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Abstract: Efficiently solving a system identification problem represents an important step in nu-
merous important applications. In this framework, some of the most popular solutions rely on the
Wiener filter, which is widely used in practice. Moreover, it also represents a benchmark for other
related optimization problems. In this paper, new insights into the regularization of the Wiener filter
are provided, which is a must in real-world scenarios. A proper regularization technique is of great
importance, especially in challenging conditions, e.g., when operating in noisy environments and/or
when only a low quantity of data is available for the estimation of the statistics. Different regular-
ization methods are investigated in this paper, including several new solutions that fit very well
for the identification of sparse and low-rank systems. Experimental results support the theoretical
developments and indicate the efficiency of the proposed techniques.

Keywords: system identification; Wiener filter; regularization; sparseness; low-rank system; singular
value decomposition; Kronecker product decomposition; quadratic eigenvalue problem

1. Introduction

The Wiener filter has been an extremely useful tool since its invention by Norbert
Wiener [1]. It represents one of the most popular solutions for system identification
problems and finds important applications within a wide range of domains [2–5]. Basically,
the Wiener filter is able to estimate a reference (or desired) random process by filtering an
observed noisy process, which is somehow related (or correlated) to the reference signal.
In this framework, the filtering process is linear and time invariant, all the signals (input,
reference, and noise) are considered stationary processes, and the external (additive) noise
that usually corrupts the reference signal is uncorrelated with the input signal. Overall,
the Wiener filter is a statistical-based approach, where the solution results following an
optimization criterion that relies on the minimization of the mean-squared error. In this
context, the error is defined as the difference between the reference signal and the output
of the filter.

The optimal solution (i.e., the optimal coefficients) corresponding to the Wiener filter
can be simply found by solving a linear system of L equations, where L denotes the length
of the impulse response. In other words, the vector (of length L) containing the optimal
coefficients is obtained by multiplying the inverse of the covariance matrix of the input
signal (of size L× L) with the cross-correlation vector (of length L) between the input and
reference signals.

Despite this straightforward mathematical formulation, there are several major chal-
lenges related to the use of the Wiener filter in real-world applications. First, the accuracy of
the conventional Wiener solution relies on the accuracy of the statistical estimates—namely,
the covariance matrix and the cross-correlation vector mentioned previously. In order to
reliably estimate these statistics, a large number of data samples (i.e., much larger than L)
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should be available. However, this is not always the case in practice, since in many ap-
plications, a low quantity of data is available, or there is incomplete information about
the system. This challenge becomes even more apparent when facing the identification of
long-length impulse responses. Second, the matrix inversion operation is also a critical
step that should be carefully handled [6]. The basic idea is to avoid an ill-conditioning or
a rank-deficient problem, which could result in a bad matrix inversion. For this purpose,
the covariance matrix of the input signal needs to be regularized before inversion, usually
by adding a positive constant to its main diagonal. It is known that the value of this
regularization parameter becomes important in noisy conditions [7]. In other words, the
additive noise that usually corrupts the reference signal could significantly influence the
overall performance of the Wiener filter, especially in heavy noise environments.

The accuracy of the statistical estimates depends on specific constraints of particular
applications, in terms of the availability of the quantity of data. Nevertheless, reformulating
a conventional system identification problem using smaller data structures represents a
potential solution to improve the behavior of the Wiener filter when dealing with a small
quantity of data [8]. In addition, the matrix inversion operation could be avoided by
using alternative coordinate descent methods [9]. However, the problem of handling an
ill-conditioned matrix remains a critical issue, which can be addressed in terms of using a
proper regularization technique, as mentioned before.

The previously mentioned challenges related to the Wiener filter have been addressed
in the context of different applications. Recently, in [10], the Kronecker product decom-
position of the impulse response was exploited in order to improve the accuracy of the
Wiener filter for long-length impulse responses identification. Due to this feature, the
resulting solution fits very well in the framework of echo cancellation, for example. In
addition, several regularization methods were developed for denoising applications and
image restoration, e.g., [11–13] and the references therein. Nevertheless, there is still room
for performance improvement, especially when using the Wiener filter in challenging
conditions, as explained above.

