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Abstract: It is usually difficult to design a controller for a nonlinear multiple-input and multiple-
output (MIMO) system. The methodological approach taken in this study is a mixed methodology
based on a PID-type internal model control (IMC) method and neural network (NN) optimization
algorithm. The NN controller is designed for adjusting the sole parameter in IMCPID and compen-
sating the characteristic changes and non-linearity in stepless flow control. In this study, a simulation
of a nonlinear MIMO system with strong coupling is carried out. The simulation results indicate
that the proposed control method has a better performance in settle time, overshoot, robustness and
set-point tracking accuracy compared with other considered methods.

Keywords: stepless flow control; decoupling; neural network; nonlinear system

1. Introduction

Reciprocating compressors are widely used in some industrial fields such as petroleum,
chemical, natural gas transportation and so on. It is the main power-consuming equipment
in industrial factories and it is usually run at factory setting. However, in some conditions,
the outlet flow of compressors needs to be regulated with the real-time demand of the
downstream production process. Therefore, it is necessary and meaningful to control
the outlet flow of compressors. Many approaches have been proposed, and the by-pass
regulation is the simplest and most reliable method [1]. However, this method will cause
a huge waste of electricity because the reflux gas will be sent back to the inlet of the
compressor to be compressed again. In comparison with the by-pass regulation, the
stepless flow control method has a better energy-saving performance because excess gas
will be expelled from the compression cylinder prior to the compression process. Thus, this
part of the gas will not be compressed, and some power consumption can be reduced. After
equipping with the stepless flow control system, the effective power of the compressor will
be greatly improved, and a lot of electricity will be saved. The stepless flow control system
for the reciprocating compressor should meet the following requirements [2,3]:

• The control system should be capable of continuous stepless flow regulation within
0~100% working load.

• The control system should require low investment and low energy consumption.
• The control system should be reliable, safe and convenient to operate.
• The control system should have a wide range of applications.

From the point of view of control science, the stepless flow control system has multiple
controlled variables and multiple manipulated variables [4]. The inlet flow of each stage
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is the manipulated variable, and the outlet gas pressure of each stage is the controlled
variable. Thus, this is a multiple-input and multiple-output (MIMO) system. The primary
feature of MIMO system is the strong coupling, where each manipulated variable can affect
the other controlled variables. It is harder to design the controller than the single-input and
single-output (SISO) system due to the interaction process between controlled variables
and manipulated variables. Thus, one of the main control objectives for a MIMO system
is reducing the coupling. Many approaches have been proposed to solve this control
problem in state space and transfer function matrix representations. Some frequency-based
frameworks have been researched in this study including the relative gain array (RGA)
measure, feed-forward decoupling method, IMCPID and neural network [5].

The Proportional Integral Derivative (PID) control has been widely used in the in-
dustrial fields due to its simple structure and stable characteristics. However, for some
dynamic processes such as time-delay, nonlinearity and coupling, the PID controller does
not always represent high efficiency. In the past decades, the question of how to find
simpler PID tuning methods has caught a mass of interest [6]. In both academic research
and engineering applications, many PID-type controller designs have been developed,
such as the famous Ziegler-Nichols (ZN) tuning rules [7], the well-know H2/H∞ robust
optimal design method [8], the internal model control principle [9] and neural network
PID [10]. In the above methods, IMC is considered as the simplest tuning rule of PID
controller. This because all the three controller parameters of PID can be obtained from the
only user-defined tuning parameter of IMC called λ (λ > 0). It is easy to control the linear
or nonlinear, time-delay and coupling systems for the IMC scheme due to its simple and
robust performance characteristics [11].

Many studies have been conducted to obtain PID tuning methods using IMC schemes
which are achieved by complex mathematical manipulations or require a filter algorithm.
For the stable linear and separable nonlinear system, an IMC-based PID (IMCPID) tuning
scheme employing first-order in place of second or higher-order filter is presented [12].
Some heuristic methods have also been developed to get PID parameters [13–15]. A
IMCPID controller has been slightly modified in [16] to demonstrate the importance of
mid-frequency and high-frequency robustness for tuning parameters. As some processes
having model uncertainty, [17] proposed an IMC tuning method based on gain margin and
maximum peak criterion.

In order to eliminate the effects of uncertainty of system parameters, some adaptive
control methods have been used in industrial processes [18,19]. The model-reference
adaptive control and self-tuning regulator control can effectively solve the disturbance
problem in linear system [20]. The method in [21] combines IMC and adaptive PSD control.
The result of applying it to the main steam temperature system shows that the method is
effective. However, the parametric uncertainties and external disturbances of nonlinear
systems are more sophisticated than those of linear systems. To solve this problem, some
intelligent techniques [11] have been applied to adaptive controller, including neural
network and fuzzy logic control, etc. Paper [22] presents an IMCPID control method to
modified the weight of the set-point online with fuzzy logic, which can improve the set-
point tracking performance and robustness of the system. In paper [23], the technique of the
self-tuning neural network PID control for the stabilizer fin to reduce ship rolling motion
is successfully developed. Because the neural network can approximate any continuous
function, the adaptive controller based on neural networks has excellent online estimation
characteristics [22].

