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Abstract: In the production process for wooden furniture, the raw material costs account for more
than 50% of furniture costs, and the utilization rate of raw materials depends mainly on the layout
scheme. Therefore, a reasonable layout is an important measure to reduce furniture costs. This
paper investigates the solid wood board cutting stock problem (CSP) and establishes an optimization
model, with the goal of the highest possible utilization rate for original boards. An ant colony-
immune genetic algorithm (AC-IGA) is designed to solve this model. The solutions of the ant colony
algorithm are used as the initial population of the immune genetic algorithm, and the optimal
solution is obtained using the immune genetic algorithm after multiple iterations are transformed
into the accumulation of global pheromones, which improves the search ability and ensures the
solution quality. The layout process of the solid wood board is abstracted into the construction
process of the solution. At the same time, in order to prevent premature convergence, several
improved methods, such as a global pheromone hybrid update and adaptive crossover probability,
are proposed. Comparative experiments are designed to verify the feasibility and effectiveness of the
AC-IGA, and the experimental results show that the AC-IGA has better solution precision and global
search ability compared with the ant colony algorithm (ACA), genetic algorithm (GA), grey wolf
optimizer (GWO), and polar bear optimization (PBO). The utilization rate increased by more than
2.308%, which provides effective theoretical and methodological support for furniture enterprises to
improve economic benefits.

Keywords: solid wood board; one-dimensional cutting stock problem; ACA; GA; immune system

1. Introduction

In recent years, with the rapid development of the social economy, the desire for, and
expectation of, a high quality of life is becoming more common. Solid wood furniture
is increasingly valued and favored by people because of its unique aesthetic feeling and
superior material characteristics; the market demand for solid wood furniture is showing
an upward trend year on year [1–3]. However, some countries have low forestation; in
China, the forest coverage rate is only three-fifths of the world average, and the per capita
forest area is less than one-quarter of the world average [4]. Solid wood board resources
are scarce; this, together with the implementation of a forest cutting quota policy, has led
to the supply of solid wood board in China being highly dependent on imports [5–8]. In
addition, the production technology of most furniture enterprises remains outdated, which
results in solid wood boards being only partially used. This waste results in increased
production costs and the need to manage waste [9]. Therefore, measures must be taken to
alleviate the divergence between supply and demand of solid wood boards by saving raw
materials [10]. In 2020, 322 million pieces of wooden furniture were produced in China,
with the average board consumption per piece of furniture being 0.6 m3. If the existing
board utilization rate is increased by 1%, 193 million m3 boards can be saved; this shows
that a slight increase in the utilization rate of raw materials can cause a significant decrease
in the total consumption of raw materials. As the first step of the furniture manufacturing
process, layout directly determines the utilization rate of raw materials [11–13]. Therefore, a
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reasonable layout is an important measure to reduce material costs and improve economic
benefits and is thus of great significance in promoting the sustainable development of the
furniture manufacturing industry.

As shown in Figure 1, the solid wood board cutting stock problem (CSP) refers
to placing the required standard boards of different lengths on the original boards of
different lengths. Under the condition of meeting the requirements for the demand and
size of standard boards, the used original boards are fully utilized to maximize the board
utilization rate. In this paper, we only consider length, which thus belongs to the one-
dimensional cutting stock problem. The one-dimensional cutting stock problem is a typical
optimization problem. In terms of computational complexity, it is an NP-hard problem
with the highest complexity; the solution time increases exponentially with the problem
scale, and there is no accurate optimal solution in the polynomial time [14–16]. At present,
most studies use heuristic methods to solve optimization problems, such as polar bear
optimization [17–20], grey wolf optimizer [21–23], and genetic algorithm [24–26], which
can find good approximate solutions in a limited time.
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Figure 1. Solid wood board CSP.