The goal of this paper is to provide new insights into the Wiener filter for system
identification problems. The main focus concerns the important practical aspects related
to the regularization of this optimal filter in difficult conditions, e.g., working in noisy
environments and/or handling a limited set of available data/information. Following this
introduction, Sections 2 and 3 briefly present the system model behind the conventional
Wiener filter and some useful background, respectively. Next, Section 4 details different
regularization methods of the Wiener filter, also showing how the sparse character of
the system can be exploited in this context. Furthermore, a solution obtained using the
Kronecker product decomposition of the impulse response is developed in Section 5,
which is suitable for low-rank systems identification. In Section 6, the quadratic eigenvalue
problem is used for the regularization of the Wiener filter, which can be successfully applied
when some a priori knowledge on the impulse response is available. All these techniques
and theoretical findings are supported by the simulation results provided in Section 7.
Finally, the main conclusions are summarized in Section 8.

2. System Model and the Conventional Wiener Filter

Let us consider a linear single-input/single-output (SISO) system [14], whose output
at the discrete-time index k is given by

d(k) = hTx(k) + w(k) (1)

= y(k) + w(k),

where d(k) is also known as the reference or desired signal,

x(k) =
[

x(k) x(k− 1) · · · x(k− L + 1)
]T
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is a vector containing the most recent L time samples of the zero-mean input signal x(k), the
superscript T denotes the transpose operator, h is the unknown system impulse response of
length L, and w(k) is the zero-mean additive noise. It is assumed that the signals take real
values and that x(k) and w(k) are uncorrelated. Then, the objective of the so-called SISO
system identification problem is to identify or estimate h, in the best possible way, given
the input signal vector, x(k), and the output signal, d(k). For this purpose, the celebrated
Wiener technique is the most appropriate [15–17].

From (1), it is clear that the variance of d(k) is

σ2
d = hTRh + σ2

w, (2)

where R = E
[
x(k)xT(k)

]
is the L× L covariance matrix of x(k), with E[·] denoting math-

ematical expectation, and σ2
w is the variance of w(k). It can be deduced from (2) that the

signal-to-noise ratio (SNR) of the studied SISO system as presented in (1) is

SNR(h) =
hTRh

σ2
w

. (3)

Even though this SNR depends explicitly on the channel impulse response of the
system, in many practical identification problems, this SNR is roughly known even if h is
not available [18].

Let ĥ be a real-valued linear filter of length L, which is also an estimate of h, so
that ŷ(k) = ĥTx(k) is an estimate of d(k). Then, from the minimization of the popular
mean-squared error (MSE) criterion

J
(

ĥ
)
= E

{[
d(k)− ĥTx(k)

]2
}

(4)

= σ2
d − 2ĥTp + ĥTRĥ,

the conventional Wiener filter [3,5] is found

ĥW = R−1p, (5)

where p = E[x(k)d(k)] represents the cross-correlation vector (of length L) between x(k)
and d(k). The block diagram of the conventional Wiener filter is depicted in Figure 1. While
ĥW leads to satisfactory results in many important applications [18], there is still room
for improvement.

�� � 
�

�(k) - 

d(k) 

error signal 
+ 

� 

� 

input signal 

reference signal 

Wiener filter 

Figure 1. General block diagram of the conventional Wiener filter.

It should be outlined that in different real-world applications, the presence of outliers
(in the input signal and/or external noises) could bias the MSE criterion and, consequently,
the solution from (5). This is due to the fact that the basic theory behind the conventional
Wiener filter relies on the assumption of zero-mean and stationary signals. In order to cope
with different outliers, the conventional approach should further involve additional control
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and robustness mechanisms, e.g., see [19] and the references therein. The investigation of
such particular cases is beyond the scope of this paper.

3. Useful Definitions

In this section, many definitions that will be useful in the rest of this paper are
presented.