In this paper, a neural network based on IMCPID control strategy is proposed to
improve the performance of the stepless flow controller. A feedforward decoupling method
is designed which can eliminate the coupling and transform the multiloop system into
several independent single-input and single-output loops [24]. In the feedback loop, an
adaptive IMCPID control method is proposed which uses the system error as the input
signal of the neural network and regulates the IMCPID parameter λ by its self-learning in
real time [23]. The main purpose of this paper is to solve the problem of PID parameter
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setting in the actual industrial field operation process, which is usually a complex job.
Therefore, we proposed a more concise neural network combined with an IMCPID control
method, which reduces the number of system parameters and the difficulty of parameter
setting. Some researchers found out that after applying neural networks to these nonlinear
systems, not only will the parameter tuning process become simpler, but also the control
performance will present more excellently [25]. PID neural network will automatically
adjust the control parameters due to its self-organizing, self-learning and self-adaptation
characteristics [26]. The simulation experiments show that the IMCPID controller based
on neural network for a stepless flow control system has better performances in set-point
tracking, stability and robustness than those of the other considered controllers.

The rest of this paper is organized as follows. Section 2 gives the mathematical model
for a stepless flow control system of a reciprocating compressor. In Section 3, The IMCPID-
based neural network (IMCPIDNN) control scheme is presented. The simulation results of
a multivariable nonlinear control system are compared and discussed in Section 4. Finally,
the conclusion and some open problems are given in Section 5.

2. Problem Formulation

The stepless flow control system for a two-cylinder type reciprocating compressor [27]
is shown in Figure 1, where r denotes the gas to be compressed and y denotes the compressed
gas. In standard operating conditions, the gas satisfies the following ideal gas assumptions:

P =
ρRT
M

, (1)

.
m =

d
dt
(ρV), (2)

.
min −

.
mout = ρ

.
V +

.
ρV, (3)

where P is gas pressure, ρ is gas density, R is gas constant, T is gas temperature, M is gas
molar mass, m is derivative of gas mass, V is gas volume,

.
min is derivative of the gas mass

flowing into the cylinder,
.

mout is derivative of the gas mass flowing out of the cylinder and
.

V and
.
ρ are derivatives of the gas volume and gas density, respectively. Usually, the gas

volume is invariable in the buffer tank, so V = 0.

Figure 1. The stepless flow control system for a two-stage compressor.

Combining Equations (1)–(3), the dynamic pressure change of the cylinder can be
described as:

.
P =

RT
V

(φin
.

min − φout
.

mout), (4)

where φin and φout are process coefficients of the inlet gas or outlet gas, which are ranging
from 0 to 1 depending on the gas process characteristic.

According to the mathematical model for reciprocating compressors introduced in
paper [28], the gas mass flowing into the first stage cylinder and the second stage cylinder
during the compressing process can be given as Equations (5) and (6), respectively.

.
min1 =

Ps1

Rm

M
Ts1

1
T

Vh1ωp1wt1wl1[1 + σ1 − σ1(
P1

Ps1
)

1
m1
]θ1, (5)
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.
min2 =

P1

Rm

M
Ts2

1
T

Vh2ωp2wt2wl2[1 + σ2 − σ2(
P2

P1
)

1
m2
]θ2, (6)

where Ps is pressure of inlet gas, Rm is gas constant, Ts is temperature of inlet gas, T
is temperature of buffer tank, Vh is volume of cylinder stroke volume, ωp is pressure
coefficient,ωt is temperature coefficient,ωl is leakage coefficient, σ is volume coefficient, P
is pressure of buffer tank, m is gas mass and θ is working load. The subscript i (i = 1, 2)
indicates the cylinder number of the compressor.

The gas compressed by the first stage cylinder will be sent into the second stage
cylinder. Then, we can obtain the relationship between the outlet mass of the first-stage
cylinder and the inlet mass of the second-stage cylinder.

.
mout1 =

.
min2. (7)

Considering the dynamic principle of the exhaust valve, the equation of the outlet
mass of the second-stage cylinder can be expressed as

.
mout2 = C f A0C1

P2√
T2

. (8)

Combing Equations (4)–(8), the dynamic change of cylinder pressure can be presented
as:

.
P1 =

RT1

V1

 σin1
Ps1
Rm

M
Ts1

1
T Vh1ωp1wt1wl1[1 + σ1 − σ1(

P1
Ps1

)
1

m1 ]θ1

−σout1
P1
Rm

M
Ts2

1
T Vh2ωp2wt2wl2[1 + σ2 − σ2(

P2
P1
)

1
m2 ]θ2

, (9)

.
P2 =

RT2

V2

 σin2
P1
Rm

M
Ts2

1
T Vh2ωp2wt2wl2[1 + σ2 − σ2(

P2
P1
)

1
m2 ]θ2

−φout2C f A0C1
P2√
T2

. (10)

The operation parameters of a two-cylinder reciprocating compressor with a stepless
flow control system are listed in Table 1.

Table 1. Operation parameters of a two-cylinder reciprocating compressor.

Item Value Unit

Rated speed 300 r/min
Suction pressure 0.1 MPa

Number of suction valves 8
Number of exhaust valves 8

Number of cylinders 2
Buffer tank volume of first cylinder exit 0.3 m3

Buffer tank volume of second cylinder exit 1.5 m3

Quantity of flow 1.2 m3/h
Stroke volume 0.0086 m3

Pressure coefficient 0.95
Temperature coefficient 0.9

Leakage coefficient 0.125
Volume coefficient 1.25
Expansion index 0.25

Cross-sectional area of export valve 0.007885 m3

Intake temperature of first cylinder 313 K
Exhaust temperature of first cylinder 343 K

Exhaust temperature of second cylinder 293 K

Substituting the operation parameter values in Table 1 into Equations (9) and (10),
the relationship between the outlet pressure and working load can be written as Equation
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(11), where y1 and y2 are outlet pressure, u1 and u2 are working load of each cylinder,
respectively, and ξ is the opening of outlet:{

dy1
dt = 29422u1 + 5547.82 + 0.082y1u2 + 0.0142y2

dy2
dt = 0.0106y1 + 0.057y1u2 − 0.00562y2 − 0.072y2

√
323ξ

. (11)

3. Controller Design

In this section, the set-point tracking and decoupling control scheme will be proposed.
The basic structure of the IMCPIDNN control system is shown in Figure 2. The design
process of the IMCPIDNN controller mainly consists of four parts: relative gain array, feed-
forward decoupling, IMC controller based on standard PID and IMCPIDNN controller
design. In the whole control system, r(k) is set-point value, e(k) is error of subtracting the
output value from the set-point value, y(k) is output value, u(k) is control signal, λ(k) is
the only IMCPID controller parameter to be adjusted and d is external disturbance. The
whole control algorithm is established based on the adaptive IMCPID controller and neural
network algorithm, which is presented in Algorithm 1.