The one-dimensional cutting stock problem has been studied by scholars for years.
Common layout methods include column generation, greedy algorithms, and intelligent op-
timization algorithms. Sarper [27] proposed a priority-based goal programming approach
to solve the one-dimensional cutting stock problem with a random demand mix. This
methodology can evaluate the effects of various raw material order levels to account for de-
mand randomness at the time of order. Cui [28] presented an integer programming model
for the 1DCSPUL (one-dimensional cutting stock problem with usable leftovers) with
limited leftover types, and described a heuristic algorithm based on a column-generation
procedure for its solution. Cerqueira [29] proposed a modified greedy heuristic (MGH),
which first orders the pair items, or the odd ones in the case that there are more items in
the problem. The experimental results showed that the MGH is more effective than the
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greedy heuristic. Campello [30] introduced the residual recombination heuristic (RRH)
to solve the one-dimensional cutting stock problem and obtained high-quality solutions
within a reasonable computational time. Ben [31] developed a solution method based on a
particle swarm optimization (PSO) approach that takes into account the characteristics of
the specific problem; this method was efficient for more than 78% of the total of the Ameri-
can Captain benchmark. In consideration of the characteristics of online detection, Lu [32]
proposed a GPU parallel ant colony algorithm to solve the dynamic one-dimensional
cutting stock problem; this algorithm had an obvious time efficiency advantage compared
with the CPU traditional ant colony (CPUTAC) and branch and bound (BB).

Although the above algorithms are effective in helping to solve the one-dimensional
cutting stock problem, it is difficult for a single algorithm to balance global search ability
and local exploitation ability. A more advantageous improvement strategy is to combine
two or more algorithms to make use of the advantages of a hybrid algorithm, making up for
the defects of a single algorithm. Hua [33] proposed a global heuristic two-tier algorithm
to solve the cable optimized cutting problem, which saved more than 3% of cable raw
materials compared with traditional methods. Benjaoran [34] proposed a hybrid algorithm
based on the intensive search algorithm (ISA), genetic algorithm (GA), and the best fit
decreasing (BFD) algorithm. Test results showed that the hybrid-generated solutions were
superior to the solutions received from the BFD algorithm alone. Anselmo [35] proposed
a novel matheuristic algorithm based on a fix-and-optimize strategy hybridized with a
random local search; this performed better than the CPLEX solver in larger instances, with
an average relative percentage deviation (RPD) for objective values as high as 72%.

This paper takes the highest possible board utilization rate as the optimization goal
and proposes an ant colony-immune genetic algorithm (AC-IGA) to solve the solid wood
board cutting stock problem. In order to verify the feasibility and effectiveness of AC-
IGA, it is compared with ant colony algorithm (ACA), genetic algorithm (GA), grey wolf
optimizer (GWO), and polar bear optimization (PBO) through experiments.

2. Mathematical Model

In practical production, there are often different types of defects on the surface of solid
wood boards; these have an impact on the structural strength and aesthetic degree. After
obtaining the characteristic information of surface defects using machine vision technology,
the defects are removed by the cutting saw, and multiple boards with different lengths are
obtained [36–38]. These boards must be segmented according to the standard length for
subsequent processing.

Assume that the total number of original boards after cutting defects is n. The length
of the i-th original board is Li (i = 1, 2 · · · , n). m types of standard boards need to be placed
on these original boards without overlapping. The length and demand of the j-th type of
standard board are lj and bj, respectively (j = 1, 2 · · · , m).

On the premise of meeting the constraints, the optimization goal is to minimize the
total length of the used original boards, namely, to maximize the board utilization rate. The
objective function is expressed as

max U =
m

∑
j=1

ljbj/LC (1)

where LC is the total length of all the original boards selected in a layout scheme, U is the
board utilization rate, and m is the number of types of standard boards.

The solid wood board CSP must meet the following three constraints:
(1) The total quantity of the j-th type of standard board placed on the i-th original

board should be a nonnegative integer:

aij ∈ N (2)
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where aij is the total quantity of the j-th type of standard board placed on the i-th original
board, and N is a nonnegative integer.

(2) The total quantity of the j-th type of standard board placed in a layout scheme is
equal to its demand:

n

∑
i=1

aij = bj (3)

where bj is the demand of the j-th type of standard board, and n is the total number of
original boards.

(3) The total length of all the standard boards placed on the i-th original board cannot
exceed the length of the i-th original board:

m

∑
j=1

aijlj ≤ Li (4)

where lj is the length of the j-th type of standard board, and Li is the length of the i-th
original board.

