions (such approximations are frequently used in magnetic levitation models). The
considered nonlinear model is then

dx1

dt
= x2

dx2

dt
= − Fem1

2m
+ g ≈ − 1

2m
x2

3 f (x1) + g

dx3

dt
=

1
fap(x1)

(k1u + c1 − x3)

dx4

dt
= x1 − w

(23)

where approximating functions for exponential terms are

f (x1) =
1

ax2
1 + bx1 + c

, fap(x1) =
1

(dx1 + e)2 .

Parameters a = 11234.45; b = 39.608; c = 0.33387; d = 830; e = 5.66 were found by
fitting the original nonlinear functions from (5) using least squares method. Approxima-
tions f (x1) and fap(x1) are depicted in Figures 2 and 3 respectively.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

x1

0

0.5

1
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2
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3
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F
e
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1
k
 e

x
p
o
n
e
n
ti
a
l

Approximation of exponential function for dx
2
/dt
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approx. f(x
1
)

Figure 2. Quadratic rational function approximation of exponential term for dx2
dt , comparison with

simpler rational function from [22]—in green.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

x1

0

0.005

0.01

0.015

0.02
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0.03

0.035

f 1
(x

1
)

Approximation of exponential function f
1
(x

1
) for dx

3
/dt

original

approximation f
ap

Figure 3. Quadratic rational function approximation of exponential term for dx3
dt .
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It can be shown that nonlinear system (5) or (23) meets standard assumptions on the
existence and uniqueness of its solution. The feedback linearization is based on appropriate
nonlinear transformation of the system equations so that the linear system is received.
To achieve this end, we consider the state variable transformation

z1 = x1 − w

z2 = x2

z3 = − 1
2m

x2
3 f (x1) + g

z4 = x4 +
K1

K4
w

(24)

and target linear system

dz1

dt
= z2

dz2

dt
= z3

dz3

dt
= −(K1z1 + K2z2 + K3z3 + K4z4)

dz4

dt
= z1

(25)

as in [22]. The aim is to find the corresponding control law u such that the linear system (25)
is for state variables (24) equivalent to nonlinear system (23) with the appropriately deter-
mined control u. Note that z3 in (24) corresponds to the right hand side of dx2

dt in (23). Thus,
u conforming to the dx3

dt in (23) should be determined so that dz3
dt in (25) is fulfilled. To meet

this end, firstly (23) is used to receive

u =
1
k1

(
dx3

dt
fap(x1)− c1 + x3

)
=

fap(x1)

k1

dx3

dt
+

x3 − c1

k1
. (26)

From (24), the derivative of z3 is

dz3

dt
= − 1

m
x3

dx3

dt
f (x1)−

1
2m

x2
3

d f (x1)

dt
x2. (27)

The control law (26) should make the right hand side of (27) equal to linear term
−(K1z1 + K2z2 + K3z3 + K4z4) from (25). From the latter we obtain

dx3

dt
=

m
x3 f (x1)

(
K1z1 + K2z2 + K3z3 + K4z4 −

1
2m

x2
3

d f (x1)

dt
x2

)
. (28)

Substituting the right hand side of (28) for dx3/dt into (26) and making use of (24) we
finally receive the nonlinear control law

u =
m fap(x1)

k1x3 f (x1)

(
K1x1 + K2x2 + K3(−

1
2m

x2
3 f (x1) + g) + K4x4 −

1
2m

x2
3

d f (x1)

dt
x2

)
+

x3 − c1
k1

. (29)

The derived nonlinear control law (29) will be applied to magnetic levitation system
and compared with robust pole-placement controller.

4. State Feedback Controller for Nonlinear Magnetic Levitation System

This section presents main results—controllers designed for Magnetic levitation using
methods described in Section 3, and corresponding nonlinear ML responses. Several
different discrete-time robust pole-placement controllers are designed in Section 4.1. In
Section 4.2, nonlinear continuous time controllers are designed for different choice of
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closed-loop poles. Finally, the comparison of best controllers from both approaches is
presented in Section 4.3 together with simulation experiments to show the limits of the
designed controllers.

4.1. Discrete-Time Robust Pole-Placement State Feedback Controller Design Based on LMI
Solution for Magnetic Levitation

In this section we further develop our recent results on discrete-time robust pole-
placement controller design using LMI approach, in this case applied to working points
for different ball mass. We evaluate the design parameters of the proposed approach and
compare the results for several variants of robust controller.