Algorithm 1 IMCPIDNN algorithm for MIMO nonlinear system.

Step 1: Initialize the weights of IMCPIDNN.
Step 2: Input the set-point value of controlled system into the controller.
Step 3: Regulate the compressor flow by IMCPIDNN controller.
Step 4: Calculate error and evaluation function.
Step 5: Adjust the weights of IMCPIDNN controller by back propagation algorithm.
Step 6: Repeat steps 3 to 5.
Step 7: Stop the algorithm until the error is small enough. If not, return to Step 3.

Figure 2. The block diagram of the IMCPIDNN control structure.

3.1. Relative Gain Array (RGA)

As we can see in Equation (11), there are two controlled variables and two manipulated
variables in the presented control process. There are two ways to pair control variables
with operation variables and they are u1−y1/u2−y2 and u1−y2/u2−y1, respectively. To
find which configuration has a better performance in terms of resisting the system coupling,
the RGA method is proposed. For the system Gm(s) with n inputs and m outputs, its RGA
can be calculated by:

The RGA method is proposed. For the system Gm(s) with n inputs and m outputs, its
RGA can be calculated by:

β(s) = [βij(s)] = Gm(s) · ∗[Gm(s)
−1]

Ti=1,2,...,m
j=1,2,...,n , (12)

where * is the multiplication of Hadamard.
Considering that the sum of each row and each column is 1, the RGA for a two-input

and two-output system satisfies the following equation:
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β11(s) = β22(s)
β12(s) = β21(s)
β11(s) + β12(s) = 1

, (13)

where β11(s) and β22(s) are the relative gains of main channel and β12(s) and β21(s) are
the relative gains of coupled channel.

Therefore, the whole RGA matrix can be calculated from λ11(s). In the RGA method,
the value of β(s) describes the coupling degree within the system. If is β(s) close to 1,
every loop can be considered to run independently. If it is close to 0, the coupling is serious.
Negative β(s) must be avoided because it results in instability. Therefore, we should choose
the β(s) which is positive and close to 1 to be the best configuration.

3.2. Feed-Forward Decoupling

The undesirable dynamic coupling within the system will affect the stability and
control performance of the stepless control system [29]. This paper introduces a simple and
efficient feed-forward decoupling method to eliminate the coupling, and the block diagram
for a two-input and two-output system is shown in Figure 3 [24].

Figure 3. The block diagram of a feed-forward decoupling structure for a two-input and two-output
system.

Here, ri is the set-point value, yj is the output value, Ci(s) is the proposed controller,
Gij(s) is the process plant and Dij(s) is the decoupler.

Supposing the system is decoupled completely, the transfer function matrix will turn
into a diagonal matrix. D21(s) and D12(s) satisfy the following relationship:{

u1G21(s) + u1D21(s)G22(s) = 0
u2G12(s) + u2D12(s)G11(s) = 0

. (14)

Then, we can obtain D21(s) and D12(s) as: D21(s) = −G21(s)
G22(s)

D12(s) = −G12(s)
G11(s)

. (15)

3.3. IMC Controller Design Based on Standard PID

In this part, an improved IMC control based on standard PID controller and classical
feedback structures is proposed. The Standard IMC structure is presented in Figure 4,
where Gp(s) is the process, Gm(s) is the process model, G f (s) is the filter, Cimc(s) is IMC
controller and C(s) is the IMC controller with feedback structure.

The closed-loop transfer function obtained from Figure 4 is:

y =
Cimc(s)Gp(s)

1 + Cimc(s)[Gp(s)− Gm(s)]
r +

1− Cimc(s)Gm(s)
1 + Cimc(s)[Gp(s)− Gm(s)]

d. (16)

If the process model is completely accurate, it is Gm(s) = Gp(s), and the external
disturbances d = 0. Then, Equation (16) can be written as:

y = Cimc(s)Gp(s)r. (17)



Appl. Sci. 2021, 11, 7785 7 of 17

From Equation (17), we find an interesting property: the closed-loop transfer function
can be considered as an open-loop system only related to Cimc(s). The designing process
of the IMC controller can be regarded as the product of the inverted process and the
closed-loop transfer function.

Figure 4. The block diagram of the IMC structure.

The design process of the IMCPID controller includes three steps which are shown in
Algorithm 2.

Algorithm 2 The design process of the IMCPID controller.

Step 1: Factorize Gm(s)

Gm(s) = G−m (s)G+
m (s), (18)

where G−m(s) contains the minimum phase part of the model and G+
m(s) contains all the right half

plane zeros and the time delays of Gm(s).
∣∣G+

m(0)
∣∣ = 1.