Let

h =
[

h1 h2 · · · hL
]T

be a real-value vector of length L. The `2 (or Euclidean) norm can be defined as

‖h‖2 =
√

hTh =

√√√√ L

∑
l=1

h2
l . (6)

The `1 norm is given by

‖h‖1 =
L

∑
l=1
|hl |. (7)

Another very useful vector norm is the `0 norm:

‖h‖0 = card{hl |hl 6= 0}, (8)

where card{·} stands for cardinality. In other words, the `0 norm of h is simply the number
of nonzero elements of h.

Let H be a rectangular matrix of size L1 × L2 containing real values, where without
loss of generality, it is always assumed that L1 ≥ L2. The Frobenius norm of H is defined as

‖H‖F =
√

tr(HTH), (9)

where tr(·) denotes the trace of a square matrix.
The singular value decomposition (SVD) technique [20] is a very powerful tool that

can decompose any matrix H as

H = U1ΣUT
2 =

L2

∑
l=1

σlu1,lu
T
2,l , (10)

where U1 =
[

u1,1 u1,2 · · · u1,L1

]
and U2 =

[
u2,1 u2,2 · · · u2,L2

]
are two or-

thogonal matrices of sizes L1× L1 and L2× L2, respectively, and Σ is an L1× L2 rectangular
diagonal matrix having on its main diagonal nonnegative real numbers. The columns of
U1 (resp. U2) are known as the left-singular (resp. right-singular) vectors of H, whereas
the diagonal entries σl , l = 1, 2, . . . , L2 of Σ are called the singular values of H with
σ1 ≥ σ2 ≥ · · · ≥ σL2 ≥ 0. In the case when the rank of H is equal to P ≤ L2, i.e.,
rank(H) = P, then this matrix may be decomposed as

H =
P

∑
p=1

σpu1,puT
2,p. (11)

From (10), it is deduced that the nuclear norm of H is

‖H‖∗ =
L2

∑
l=1

σl = tr
(√

HTH
)

. (12)
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Let L = L1L2. h can be decomposed as

h =
[

sT
1 sT

2 · · · sT
L2

]T
, (13)

where sl , l = 1, 2, . . . , L2 are L2 short vectors of length L1 each. As a result, the vector h of
length L1L2 can be transformed into a rectangular matrix of size L1 × L2:

H =
[

s1 s2 · · · sL2

]
. (14)

Therefore, h = vec(H), where by vec(·) it is denoted the vectorization operation,
consisting of converting a matrix into a vector. Furthermore, H = ivec(h), where ivec(·) is
the inverse of the vectorization operation.

Let h be the system impulse response of length L. A good measure of the sparseness
of h is [21,22]

ξ12(h) =
L

L−
√

L

(
1− ‖h‖1√

L‖h‖2

)
. (15)

The closer ξ12(h) is to 1, the sparser is h.
Let h = vec(H) be the system impulse response and ĥ = vec

(
Ĥ
)

its estimate. A

good way to evaluate how close is ĥ = vec
(

Ĥ
)

to h = vec(H) is via the normalized
misalignment,

M
(

ĥ
)
=

∥∥∥h− ĥ
∥∥∥

2
‖h‖2

(16)

or, equivalently,

M
(

Ĥ
)
=

∥∥∥H− Ĥ
∥∥∥

F
‖H‖F

. (17)

Let C be a convex set. The convex envelope of a function f : C → R is defined as the
largest convex function g such that g(x) ≤ f (x) for all x ∈ C [23].

4. Wiener Filter with Different Kinds of Regularization

The Wiener filter can definitely be improved with an appropriate regularization, which
should depend on the properties of the system that needs to be identified. In this section,
the most useful regularization techniques are exposed.