Figure 2 shows the mathematical model of the solid wood board cutting stock problem.
5, 6, 8, and 11 are the selected original board numbers in a layout scheme.
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3. Algorithm Design

The solid wood board cutting stock problem is an NP-hard combinatorial optimization
problem, and the quantity and length of boards are constrained, making this problem more
complex. In the process of layout, not only should the original boards be selected, but the
standard boards that can be placed on the selected original boards should also be selected.
In addition, the selection quantity and length of the original boards are unknown, so the
feasible solutions cannot be generated randomly.

The ant colony algorithm (ACA) is a typical algorithm for solving the combinatorial
optimization problems. In the ACA, ants construct the feasible initial solutions through
the design of pseudorandom state transition rule and taboo list when searching for paths,
and continuously optimize paths through pheromone feedback mechanism. However, the
ACA needs a long search time and is prone to premature stagnation when solving the
large-scale problems.

The GA is a commonly used method in solving optimization problems, which has the
global, fast search ability, but it does not use the feedback information in the system, which
often leads to redundant iterations and low solving efficiency.

The AC-IGA is proposed to overcome the defects of the ACA and GA. In this paper, in
order to maintain good population diversity and nonredundancy of information, the GA
was improved according to the immune system, and the improved genetic algorithm was
introduced into each iteration of the improved ant colony algorithm, so that the improved
genetic algorithm can iterate in a good solution space and improve the search efficiency.

3.1. Important Concepts of the AC-IGA
3.1.1. Similarity

In this paper, the hamming distance refers to the number of different alleles between
the chromosomes of two individuals and is used to measure similarity. The greater the
number of different alleles, the greater the hamming distance and the smaller the similarity.
Assuming that two individuals are numbered s and v, and each individual has B gene loci,
the similarity between individual s and individual v is defined as follows:

Sv,s =
B−1

∑
k=0

ηk/B (5)

ηk =

{
0 , sk 6= vk
1 , sk = vk

(6)

where sk is the k-th gene of individual s and vk is the k-th gene of individual v.
Figure 3 shows the similarity between individual s and individual v, assuming that

each individual has eight gene loci.
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3.1.2. Concentration

In this paper, concentration refers to the proportion of similar individuals in the
population and represents the quality of population diversity [39]. In order to simplify
the calculation, the definition of concentration based on information entropy is used for
reference. The concentration of individual v is defined as

Cv =
1
N

N

∑
s=1

bv,s (7)

bv,s =

{
1 , Sv,s ≥ Th
0 , Sv,s < Th

(8)

where Th is the similarity threshold, Sv,s is the similarity between individual s and individ-
ual v, N is the population size.

3.1.3. Pseudorandom State Transition Rule

The ant’s selection of paths is mainly determined by pheromone and heuristic func-
tion [40]. In this paper, the probability of ant k transferring from the original board node i
to the standard board node j at time t is calculated according to the pseudorandom state
transition rule (shown in Equations (9) and (10)). When q ≤ q0, the standard board node
is selected according to prior knowledge; otherwise, the standard board node is selected
using the probability formula Pk

ij, as follows:

s =

{
argmax([τij(t)]

α[ηij(t)]
β) q ≤ q0

Pk
ij(t) q > q0

(9)

Pk
ij(t) =


[τij(t)]

α [ηij(t)]
β

∑
r∈allowedk

[τir(t)]
α [ηir(t)]

β j ∈ allowedk

0 otherwise
(10)

where q is a random number uniformly distributed between [0, 1], q0 is the selection
randomness parameter, α is the pheromone importance factor, β is the heuristic function
factor, allowedk is the set of optional standard board nodes, ηij is the heuristic function,
and τij is the pheromone transferred from the original board node i to the standard board
node j.

3.2. Algorithm Procedure

Figure 4 shows the flow chart of the AC-IGA. The IACA is framed by the red dash-dot
line, IGA is framed by the blue dash-dot line, ANT_ITER is the maximum number of
iterations of IACA, and IGA_ITER is the maximum number of iterations of IGA.
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3.3. Improved Ant Colony Algorithm (IACA)
3.3.1. Solution Construction

It is assumed that the total quantity of original boards is A, and the total quantity of
standard boards is B. The original boards and standard boards are numbered sequentially
from 0 to A−1 and B−1, respectively, and these numbers are used as nodes of the IACA.
These nodes can be divided into original board nodes and standard board nodes; the
original board node i represents the original board numbered i (i ∈ [0, A− 1]) and the
standard board node j represents the standard board numbered j (j ∈ [0, B− 1]).