A linearized ML plant model (6) is evaluated in the determined working points—for
different ball masses:

Ac =

 0 1 0
1684.7 0 a2ci

0 0 −0.2888

, Bc =

 0
0

1270.6

. (30)

Element a2ci varies with the mass of the ball. The following 3 working points, denoted
as WP1, WP2, WP3, and parameters of the corresponding continuous-time linearized
models are in the Table 2.

Table 2. Parameters of continuous-time model matrices (30) for 3 working points.

WP m a2ci x10 x20 x30

WP1 0.0160 −25.7 0.010 0 0.7623
WP2 0.0230 −21.5 0.010 0 0.9139
WP3 0.0390 −16.5 0.010 0 1.1901

The continuous linearized model (30) was discretized for all three considered working
points with sampling period Ts = 0.001 s. The resulting discretized polytopic model is
described by (7), where matrices A(ξ), B(ξ) have the following form

A(ξ) =

1.0008 0.001 0
a21di 1.0008 a23di

0 0 0.7492

, B(ξ) =

 0
b2di

1.1036

. (31)

Elements a21di, a23di, b2di vary with the mass of the ball. In the next Subsection,
the discrete-time polytopic model (7), (8) with vertices corresponding to working points
WP1, WP2, WP3 in Table 3, is considered for robust pole-placement controller.

Table 3. Parameters of discrete-time model matrices (31) for 3 working points.

WP m a21di a23di b2di

WP1 0.0160 1.6851 −0.0224 −0.0149
WP2 0.0230 1.6851 −0.0187 −0.0124
WP3 0.0390 1.6852 −0.0143 −0.0095

4.1.1. Stabilizing Controller Design for Magnetic Levitation (Unit Circle)

We designed stabilizing controller via solution of LMI (18) for the augmented discrete-
time system (16), where Ai and Bi are polytope vertices given by (31). This controller
places the poles of the closed-loop system inside the unit circle. The resulting controller
parameters are shown in Table 4.
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Table 4. Parameters of LMI stabilizing controller (Unit Circle).

Kp KI

[125.0566 2.9075 − 0.7067] 0.4094

4.1.2. Robust Pole-Placement Controller Design for Magnetic Levitation Using Ellipse
Approximation (Ellipse)

In this part, we design other robust pole-placement controller by a solution of LMIs (13)
and (14) for the augmented discrete-time system (16), where Ai and Bi are polytope vertices
given by (31). In this case, we used matrices Rii and Rij from (19). The results for different
prescribed damping angle are shown in Table 5.

Table 5. Parameters of LMI pole placement controllers designed for various damping angle
(Elliptic region).

Angle (ϕ) Kp KI

86◦ [1994.1 15.552 − 0.7836] 79.109
87◦ [1086.4 11.093 − 0.7252] 30.729
88◦ [645.4 8.8646 − 0.7411] 11.552

Note, that smaller angle corresponds to higher damping, therefore more strict control
requirement. For ML system, even small angle differences brings significant changes of
control matrices gains.

4.1.3. Robust Pole-Placement Controller Design for Magnetic Levitation Using
Angle-Ellipse Approximation (AE)

Finally, we design robust pole-placement controller for more advanced AE region
by solving LMIs (13) and (14) for the augmented discrete-time system (16), where Ai and
Bi are polytope vertices given by (31), now we use matrices Rii and Rij from (20). The
results for different design parameters xe and r and prescribed damping angle are shown
in Table 6.

Table 6. Parameters of LMI pole placement controllers designed for various damping angle (Angle-
Ellipse region).

Angle (ϕ) xe r Kp KI

70◦ 0.7 0.99 [175.54 3.6675 − 0.7527] 1.0661
70◦ 0.8 0.99 [163.74 3.416 − 0.4926] 1.0013
80◦ 0.9 0.99 [157.76 3.2847 − 0.4672] 0.9927

Note, that controller gains in Table 6 are significantly smaller than the ones in Table 5
though the damping angles are smaller (more strict) in the former case. This illustrates that
AE provides less conservative inner approximation than Ellipse which can be noted also in
simulation responses.