The most well-known regularization approach is the so-called Tikhonov regularization,
which is based on the `2 norm. The Wiener problem is now

min
ĥ

[
J
(

ĥ
)
+ δ
∥∥∥ĥ
∥∥∥2

2

]
, (18)

where δ ≥ 0 is the regularization parameter, which controls the tradeoff between the
fidelity of the original data and large values of the coefficients of the filter. The optimization
problem in (18) has obviously a closed-form solution, which is

ĥW,δ = (R + δIL)
−1p, (19)

where IL is the L × L identity matrix. The filter ĥW,δ is much more reliable than ĥW,
especially when R is ill conditioned, and SNR(h) is low.
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If the system is sparse, the following optimization problem is more appropriate [24]:

min
ĥ

[
J
(

ĥ
)
+ 2δ

∥∥∥ĥ
∥∥∥

0

]
. (20)

This problem finds the sparsest solution, but unfortunately, it is NP-hard [24]. Clearly,
a large value of δ leads to a sparse filter. Using the fact that the convex envelop of

∥∥∥ĥ
∥∥∥

0
is∥∥∥ĥ

∥∥∥
1
,
∥∥∥ĥ
∥∥∥

0
can be replaced by

∥∥∥ĥ
∥∥∥

1
in (20) to obtain

min
ĥ

[
J
(

ĥ
)
+ 2δ

∥∥∥ĥ
∥∥∥

1

]
, (21)

which is now a convex problem [25] and is roughly equivalent to (20). The optimization
problem in (21) does not have a closed-form solution, but many iterative/adaptive algo-
rithms exist in the literature that converge to the optimal solution, including proportionate-
type adaptive filters [22]. The main advantage of (21) is that even if R is very ill conditioned,
or its estimate is performed with a limited number of observations, if the system is sparse,
then a better solution than the conventional Wiener filter can be expected.

Taking the gradient of J
(

ĥ
)
+ 2δ

∥∥∥ĥ
∥∥∥

1
with respect to ĥ and equating the result to

zero, it can be found that

−p + Rĥ + δD−1
(

ĥ
)

ĥ = 0, (22)

where

D
(

ĥ
)
= diag

(∣∣∣ĥ1

∣∣∣, ∣∣∣ĥ2

∣∣∣, . . . ,
∣∣∣ĥL

∣∣∣) (23)

is a diagonal matrix and ĥl , l = 1, 2, . . . , L are the elements of ĥ. As a result, (22) can be
rewritten as

ĥ =
[
D
(

ĥ
)

R + δIL

]−1
D
(

ĥ
)

p. (24)

From the previous expression, it is possible to derive a simple iterative algorithm. At
iteration 0, one may take

ĥ(0) = ĥW,δ. (25)

Then, at iteration i, it can be written

ĥ(i) =
[
D
(

ĥ(i−1)
)

R + δ1IL

]−1
D
(

ĥ(i−1)
)

p, (26)

where δ1 > 0 is a regularization parameter that is not necessarily equal to δ. The iterations
continue until convergence.

Let L = L1L2 with L1 ≥ L2, so that H = ivec(h). In the same way, Ĥ = ivec
(

ĥ
)

. In
many applications, H is far to be a full-column rank matrix and this important information
should be somehow exploited. In other words, H is a low-rank system. Therefore, in
the MSE criterion, it makes more sense to apply a regularization based on the rank of Ĥ,
i.e., [26]

min
ĥ

[
J
(

ĥ
)
+ δrank

(
Ĥ
)]

. (27)

Unfortunately, the matrix rank minimization in (27) is NP-hard, in general, due to
the combinatorial nature of the function rank(·) [26]. Interestingly, when the matrix Ĥ is
diagonal, the previous problem reduces to the optimization problem in (20). Consequently,
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the sparse problem is taken into account in (27). Using the fact that the convex envelop [27]
of rank

(
Ĥ
)

is
∥∥∥Ĥ
∥∥∥
∗
, (27) is roughly equivalent to the optimization problem [26]:

min
ĥ

[
J
(

ĥ
)
+ δ
∥∥∥Ĥ
∥∥∥
∗

]
. (28)

Some iterative algorithms exist to solve this problem, but they do not seem to work
well for long impulse responses; furthermore, complexity may be prohibitive since an
approximate SVD needs to be computed at each iteration. Recent insights can be found
in [28] and the references therein.

5. Wiener Filter via Kronecker Product Decomposition

In this section, the investigation on the identification of low-rank systems with the
Wiener filter is further discussed. An attempt to minimize the nuclear norm of the system
in the regularization part was presented in the previous section, but this approach does not
seem very practical, and complexity may be extremely high, especially for large matrices.