The layout process of solid wood boards can be described as follows. First, select an
original board, and then select several standard boards for the layout to make the residual
length of the selected original board as close to zero as possible. Then, replace the original
board and repeat the above process until each standard board has been placed once. The
concrete steps for ants to construct feasible solutions are as follows:
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(1) wcode is the set of optional original board nodes (the difference set between all
original board nodes and Tabu (x)) and scode is the set of optional standard board nodes
(the difference set between all standard board nodes and Tabu (y)).

(2) Taking the length of the original board corresponding to the original board node
i as Li (i ∈ wcode ) and the length of the standard board corresponding to the standard
board node j as lj (j ∈ scode ), record the maximum lengths as Lmax and lmax, respectively.

(3) Assuming that the original board node c is selected, the method of selecting the
original board node is as follows:

c = argmin
i∈wcode

[Li ≥ ( lmax + r)] (11)

where r is a random number uniformly distributed between [0, Lmax − lmax].
(4) Select the standard board corresponding to the standard board node in scode, one

by one, to establish a tentative layout, and take the residual length of the selected original
board after the tentative layout as a parameter of the heuristic function ηcd:

ηcd =

{
1/ (Rc − ld + 1) Rc ≥ ld

0 Rc < ld
(12)

where Rc is the residual length of the original board corresponding to the selected original
board node c, and ld is the length of the standard board corresponding to the standard
board node d in the tentative layout (d ∈ scode ).

In combination with the corresponding pheromone (the pheromone matrix is a two-
dimensional array: the first dimension is the original board number, and the second
dimension is the standard board number), select the standard board node according to the
pseudorandom state transition rule.

(5) Record the selected original board node and the selected standard board node in
the taboo list Tabu (x) and Tabu(y), respectively.

(6) Update wcode and scode.
(7) If there exists at least one unselected standard board whose length does not exceed

the residual length of the selected original board, return to step (4); otherwise, return to
step (2) until each standard board node has been selected once.

Figure 5 shows the model of the solution constructed according to the above steps,
and Figure 6 shows the corresponding layout scheme, assuming that there are twenty
original boards and eight standard boards.
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Figure 7 shows the encoding method; (4,0,4,4,16,4,16,0) is a encoded chromosome,
with each individual in the population having only one chromosome. The length of
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the chromosome is the same as the total quantity of standard boards; a chromosome
corresponds to a layout scheme, with each gene of the chromosome representing an
original board number.
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3.3.2. Pheromone Update

In the process of constructing the solution, after the ant transfers from the original
board node i to the standard board node j, the corresponding pheromone τij should
volatilize in a certain proportion, so as to reduce the selection probability of the nodes that
have been selected before and enhance the ability to explore new layout schemes. The local
pheromone is updated as follows:

τij(t + 1) = (1− χ)τij(t) (13)

where χ is the local pheromone volatilization coefficient.
In order to better maintain the dynamic balance between exploration and orientation,

a hybrid strategy is adopted to update the global pheromone; that is, the global optimal
solution is used once every r iterations, and the iterative optimal solution is used in other
iterations. The global pheromone is updated as follows:

τij(t + 1) = (1− ρ) τij(t) + ρ ∆τij(t) (14)

∆τij(t) =


Q/ (1− fgbest) condition 1
Q/ (1− fdbest) condition 2

0 otherwise
condition 1 : t is an integral multiple o f r and (i, j) ∈ the global optimal solution

condition 2 : t is not an integral multiple o f r and (i, j) ∈ the iterative optimal solution

(15)

where ρ is the global pheromone volatilization coefficient, ∆τij(t) is the pheromone incre-
ment for the t-th iteration, Q is the pheromone enhancement factor, fgbest is the fitness of
the global optimal solution, and fdbest is the fitness of the iterative optimal solution.

In order to avoid stagnation, the pheromone is limited between [τmin, τmax], and the
upper and lower bounds of the pheromone are determined by the calculation method in
the literature [41]. In addition, the initial pheromone is set at τmax(0) to improve the global
search ability of ants in the initial period.