Step 2: Design Cimc(s) and Gf (s)

{
Cimc(s) = 1

G−m (s) G f (s)

G f (s) = 1
(λs+1)n

(19)

where Gf (s) is the filter which provides good performance for set-point tracking and disturbance
suppression, β is the time constant of Gf (s) and the only tuning parameter of the IMC controller
that affects the closed-loop response and stability and n is the filter order decided by G−m(s).
Step 3: Calculate the IMCPID controller C(s) and turn it into the PID-type

C(s) =
Cimc(s)

1− Gm(s)Cimc(s)

=
G f (s)

G−m (s)− G f (s)Gm(s)

= Kp(1 +
1
Ti

s + Td(s))

(20)

where Kp, TI and Td are proportional gain, integral time and derivative time, respectively.

Most industrial processes can be represented by a first-order model plus time-delay
system as shown below:

Gm(s) =
k

ts + 1
e−τs, (21)

where k, t and τ are open-loop gain, time constant and delay time, respectively.
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Considering that the delay time e−τs is difficult to implement physically, we could
replace it with first the order Pade approximation, that is, e−τs = 1− τs. Then, Gm(s) can
be factorized as:

Gm(s) ≈
k

ts + 1
1− τ

2 s
1 + τ

2 s
. (22)

G+
m(s) and G+

m(s) can be obtained as:

G+
m (s) = 1− τ

2
s, (23)

G−m (s) =
k

(ts + 1)(1 + τ
2 s)

. (24)

The filter order n should be consistent with the system order, that is, n = 1. Substitut-
ing Equations (19), (22) and (24) into Equation (20), the PID-type IMCPID controller can be
written as:

C(s) =
2t + τ

k(2λ + τ)
(1 +

2
τ + 2t

1
s
+

tτ
τ + 2t

s). (25)

Then, the PID parameters can be presented by the following equation:
Kp =

2t + τ

k(2λ + τ)

Ki =
2

τ + 2t
Kd =

tτ
τ + 2t

, (26)

where Kp is proportional gain, Ka is integral gain and Kd is differential gain, respectively.

3.4. IMCPIDNN Controller Design

In order to compensate the nonlinearity of the stepless flow control system, the neural
network algorithm based on the IMCPID control scheme is proposed [30]. The block
diagram of a MIMO system with a backpropagation (BP) neural network structure is as
shown in Figure 5.

Figure 5. The block diagram of a MIMO nonlinear system with BP neural networks.
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Here, r and y are set-point value and output value, respectively. Wif is the network
weight between the jth node of the input layer and the ith node of the hidden layer and Wi
is the network weight between the ith node of the hidden layer and the output layer node.

From Equation (26), the discrete PID gains can be written as:
Kp(k) =

2t + τ

k(2λ(k)γ + τ)

Ki(k) =
2

k(2λ(k)γ + τ)

Kd(k) =
tτ

k(2λ(k)γ + τ)

, (27)

where γ is the tuning coefficient to determine the flexibility of the control process.
Then, according to the incremental PID principle [31], the output of IMCPID controller

can be written as:

u(k) = u(k− 1) + [KP(k) + KI(k) + KD(k)]e(k)
−[KP(k) + 2KD(k)]e(k− 1) + KD(k)e(k− 2)

(28)

In this article, a three-layer BP neural network is proposed as show in Figure 5. There
are five input nodes, six hidden nodes and one output node in the neural network structure.

The input of the neural network is defined as:

Ij(k) = [r(k), y(k), e(k− 1), u(k− 1)](j = 1, 2, 3, 4). (29)

The input of the hidden layer is defined as:

neti(k) =
4

∑
j=0

Wij · Ij(k)(i = 1, 2, ..., 6). (30)

The output of the hidden layer is defined as:

Oi(k) = f [neti(k)], (31)

where f (x) is the sigmoid function:

f (x) =
1

1 + e−x . (32)

The input of the output layer is defined as:

net(k) =
6

∑
j=0

Wi ·Oi. (33)

The output of the output layer is defined as:

λ(k) = g[net(k)], (34)

where g(x) is a non-negative sigmoid function to ensure the outputs to be positive as shown
below:

g(x) =
ex

1 + e−x . (35)

The central ideal of the learning algorithm for the IMCPIDNN is to obtain a gradient
vector recursively. In this study, we define energy function as:

J(k) =
1
2
[r(k)− y(k)]2. (36)
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In order to get the minimum J(k), the iterative algorithm of ∆wi(k) can be calculated
as the following equation according to the gradient descent method:

∆wi(k) = wi(k)− wi(k− 1)
= α∆wi(k− 1) + η

∂J(k)
∂wi(k)

(37)

where η is the learning rate, and η > 0; α is the inertial coefficient, and ∂J(k)
∂Wi(k)

can be
written as:

∂J(k)
∂wi(k)

=
∂J(k)
∂y(k)

∂y(k)
∂u(k)

∂u(k)
∂λ(k)

∂λ(k)
∂net(k)

∂net(k)
∂wi(k)

. (38)

From Equation (37), we can obtain:

∂J(k)
∂y(k)

= −e(k). (39)

Considering that ∂y(k)
∂u(k) cannot be written [32], we use the sign function to approximate

it.
Combining Equations (27) and (28), we can obtain ∂u(k)

∂λ(k) as below:

∂u(k)
∂λ(k) = −[KP(k) + K I(k) + KD(k)]e(k)

+[KP(k) + 2KD(k)]e(k− 1)− KD(k)e(k− 2)
(40)

where KP(k), K I(k) and KD(k) are the discrete style of KP(k), KI(k) and KD(k), respectively.