Robust control laws (9) for standard stabilizing controller (Unit Circle), Table 4, robust
pole-placement controllers obtained for Ellipse, Table 5, and Angle-Ellipse, Table 6, regions
have been implemented in the simulation nonlinear model of magnetic levitation. Simula-
tion results for step changes around the required position pos = 0.01 m for small, medium
and big ball cases are shown in Figures 4–9. Ball position is depicted in mm for better read-
ability. Simulation results indicate the superiority of AE controllers over UC and Ellipse
ones, which is especially visible on responses for a big ball, Figures 8 and 9. The closed-loop
pole regions and poles corresponding to the designed controllers are shown in Figure 10.
It should be noted that AE region poles fulfilles the prescribed damping contrary to UC,
while they are less strict than Ellipse ones. The closed-loop pole position influences not
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only the output response but also control variable u. Comparing Ellipse and AE results,
control variable response for AE is significantly less agressive, the Ellipse control action has
big overshoot for step change to lower value. This indicates vast control effort in practice.

Figure 4. Step responses simulated on nonlinear model for the 1st working point (small ball) with
the proposed pole-placement controllers according to legend.

Figure 5. Control variable responses simulated on nonlinear model for the 1st working point (small
ball) with the proposed pole-placement controllers according to legend.
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Figure 6. Step responses simulated on nonlinear model for the 2nd working point (medium ball)
with the proposed pole-placement controllers according to legend.

Figure 7. Control variable responses simulated on nonlinear model for the 2nd working point
(medium ball) with the proposed pole-placement controllers according to legend.

Figure 8. Step responses simulated on nonlinear model for the 3rd working point (big ball) with the
proposed pole-placement controllers according to legend.
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Figure 9. Control variable responses simulated on nonlinear model for the 3rd working point (big
ball) with the proposed pole-placement controllers according to legend.

Figure 10. Prescribed pole regions and corresponding closed loop poles for tested variants: The over-
all regions (left) and the detail on pole location near the right-hand side border of DR regions (right).

4.2. Continuous-Time Nonlinear State Feedback Controller Design for Magnetic Levitation

In this section, we design the parameters of nonlinear control law (29), developed in
Section 3.2, for three variants of closed-loop poles prescribed for a linearized system (25).
It should be noted that in this case, a continuous-time system description and the corre-
sponding closed-loop poles are considered. While in previous section, it was sufficient to
define only a region for closed-loop poles, here the exact pole position is required, which
complicates the design and simulation experiments were used to find the appropriate pole
position to receive good quality control law. Three favourite prescribed closed-loop pole
sets and the corresponding control law parameters are summarized in Table 7.

Table 7. Nonlinear continuous-time controller parameters for the prescribed closed-loop poles
determined for a linearized system (feedback linearization).

Closed-Loop Pole Set P K1 K2 K3 K4

P = [−200,−100,−75,−50] 3.625 × 106 6.125× 104 425 7.5× 107

P = [−500,−100,−50,−15] 3.700× 106 8.975× 104 665 3.75× 107

P = [−500,−100,−50,−8] 3.140× 106 8.520× 104 658 2.0× 107

The resulting nonlinear control law (29) have been implemented in the magnetic
levitation simulation model. Simulation results for step changes around the ball position
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pos = 0.01 m for small and big ball cases are shown in Figures 11–14. It should be noted,
that step responses for ball position are with nonlinear control very similar for all three
balls, therefore the responses for medium ball are omitted. Control variable differs in
amplitude due to different ball masses, the shape of transient responses is again very close
to each other for all three balls.
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Figure 11. Small ball - output position y = x1: Simulation results for nonlinear control law, compari-
son of three variants of control parameters corresponding to the defined closed-loop poles.
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Figure 12. Small ball—control variable u: Simulation results for nonlinear control law, comparison of
three variants of control parameters.
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Figure 13. Big ball—output position y = x1: Simulation results for nonlinear control law, comparison
of three variants of control parameters corresponding to the defined closed-loop poles.
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Figure 14. Big ball—control variable u: Simulation results for nonlinear control law, comparison of
three variants of control parameters.