3.3.3. Adaptive Strategy

When the global optimal solutions of ns consecutive generations are the same, the
algorithm is considered to fall into local convergence, and the following adaptive strategies
need to be adopted:

(1) Referring to the pheromone smoothing mechanism [42], establish the weighted av-
erage between each node’s pheromone and the upper bound of the pheromone to
prevent premature convergence.
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(2) In order to expand the exploration range of ants, adjust the global pheromone
volatilization coefficient by ρ(t + 1) = max (0.95ρ(t) , ρmin).

(3) The value of q0 determines the relative importance between using prior knowledge
and exploring new solutions; in order to increase the probability that ants accept
random solutions, adjust q0 by q0 = q0 · exp(ω(ns/ANT_ITER)), where ρmin is
the lower bound of the global pheromone volatilization coefficient, ω is a negative
number, ns is the number of stagnations, and ANT_ITER is the maximum number of
iterations of the IACA.

3.4. Immune Genetic Algorithm (IGA)
3.4.1. Fitness Function

Fitness function is a performance index to evaluate the individual quality, and the
individual performance increases with fitness. Since the optimization goal of the solid
wood board CSP is to maximize the board utilization rate, the objective function is taken as
the fitness function:

f = l/Lc (16)

where l is the total length of all standard boards, Lc is the total length of all the original
boards selected in a layout scheme, and f is the fitness, namely the board utilization rate.

3.4.2. Genetic Operations

(1) Selection Operation
Roulette wheel selection is a frequently used method in GAs [43]. The selection

probability of the individual is directly proportional to its fitness; this may lead to excessive
concentration of similar individuals with high fitness in the population after the selection
operation, to reduce the search space and increase the probability of falling into the local
optimum. In order to maintain population diversity and preserve excellent individuals, the
concentration regulation mechanism of the immune system is introduced. The individual
selection probability is jointly determined by fitness and concentration, which can promote
individuals with high fitness and inhibit individuals with high concentration. The selection
probability of individual i is calculated as follows:

Pi =
fi exp (θ Ci)

N
∑

i=1
( fi exp (θ Ci))

(17)

where fi is the fitness of individual i, Ci is the concentration of individual i, N is the
population size, and θ is a negative number.

Some individuals with high fitness may be inhibited because of their high concentra-
tion, resulting in the loss of these individuals. Therefore, the elite preservation strategy
is adopted: ensure the individual with the highest fitness in the current population is
preserved in the next generation population, and delete the individual with the lowest
fitness in the next generation population.

(2) Crossover Operation
As the core operation of the GA, crossover determines the global search ability of the

algorithm. In this paper, two-point crossover operation is adopted, as shown in Figure 8,
and its design includes two main aspects: the crossover probability and the position of the
crossover point.
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The crossover probability directly affects the convergence of the algorithm. In this
paper, adaptive crossover probability is proposed: in order to preserve excellent genes,
the crossover probability decreases gradually with an increase in fitness for the individual
whose fitness is higher than the average fitness of the population, and the maximum
crossover probability is adopted for the individual whose fitness is lower than the aver-
age fitness of the population to generate new individuals. The crossover probability is
calculated as follows:

Pc =

 Pcmin +
Pcmax−Pcmin

1+exp
(

ϕ

(
2( f ′− favg)
fmax− favg

−1
)) f ′ ≥ favg

Pcmax f ′ < favg

(18)

where Pcmax is the upper bound of the crossover probability, Pcmin is the lower bound of
the crossover probability, f ′ is the larger fitness of the two individuals performing the
crossover operation, favg is the average fitness of the population, fmax is the maximum
fitness of the population, and ϕ is a constant.

The position of the crossover point determines the effectiveness of the crossover
operation. If the position of the crossover point is not selected properly, the offspring
after the crossover operation may be the same as the parent, which means the crossover
operation is invalid. To avoid ineffective crossover, it is necessary to ensure that at least
one of the two different crossover points selected randomly exists in the effective region.

Assuming that two individuals performing the crossover operation are v and s,

v = [v0 , v1 , · · · , vB−1] , s = [s0 , s1 , · · · , sB−1]

V = { i|si 6= vi , i = 0 , 1 , · · · , B− 1}

the effective region is [min(V), max(V)].
(3) Mutation Operation
Mutation operation can provide new genes for individual evolution and is an impor-

tant means to maintain population diversity. In this paper, single-point mutation operation
is adopted; it is necessary to ensure that the replaced original board number is different
from the former one.