KP(k) =
2γ(2t + τ)

k[2λ(k)γ + τ]2

K I(k) =
2γ

k[2λ(k)γ + τ]2

KD(k) =
2tτ

k[2λ(k)γ + τ]2

, (41)

From Equations (33) and (34), we can get ∂λ(k)
∂net(k) and ∂net(k)

∂Wi(k)
as:

∂λ(k)
∂net(k)

= g[net(k)] = λ(k)[1− λ(k)], (42)

∂net(k)
∂wi(k)

= hj(k). (43)

According to Equations (37)–(43), the output layer weight change ∆wi(k) can be
written as:

∆wi(k) = α∆wi(k− 1) + ηδ(1)hj(k− 1), (44)

where

δ(1) = e(k)sgn[ ∂y(k)
∂u(k) ][−(KP(k) + K I(k) + KD(k))e(k)

+[KP(k) + 2KD(k)]e(k− 1)− KD(k)e(k− 2)]λ(k)[1− λ(k)]
(45)

The hidden layer weights ∆wij(k) can be obtained in the same way with the following
equation:

∆wij(k) = α∆wij(k− 1) + ηδ(2) Ij(k− 1), (46)

where
δ(2) = δ(1)wij(k− 1)hj(k− 1)[1− hj(k− 1)]. (47)
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Through the above derivation, we obtain the weight coefficient learning algorithm for
the neural network, and only the parameter λ can be adjusted in real time according to the
above derivation. The parameters of the IMCPIDNN controller are shown in Table 2.

Table 2. Parameters of the IMCPIDNN controller.

Symbol Parameter Value

η Learning coefficient 0.5
α Inertia coefficient 0.2
l Number of input layer nodes 5
j Number of hidden layer nodes 6
i Number of output layer nodes 1

4. Algorithm Simulation and Results

In this section, some simulations are completed to illustrate the effect of the proposed
IMCPIDNN controller in a stepless flow control system. The design and training process
of IMCPIDNN and PID, IMCPID and FLSMC (feedback linearization sliding mode control)
are done with the MATLAB/SIMULINK environment. Some possible external disturbances
have also been taken into consideration during the simulation process. The simulation
sampling time is set as 0.01s. The controller output threshold is set as [0, 1] to simulate the
real action of the actuators. The learning rate η and the inertial coefficient α are set as 0.5
and 0.1, respectively. In addition, the simulation results of the control effects are compared
in terms of step responses, anti-interference and robustness, which shows the superior
performance of the proposed IMCPIDNN controller in all aspects.

The industrial process presented in Section 2 is a two-input and two-output system
whose open-loop transfer function can be described as:

Gm(s) =

[
244

6s+1 e−s −394
5s+1 e−3s

254
72s+1 e−s 133

13s+1 e−2s

]
. (48)

The RGA matrix is:

β(s) =
[

0.25 0.75
0.75 0.25

]
. (49)

According to the controller design method presented in Section 3, we know that the
system coupling is serious, and the best paring configuration is u1/y2 and u2/y1. Thus,
the process model Gm(s) can be simplified as:

Gm(s) =

[
0 −394

5s+1 e−3s

254
72s+1 e−s 0

]
. (50)

The value of the filter parameter n is selected as n = 1 to meet the order of the model
Gm(s). The PID-IMC controller Gc(s) can be obtained as the following equation according
to the controller design method given in Equations (16)–(26):

Gm(s) =

[
0 − 13

394(2λ1+3) (1 +
2

13
1
s +

15
13 s)

145
254(2λ2+1) (1 +

2
145

1
s +

72
145 s) 0

]
. (51)

4.1. Step Response Test and Validation

To demonstrate the characteristics of the proposed IMCPIDNN controller, step re-
sponse tests are made for the reciprocating compressor numerical model. The PID controller,
IMCPID controller and FLSMC controller are constructed to make comparisons under the
same condition. The simulations are carried out with reference pressure profile under the
simulated condition to verify the control performance of the proposed controller.
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In order to evaluate the performance of the proposed controllers, we use the integral
of absolute value error criterion (IAE), integral of time multiplied by the absolute value of
error criterion (ITAE), integral of square error criterion (ISE) and integral of time multiplied
by squared error criterion (ITSE) as the evaluation function [33]. Two-system step response
performance indicators have also been applied and they are ts and Mp, where ts means the
shortest time that reaches the step response steady-state value of 2% error and Mp means
the overshoot, respectively.

Figure 6 shows that the dynamic output of each loop meets the desired set point.
The dynamic tracking performances obtained by PID, IMCPID, FLSMC and IMCPIDNN
controllers for the two-input and two-output nonlinear system were compared. The process
of starting the system from the shutdown state is imitated, where the set-points of the first
output and the second output change from 0 kPa to 120 kPa and 220 kPa at moment t
= 0 synchronously. Obviously, IMCPIDNN has the shortest settle time and the smallest
overshoot, and it performs the best among the four algorithms while PID performs worst.

Figure 6. Comparison of step responses with concurrent changes in set-points: (a) Output1; (b) Output2.

Table 3 presents the best control performance indices obtained by each controller.
What stands out in the table is all the performance indices of the IMCPIDNN controller
are optimal in the closed-loop step response. The value of the settle time ts of the step
responses for the two loops are: 61.91 s and 146.78 s, respectively. They are smaller
than those obtained by the other three algorithms. The IAE, ITAE, ISE and ITSE values
obtained with the proposed algorithm for loop 1 are: 2.62, 1.98, 0.42 and 1.96, and for
loop 2: 10.60, 14.05, 4.01 and 31.14. Compared with the PID controller, IMCPID controller
and FLSMC controller, the proposed IMCPIDNN controller performs better in terms of
set-point tracking.

Table 3. Performance comparison of the four algorithms used for concurrent step responses.