4.3. Comparison of Robust Pole-Placement and Nonlinear Controller for Magnetic Levitation

This section compares simulation results for robust pole-placement controller and
a nonlinear controller, considering best designs in both cases. To test qualities of the
compared controllers, in simulation experiment the required position is changed between
0.01 and 0.015 m, the latter provides upper limit for ball position feasible in simulation for
all considered controllers. It can be assumed that the real system limit is even lower. The
considered controllers are

- nonlinear controller designed for continuous-time closed-loop poles
P = [−500,−100,−50,−15], providing the best performance from tested nonlinear
ones;

- robust discrete-time pole-placement controller designed for AE region with design
parameters: prescribed damping given by angle 70, xe = 0.7, and stability degree
r = 0.99.

Simulation results for all three balls are shown in Figures 15–20.
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Figure 15. Small ball—output position y = x1: comparison of simulation results for nonlinear and
robust linear pole-placement controllers.
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Figure 16. Small ball—control variable u: comparison of simulation results for nonlinear and robust
linear pole-placement controllers.
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Figure 17. Medium ball—output position y = x1: comparison of simulation results for nonlinear and
robust linear pole-placement controllers.
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Figure 18. Medium ball—control variable u: comparison of simulation results for nonlinear and
robust linear pole-placement controllers.
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Figure 19. Big ball—output position y = x1: comparison of simulation results for nonlinear and
robust linear pole-placement controllers.
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Figure 20. Big ball—control variable u: comparison of simulation results for nonlinear and robust
linear pole-placement controllers.

Presented comparison shows that the discrete-time pole-placement controller designed
for AE region can compete with the continuous-time controller even for relatively big step
change of ball position near the limit of feasible setpoints. In Figure 21 the closed-loop
poles for both robust linear discrete-time and nonlinear continuous-time controllers are
shown. The continuous-time poles are recalculated with sampling period Ts = 0.001 s for all
three designed controllers. Robust discrete-time poles correspond to three WPs, therefore
we can see 3 times more poles than the system dimension. In the discrete-time case, some
of poles are complex conjugated. On the other hand, the dominant poles depicted in
detail are close to each other both for robust linear and nonlinear cases. This also confirms
the competitiveness of the robust discrete-time pole-placement controller designed for
AE region.

Finally, we can summarize the advantages and disadvantages of studied control
approaches for nonlinear ML system.
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Figure 21. Closed loop discrete poles position recalculated with sampling period Ts = 0.001 s for
nonlinear controllers and for the best of robust controllers designed for AE region.

Robust discrete-time pole-placement controller
Advantages:

• pole region instead of exact pole position is prescribed, which can be less demanding
both on determining it and on corresponding control effort;

• control design is realized as off line solution of LMIs which is computationally efficient;
• the resulting control law is simple - implemented as state feedback gains;
• robust pole-placement is flexible and various uncertainties as different ball position

or ball mass can be easily incorporated into the uncertain model and corresponding
controller design.

Disadvantages:

• The main disadvantage of robust pole-placement controller is, that it is designed as a
controller with constant gains for the whole uncertainty domain, which limits its use;
this can be illustrated in responses in Figures 15, 17 and 19, where the response is nearly
the same for nonlinear controller, while for a robust linear one there are significant
differences; for the big ball the robust linear controller provides an oscillating response.

Nonlinear continuous-time controller
Advantages:

• The nonlinear control law follows the changing system parameters, for example, ball
mass appears explicitly in control law (29). Therefore, the responses are very close to
each other for different ball masses. This feature can be advantageous also for other
parameter changes.

Disadvantages:

• in feedback linearization design, the exact closed-loop poles are to be prescribed,
which are not easy to determine appropriately, since the closed-loop system proves as
rather sensitive to pole-position, for example there is a problem when the complex
poles are prescribed;

• control law is rather complicated and its implementation is more demanding, since
several nonlinear feedback dependent formulas must be computed on-line;

• for simplification of the control law, the appropriate approximations of nonlinear
terms should be used which must be found by optimization.

5. Conclusions

The main aim of this paper is in comparison of two principally different approaches
to a nonlinear unstable Magnetic levitation system control. The nonlinear continuous-time
control based on feedback linearization is compared with a robust pole-placement discrete-
time controller for a linearized uncertain polytopic model. The main contribution of the
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paper can be summarized as: simplified development of nonlinear control law with novel
approximation of nonlinear terms; developed robust pole-placement controller for different
levitating balls and mainly a comparison and evaluation of the obtained results for both
cases. The efficiency of the recently developed robust pole-placement linear controller
was shown as well as the advantages and disadvantages of both approaches applied to
Magnetic levitation.
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