After genetic operations, all individuals in the population are checked, and the indi-
viduals that do not meet the constraints are deleted.

3.4.3. Filter Similar Individuals

When the algorithm finds a region with an extreme value, individuals are constantly
concentrated in this region, which will lead to the emergence of many new similar individ-
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uals. Thus, the population diversity decreases rapidly, compromising the ability to explore
other new regions with extreme values and worsening the convergence efficiency. To avoid
this, similar individuals need to be filtered. By referring to the self-generated diversity and
maintenance mechanism of the immune system [44,45], the filter operation is performed
according to the similarity threshold Th, which is beneficial to expand each individual’s
independent search space and reduce the singleness of population genes. The specific steps
of filtering similar individuals are as follows:

(1) For any two identical individuals in the population, delete one randomly.
(2) Select two individuals in the population and calculate their similarity. If the

similarity is not less than the similarity threshold Th, add these two individuals into region
D until any two individuals in the population have been selected.

(3) Select two individuals in region D and compare their respective concentrations. If
the concentrations of these two individuals are not equal, delete the individual with higher
concentration; otherwise, move to step (4).

(4) Compare the respective fitness of the individuals mentioned in step (3). If the
fitness of these two individuals is not equal, delete the individual with lower fitness;
otherwise, delete one randomly.

(5) Repeat step (3) and step (4) until any two individuals in region D have been compared.

3.4.4. Dynamic Supplementation of New Individuals

After deleting the individuals that do not meet the constraints and filtering similar
individuals, in order to achieve the preset population size N, it is necessary to supplement
new individuals. The method specified in Section 3.3.1 is used to generate new individuals.
At the same time, if the similarity between the newly generated individual and any one
individual in the population is less than the similarity threshold Th, the newly generated
individual is added into the population; otherwise, it will not be preserved, which can better
suppress the repetition in the search process and strengthen the global optimization ability.

4. Experiments and Discussion

In order to verify the effectiveness and superiority of the AC-IGA, experiments on the
ACA [46], GA [47], GWO [48], PBO [49] and AC-IGA were carried out by PyCharm, and
their experimental results are compared. The computer operating system is Windows10,
the processor is Inter (R) Xeon (R) W-2155 CPU@3.30 GHz, and the RAM is 64 GB. Table 1
shows the parameter values of the AC-IGA. To ensure the effectiveness of the comparison,
the values of the same parameters in the five algorithms are the same.

Table 1. Parameter values.

Parameter ω ANT_ITER ρmin Th q0 r Q ns α β

Value −0.5 50 0.1 0.8 0.6 5 1 5 2 4.5

Parameter θ IGA_ITER Pcmin Pcmax φ Pm N χ ρ

Value −0.8 50 0.6 0.9 9.903438 0.1 60 0.1 0.5

At present, there are no standard instances to test the one-dimensional cutting stock
problem. Therefore, according to the real data provided by a furniture enterprise, we
generated 12 instances for each of the nine classes with the random number generator [50],
resulting in a total of 108 instances. The length range of original boards is [3000, 12000],
and the length range of standard boards is [300, 4500]. Each generated instance is solved by
ACA, GA, GWO, PBO and AC-IGA five consecutive times. The parameters for generating
instances and the experimental results are presented in Table 2, where n is the number
of types of original boards, m is the number of types of standard boards, d is the total
number of standard boards (its value represents the range of the data generated randomly
12 times), u is the average of the experimental results under the corresponding class
(average utilization rate), and Arg is the cumulative average of each column of data (the
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average of the experimental results of 108 instances). Figure 9 shows the comparison
diagram of the statistical experimental results.

Table 2. Parameters and experimental results.