Algorithm Mp (%) ts (s) IAE(×103) ISE(×105) ITAE(×105) ITSE(×106)

Output1

PID 2.73 272.96 5.42 4.88 2.71 7.10
IMCPID 9.73 319.01 11.53 9.24 8.65 38.42
FLSMC 0 73.68 5.09 3.21 1.91 7.08

IMCPIDNN 0 61.91 2.62 1.98 0.42 1.96

Output2

PID 7.63 435.42 16.70 18.96 15.99 65.07
IMCPID 18.27 278.99 14.48 18.42 9.59 53.10
FLSMC 0 102.54 16.47 19.43 10.70 73.88

IMCPIDNN 0 82.83 10.60 14.05 4.01 31.14

At the moments t = 100 and t = 800, the set-point value is changed sequentially in
the two loops. The simulation result in Figure 7 shows the step response and control
effect obtained by the proposed IMCPIDNN controller. It is relevant to note that the
performance of the PID and IMDPID controllers are not satisfied, and this is expected
because of the strong interactions. The common problem of the two controllers is that they
cannot eliminate the system coupling problem. For example, the step change at moment
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t = 100 in the set-point of the first input caused a negative effect on the second output,
which is undesirable. It indicates that the system coupling is serious with no decoupling
method. The FLSMC controller eliminates the coupling of the system by nonlinear method,
but its performance in step response is not as good as that of the IMCPIDNN controller.
Compared with the other three controllers, the proposed IMCPIDNN controller performs
better in set-point tracking. Neither the first step change nor the second step change has a
large effect on the other loop.

Figure 7. Comparison of step responses with sequential changes in set-points: (a) Output1; (b) Output2.

The performance comparison of the four algorithms used for sequential step responses
are presented in Table 4. For loop 1 and 2, the settle times ts obtained using the proposed
controller are 61.91 s and 146.78 s respectively, and the overshoots Mp are both zero. Mean-
while, the results of the smallest four error evaluation indexes obtained by the IMCPIDNN
controller can ensure the set-point tracking accuracy. Obviously, the IMCPIDNN controller
performs better in terms of facing the interactions.

Table 4. Performance comparison of the four algorithms used for sequential step responses.

Algorithm Mp (%) ts (s) IAE(×103) ISE(×105) ITAE(×105) ITSE(×106)

Output1

PID 2.01 85.37 1.01 0.12 7.86 8.80
IMCPID 0.93 113.68 1.28 0.19 9.62 13.79
FLSMC 0 53.85 1.02 0.17 7.38 12.52

IMCPIDNN 0 42.32 0.65 0.12 4.72 8.89

Output2

PID 0.11 182.10 3.20 0.56 47.59 81.71
IMCPID 0.76 99.97 2.06 0.37 30.18 53.67
FLSMC 0 83.90 1.56 0.27 22.05 39.57

IMCPIDNN 0 81.43 1.49 0.27 21.44 38.98

4.2. Anti-Interference and Robustness Test

To illustrate the stability of the proposed IMCPIDNN controller, some anti-interference
and robustness tests had been done. We want to know how the control effect changes when
the values of the transfer function time constant and gain are mismatched with the actual
system and how these controllers perform when the control process encounters external
disturbance.

Figures 8 and 9 present the step response with +40% variation on time constant and
gains. We can see that the proposed IMCNNPID controller is very stable to the changes
of model parameters. Figure 8 shows that the overshoot of PID, IMCPID, FLSM and
IMCPIDNN in the face of model mismatch is 3.60%, 16.59%, 0% and 1.79%, respectively.
Additionally, it can be seen that the IMCPIDNN controller has a faster adjustment speed
than the other three controllers. Figure 9 shows the process outputs when the model
mismatch increases to +40%. The most interesting aspect of these two figures is that the
overshoot obtained by the IMCPIDNN controller is slightly larger than Figures 10 and 11,
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but it is acceptable because it is still small enough. Obviously, the proposed IMCPIDNN
controller is effective and superior to other three controllers for the varied system errors.

Figure 8. Comparison of concurrent step responses with +20% variation on time constant and gains:
(a) Output1; (b) Output2.

Figure 9. Comparison of sequential step responses with +20% variation on time constant and gains:
(a) Output1; (b) Output2.

Figure 10. Comparison of concurrent step responses with +40% variation on time constant and gains:
(a) Output1; (b) Output2.

Figure 11. Comparison of sequential step responses with +40% variation on time constant and gains:
(a) Output1; (b) Output2.
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Next, 20 kPa of external disturbance was added to output 1 and output 2 at t = 100 s
and t = 600 s, respectively. The simulation results are shown in Figures 12–14. Compared
with the PID, IMCPID and FLSMC controllers, the settle time and overshoot of the proposed
IMCPIDNN controller performed better, obviously. Under the action of the IMCPIDNN
controller, the output can return to the set-point faster and more steadily, and the other
loop is not interfered. This is meaningful for a stepless flow control system as it can ensure
that the system runs more safely in the presence of external interference and reduce the
failure rate of the equipment.

Figure 12. Comparison of closed-loop responses to external disturbance with matching model:
(a) Output1; (b) Output2.

Figure 13. Comparison of closed-loop responses to external disturbance with +20% variation on time
constant and gains: (a) Output1; (b) Output2.

Figure 14. Comparison of closed-loop responses to external disturbance with +40% variation on time
constant and gains: (a) Output1; (b) Output2.