Class n m d
AC-IGA ACA GA GWO PBO

u (%) u (%) u (%) u (%) u (%)

1 1 4 [20, 50) 83.230 82.335 81.818 82.618 81.276
2 2 5 [50, 100) 95.984 90.647 90.468 90.449 87.853
3 3 5 [100, 150) 98.574 96.316 96.003 96.199 94.360
4 3 6 [150, 200) 98.566 95.713 95.454 95.456 93.729
5 4 7 [200, 250) 98.932 95.909 95.860 95.851 94.727
6 5 8 [250, 300) 99.212 96.695 96.631 96.727 95.695
7 6 9 [300, 350) 98.895 97.799 97.719 97.774 96.967
8 8 10 [350, 400) 98.994 97.769 97.757 97.797 97.096
9 10 15 [400, 450) 99.060 97.501 97.409 97.458 96.727

Arg (%) 96.828 94.520 94.346 94.481 93.159
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As can be seen from Table 2 and Figure 9, the average utilization rate of each class
obtained by the AC-IGA is better than the other four algorithms. In addition, the cumulative
average utilization rate of 108 instances obtained by the AC-IGA is 2.308% higher than
that of the ACA, 2.482% higher than that of the GA, 2.347% higher than that of the GWO,
and 3.669% higher than that of the PBO. It can be seen that when the solutions of the four
comparison algorithms have high precision, the average utilization rate obtained by the
AC-IGA still shows further improvement, which verifies the effectiveness of the AC-IGA in
improving the solution quality and its superiority in solving the one-dimensional cutting
stock problem.

In order to further verify the application value of the AC-IGA in solving the solid
wood board cutting stock problem, a production instance of a furniture enterprise was
selected for layout calculation. The production instance was solved by the ACA, GA, GWO,
PBO and AC-IGA ten consecutive times, and each algorithm obtained ten results. Table 3
shows the data for the production instance.
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Table 3. Data for the production instance.

Original
board

Length/mm 9400 8200 7550 5500

Supply 22 26 28 38

Standard
board

Length/mm 1390 980 830 785 660 580 450

Demand 40 35 35 35 35 35 35

Table 4 shows the analysis of the experimental results, where Min, Max, and Mean
are the minimum, maximum, and average of the experimental results obtained by the
corresponding algorithm, and SD is the standard deviation. Compared with the ACA, GA,
GWO, and PBO, the Min obtained by the AC-IGA increased by 3.157%, 3.290%, 3.090%,
and 4.801%, respectively, the Max obtained by the AC-IGA increased by 2.974%, 2.771%,
2.839%, and 3.846%, respectively, the Mean obtained by the AC-IGA increased by 2.974%,
3.034%, 2.949%, and 4.063%, respectively, and the SD of the AC-IGA is the smallest, which
indicates that the AC-IGA has better optimization ability and robustness.

Table 4. Analysis of the experimental results.

Algorithm
Utilization Rate of Board (%)

Min Max Mean SD

AC-IGA 98.929 99.240 99.051 0.097
ACA 95.772 96.266 96.077 0.149
GA 95.639 96.469 96.017 0.244

GWO 95.839 96.401 96.102 0.154
PBO 94.128 95.394 94.988 0.379

Figure 10 shows the relationship between the highest board utilization rate searched
by the five algorithms and the number of iterations; the red solid line is AC-IGA, the blue
dashed line is ACA, the green dash–dot line is GA, the yellow solid line is GWO, and the
purple dotted line is PBO.
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The board utilization rate of the AC-IGA converges to 99.240% after twenty-seven
iterations and the board utilization rate of the GA converges to 96.469% after thirty-two
iterations, which shows that the AC-IGA can find the optimal solution faster, and the
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solution quality is better, than the GA. This is mainly because the performance of the
GA is excessively dependent on the initial population’s quality; the quality of the initial
solutions generated randomly is low, which results in low solving efficiency. In this paper,
the solutions generated by each generation of IACA are used as the initial population of
AC-IGA, which can improve the solution quality and increase the convergence speed.

The board utilization rate of the ACA converges to 96.266% after nine iterations, which
shows that although the AC-IGA is slower than the ACA in finding the optimal solution,
the solution quality of the AC-IGA is better. This is mainly because ants are concentrated
on some local solutions earlier under the action of the positive feedback mechanism of
the ACA, which reduces the population diversity and makes it difficult for ants to further
explore new solutions. In this paper, the IGA is introduced into each iteration of the IACA,
and the solutions with higher board utilization rate can be obtained through multiple
iterations of the IGA. Improved methods (including pheromone update, adaptive strategy,
and filter similar individuals) are adopted, which can effectively maintain the population
diversity in the evolutionary process, allows for the constant exploration of new layout
schemes with higher board utilization rates, and improves the ability to jump out of the
local optimum.