5. Conclusions

In this paper, an IMCPIDNN controller based on IMCPID and a neural network
optimization algorithm is proposed to optimize the control effect of MIMO processes such
as stepless flow control of reciprocating compressors. The main contributions of this paper
are the stepless flow process model with dynamic parameters as well as an IMCPIDNN
controller, which inherits the main structure of a PID controller. In order to adjust the
control parameters more efficiently, an adaptive algorithm based on a BP neural network is
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constructed. In terms of efficiently adjusting control parameters, the BP neural network
algorithm with dynamically adjustable parameters has played a key role. Numerical
experiments show that the proposed IMCPIDNN controller has good setpoint tracking
performance and adaptability to a system model mismatch. Compared with PID, IMCPID
and FLSMC controllers under the same conditions, the proposed IMCPIDNN controller
performs best in terms of settle time, overshoot, robustness and anti-interference ability.
More importantly, the process of the proposed IMCPIDNN controller to adjust the control
parameters is the simplest because of the fewest adjustable parameters, which will provide
great convenience for actual industrial applications. Finally, the proposed controller can
be applied to any linear or non-linear MIMO system. We will continue to study process
modeling, stability analysis, system convergence and robustness analysis to achieve better
control effects.

Author Contributions: Conceptualization, H.H. and Z.J.; methodology, H.H., W.M., W.X. and J.Z.;
software, H.H., W.M. and W.L.; validation, H.H. and Y.W.; formal analysis, H.H. and W.X.; in-
vestigation, Y.W.; resources, W.L.; data curation, H.H.; writing—original draft preparation, H.H.;
writing—review and editing, H.H. and Z.J.; visualization, J.Z.; supervision, Z.J.; project administra-
tion, Z.J.; funding acquisition, Z.J., W.M. and J.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by State Key Laboratory of Compressor Technology under Grant
SKL-YSJ201911, Fundamental Research Funds for the Central Universities under Grant ZY2016,
Double First-rate Construction Special Funds under Grant ZD1601 and the Fundamental Research
Funds for the Central Universities under Grant JD2107.

Institutional Review Board Statement: This study did not involve humans or animals.

Informed Consent Statement: This study did not involve humans.

Data Availability Statement: This study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Y.; Jiang, Z.; Zhang, J.; Zhou, C.; Liu, W. Performance analysis and optimization of reciprocating compressor with stepless

capacity control system under variable load conditions. Int. J. Refrig. 2018, 94, 174–185. [CrossRef]
2. Bin, T.; Yuanyang, Z.; Liansheng, L.; Guangbin, L.; Le, W.; Qichao, Y.; Haiping, X.; Feng, Z.; Wenhui, M. Thermal performance

analysis of reciprocating compressor with stepless capacity control system. Appl. Therm. Eng. 2013, 54, 380–386. [CrossRef]
3. Li, D.; Wu, H.; Gao, J. Experimental study on stepless capacity regulation for reciprocating compressor based on novel rotary

control valve. Int. J. Refrig. 2013, 36, 1701–1715. [CrossRef]
4. Astuti, D.W.; Juwari, J.; Handogo, R. Mp Tuning for Internal Model Control 2×2 Multi Input Multi Output (MIMO) System.

IPTEK J. Proc. Ser. 2015, 1, 467–473. [CrossRef]
5. Chekari, T.; Mansouri, R.; Bettayeb, M. IMC-PID Fractional Order Filter Multi-loop Controller Design for Multivariable Systems

Based on Two Degrees of Freedom Control Scheme. Int. J.Control. Autom. Syst. 2018, 16, 689–701. [CrossRef]
6. Li, P.; Zhu, G. IMC-based PID control of servo motors with extended state observer. Mechatronics 2019, 62, 102252. [CrossRef]
7. Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. ASME 1942, 64, 759–765. [CrossRef]
8. Goncalves, E.N.; Palhares, R.M.; Takahashi, R.H.C. A novel approach for H-2/H-infinity robust PID synthesis for uncertain

systems. J. Process. Control. 2008, 18, 19–26. [CrossRef]
9. Rivera, D.E.; Morari, M.; Skogestad, S. Internal model control: PID controller design. Ind. Eng. Chem. Res. 1986, 25, 2163.

[CrossRef]
10. Chen, S.-Y.; Lin, F.-J. Decentralized PID neural network control for five degree-of-freedom active magneticbearing. Eng. Appl.

Artif. Intell. 2013, 26, 962–973. [CrossRef]
11. Li, S.; Gu, H. Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System. IEEE Trans. Ind. Inform.

2012, 8, 767–779. [CrossRef]
12. Saxena, S.; Hote, Y.V. Internal model control based PID tuning using first-order filter. Int. J.Control. Autom. Syst. 2016, 15, 149–159.

[CrossRef]
13. Isaksson, A.J.; Graebe, S.F. Analytical PID parameter expressions for higher order systems. Automatica 1999, 35, 1121–1130.

[CrossRef]
14. Wang, Q.G.; Hang, C.C.; Yang, X.P. Single-loop controller design via IMC principles. Automatica 2001, 37, 2041–2048. [CrossRef]
15. Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process. Control. 2004, 13, 291–309. [CrossRef]

http://doi.org/10.1016/j.ijrefrig.2018.07.013
http://doi.org/10.1016/j.applthermaleng.2013.01.036
http://doi.org/10.1016/j.ijrefrig.2013.04.002
http://doi.org/10.12962/j23546026.y2014i1.274
http://doi.org/10.1007/s12555-016-0699-x
http://doi.org/10.1016/j.mechatronics.2019.102252
http://doi.org/10.1115/1.2899060
http://doi.org/10.1016/j.jprocont.2007.06.003
http://doi.org/10.1021/i200032a041
http://doi.org/10.1016/j.engappai.2012.11.002
http://doi.org/10.1109/TII.2012.2205581
http://doi.org/10.1007/s12555-015-0115-y
http://doi.org/10.1016/S0005-1098(99)00009-6
http://doi.org/10.1016/S0005-1098(01)00170-4
http://doi.org/10.1016/S0959-1524(02)00062-8


Appl. Sci. 2021, 11, 7785 17 of 17

16. Lennartson, B.; Kristiansson, B. Evaluation and tuning of robust PID controllers. IET Control. Theory Appl. 2009, 3, 294–302.
[CrossRef]

17. Sutikno, J.P.; Aziz, B.A.; Yee, C.S.; Mamat, R. A New Tuning Method for Two-Degree-of-Freedom Internal Model Control under
Parametric Uncertainty. Chin. J. Chem. Eng. 2013, 21, 1030–1037. [CrossRef]

18. Efe, M.Ö. Neural Network Assisted Computationally Simple PIλDµ Control of a Quadrotor UAV. IEEE Trans. Ind. Inform. 2011, 7,
354–361. [CrossRef]

19. Han, G.; Fu, W.; Wang, W.; Wu, Z. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.
Sensors 2017, 17, 1244. [CrossRef] [PubMed]

20. Zhang, D.; Wei, B. A review on model reference adaptive control of robotic manipulators. Annu. Rev. Control. 2017, 43, 188–198.
[CrossRef]

21. Gu, J.; Shen, L.; Zhang, L. Application of internal model and self-adaptive PSD controller in the main steam temperature system.
In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August
2005; pp. 570–573.

22. Zhao, Z.; Zhang, J.; Hou, M. An adaptive IMC-PID control scheme based on neural network. In Proceedings of the 2009 WRI
Global Congress on Intelligent Systems, Xiamen, China, 19–21 May 2009; pp. 31–35.

23. Fang, M.; Zhuo, Y.; Lee, Z. The application of the self-tuning neural network PID controller on the ship roll reduction in random
waves. Ocean. Eng. 2010, 37, 529–538. [CrossRef]

24. Wang, Y.; Wang, W.; Wang, C.; Wu, X. Coupling Analysis on Current Control at Low Switching Frequency for the Three-Phase
PWM Converter Based on RGA and a Novel Output Feedback Decoupling Method. IEEE Trans. Ind. Electron. 2016, 63, 6684–6694.
[CrossRef]

25. Mu, S.; Tanaka, K.; Takahashi, K.; Sasaki, M. Position control of ultrasonic motor using PID-IMC combined with neural network
based on probability. Int. J. Appl. Electromagn. Mech. 2013, 41, 59–71. [CrossRef]

26. Kang, J.; Meng, W.; Abraham, A.; Liu, H. An adaptive PID neural network for complex nonlinear system control. Neurocomputing
2014, 135, 79–85. [CrossRef]

27. Liu, W.; Jiang, Z.; Wang, Y.; Zhou, C.; Sun, X.; Zhang, J. Performance Degradation Analysis and Optimization of the Stepless
Capacity Regulation System for Reciprocating Compressors. Appl. Sci. 2020, 10, 704. [CrossRef]

28. Wenhua, L.; Zhinong, J.; Tianyu, Z.; Yao, W.; Jinjie, Z. Optimization Technology of Capacity Control Method for Reciprocating
Compressor. Control. Eng. China 2019, 7, 1365–1371.

29. Ye, H.-T.; Li, Z.-Q. PID Neural Network Decoupling Control Based on Hybrid Particle Swarm Optimization and Differential
Evolution. Int. J. Autom. Comput. 2015, 17, 867–872. [CrossRef]

30. Yang, C.; Zhang, H.; Gao, Y. Analysis of a neural-network-based adaptive controller for deep-space formation flying. Adv. Space
Res. 2021, 68, 54–70. [CrossRef]

31. Ren, H.; Hou, B.; Zhou, G.; Shen, L.; Wei, C.; Li, Q. Variable Pitch Active Disturbance Rejection Control of Wind Turbines Based
on BP Neural Network PID. IEEE Access 2020, 8, 71782–71797. [CrossRef]

32. Zeng, G.; Xie, X.; Chen, M.; Weng, J. Adaptive population extremal optimization-based PID neural network for multivariable
nonlinear control systems. Swarm Evol. Comput. 2019, 44, 320–334. [CrossRef]

33. Ali, E.S. Speed control of DC series motor supplied by photovoltaic system via firefly algorithm. Neural Comput. Appl. 2014, 26,
1321–1332. [CrossRef]

http://doi.org/10.1049/iet-cta:20060450
http://doi.org/10.1016/S1004-9541(13)60564-9
http://doi.org/10.1109/TII.2011.2123906
http://doi.org/10.3390/s17061244
http://www.ncbi.nlm.nih.gov/pubmed/28556817
http://doi.org/10.1016/j.arcontrol.2017.02.002
http://doi.org/10.1016/j.oceaneng.2010.02.013
http://doi.org/10.1109/TIE.2016.2582474
http://doi.org/10.3233/JAE-121626
http://doi.org/10.1016/j.neucom.2013.03.065
http://doi.org/10.3390/app10020704
http://doi.org/10.1007/s11633-015-0917-7
http://doi.org/10.1016/j.asr.2021.03.007
http://doi.org/10.1109/ACCESS.2020.2987912
http://doi.org/10.1016/j.swevo.2018.04.008
http://doi.org/10.1007/s00521-014-1796-5

	Introduction 
	Problem Formulation 
	Controller Design 
	Relative Gain Array (RGA) 
	Feed-Forward Decoupling 
	IMC Controller Design Based on Standard PID 
	IMCPIDNN Controller Design 

	Algorithm Simulation and Results 
	Step Response Test and Validation 
	Anti-Interference and Robustness Test 

	Conclusions 
	References