In addition, the board utilization rate of the GWO converges to 96.401% after thirty-
eight iterations and the board utilization rate of the PBO converges to 95.394% after twenty-
seven iterations, which shows that the quality of the solutions found by the AC-IGA is
better than that found by the GWO and PBO. This is mainly because the GWO and PBO
generated initial populations by random method, which cannot ensure good population
diversity. In the GWO, individuals update their location information only based on three
optimal individuals (α, β, and δ). Individuals are independent of each other and lack
of effective information exchange, resulting in slow convergence speed. If α is the local
optimal solution, the GWO will converge prematurely. Besides, the convergence factor
used in the GWO decreases linearly with the number of iterations, which does not conform
to the actual search process of the GWO and cannot balance the global exploration ability
and local development ability.

In summary, the AC-IGA achieved great improvement in solution precision and
convergence, and thus is an effective method to solve the solid wood board CSP.

Table 5 shows the optimal layout scheme obtained by the AC-IGA, where I is the
layout mode number, II is the length of the original board, III is the length (quantity) of
standard boards, IV is the residual length of the original board, and V is the quantity of the
layout mode. A total of thirty-one original boards are selected in this layout scheme, and
the board utilization rate is 99.240%.

Table 5. The optimal layout scheme.

I II III IV V I II III IV V

1 5500 1390 (3); 830; 450 50 4 15 7550 1390 (4); 980; 830 180 1

2 5500 1390 (3); 660; 580 90 1 16 7550 1390 (2); 980; 830;
785 (3); 580 25 1

3 5500 1390 (2); 980;
830 (2) 80 1 17 7550 980 (6); 830 (2) 10 1

4 5500 1390; 980; 830 (2);
660 (2) 150 1 18 7550 660 (3); 580 (8);

450 (2) 30 1

5 5500 1390 (3); 660 (2) 10 1 19 7550 660 (6); 580 (3);
450 (4) 50 1

6 5500 980 (5); 580 20 1
20 8200

1390 (2); 980 (2);
830; 785 (2);

580; 450
30 1

7 5500 980 (4); 785 (2) 10 1
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Table 5. Cont.

I II III IV V I II III IV V

8 5500 980 (2); 830 (3);
580; 450 20 1 21 8200 1390 (2); 980 (4);

830; 660 10 1

9 5500 830 (5); 660 (2) 30 1 22 8200 830 (6); 785 (2);
580 (2); 450 40 1

10 5500 830 (4); 785;
660 (2) 75 1 23 8200 785 (8); 660 (2);

580 20 1

11 5500 785 (4); 660 (2);
580; 450 10 2 24 9400 1390 (4); 980; 830;

785 (2); 450 10 1

12 5500 785 (5); 580;
450 (2) 95 1 25 9400 1390 (5); 980 (2);

450 40 1

13 5500 660 (5); 580(2);
450 (2) 140 1 26 9400 980 (5); 830 (2);

785 (2); 580 (2) 110 1

14 5500 660 (4); 580;
450 (5) 30 1 27 9400 660; 580 (8);

450 (9) 50 1

5. Conclusions

This paper investigated the solid wood board cutting stock problem and established a
mathematical model, with the optimization goal of the highest possible board utilization
rate. An ant colony-immune genetic algorithm (AC-IGA) was proposed to solve this model.
The advantages of the AC-IGA are as follows:

(1) To avoid the problem of premature convergence in the ant colony algorithm, we
improved the pheromone update method. The adaptive strategy was adopted to jump out
of the local optimum when the AC-IGA stagnates for an extended time. In addition, the
concentration mechanism and genetic mechanism of individual diversity of the immune
system was introduced into the GA, which effectively maintained the population diversity
and enhanced the global search ability.

(2) By introducing the IGA into each iteration of the IACA, the global search ability
and local exploitation ability could achieve better balance, and the solution quality and
search efficiency was greatly improved.

Compared with the ACA, GA, GWO, and PBO, the experimental results showed
that the AC-IGA can obtain a higher board utilization rate on the premise of ensuring
robustness. This proves that the AC-IGA is a good approach to solve the solid wood
board cutting stock problem and is more conducive to maximizing profits for furniture
enterprises.
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