Here, instead, it is assumed that the rank of the L1 × L2 matrix H is known and is
much smaller than L2, i.e., rank(H) = P� L2. In this case, H can also be expressed as

H =
P

∑
p=1

h1,phT
2,p, (29)

where h1,p and h2,p, of lengths L1 and L2, respectively, are impulse responses. This de-
composition of H can be explicitly used in the MSE criterion as explained below. As
a result

h = vec(H)

= vec

(
P

∑
p=1

h1,phT
2,p

)

=
P

∑
p=1

vec
(

h1,phT
2,p

)
=

P

∑
p=1

h2,p ⊗ h1,p, (30)

where ⊗ is the Kronecker product. Furthermore, the filter ĥ can also be decomposed as

ĥ =
P

∑
p=1

ĥ2,p ⊗ ĥ1,p, (31)

where ĥ1,p and ĥ2,p are filters having lengths L1 and L2, respectively. By using the following
relationships:

ĥ2,p ⊗ ĥ1,p =
(

ĥ2,p ⊗ IL1

)
ĥ1,p

=
(

IL2 ⊗ ĥ1,p

)
ĥ2,p, (32)
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where by IL1 and IL2 are denoted the identity matrices of sizes L1 × L1 and L2 × L2,
respectively, into (31), it is obtained that

ĥ =
P

∑
p=1

Ĥ2,pĥ1,p

=
P

∑
p=1

Ĥ1,pĥ2,p, (33)

where Ĥ2,p = ĥ2,p⊗ IL1 and Ĥ1,p = IL2 ⊗ ĥ1,p are matrices of sizes L1L2× L1 and L1L2× L2,
respectively. The two expressions from (33) may be rewritten as

ĥ = Ĥ2ĥ1

= Ĥ1ĥ2, (34)

where

Ĥ2 =
[

Ĥ2,1 Ĥ2,2 · · · Ĥ2,P
]
,

Ĥ1 =
[

Ĥ1,1 Ĥ1,2 · · · Ĥ1,P
]

are matrices of sizes L1L2 × PL1 and L1L2 × PL2, respectively, and

ĥ1 =
[

ĥT
1,1 ĥT

1,2 · · · ĥT
1,P

]T
,

ĥ2 =
[

ĥT
2,1 ĥT

2,2 · · · ĥT
2,P

]T

are vectors of lengths PL1 and PL2, respectively. With this Kronecker product decom-
position, it can be seen that ĥ1 and ĥ2 need to be identified instead of ĥ, i.e., P(L1 + L2)
components instead of L = L1L2.

Assume that ĥ2 (or, equivalently, Ĥ2) is fixed. Then, the MSE criterion is

J
(

ĥ1|ĥ2

)
= E

{[
d(k)− ĥ

T
1 Ĥ

T
2 x(k)

]2
}

(35)

= σ2
d − 2ĥ

T
1 p

2
+ ĥ

T
1 R2ĥ1,

where

p
2
= Ĥ

T
2 p,

R2 = Ĥ
T
2 RĤ2.

The minimization of J
(

ĥ1|ĥ2

)
with respect to ĥ1 leads to

ĥ1,W = R−1
2 p

2
. (36)

In the same way, assume that ĥ1 (or, equivalently, Ĥ1) is fixed. Then, the MSE
criterion is

J
(

ĥ2|ĥ1

)
= E

{[
d(k)− ĥ

T
2 Ĥ

T
1 x(k)

]2
}

(37)

= σ2
d − 2ĥ

T
2 p

1
+ ĥ

T
2 R1ĥ2,
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where

p
1
= Ĥ

T
1 p,

R1 = Ĥ
T
1 RĤ1.

The minimization of J
(

ĥ2|ĥ1

)
with respect to ĥ2 leads to

ĥ2,W = R−1
1 p

1
. (38)

By alternatively iterating between ĥ1,W and ĥ2,W, an iterative Wiener filter is obtained,
that converges to the true solution [10]. This approach, as shown in [10], performs better
than the conventional Wiener filter in various contexts of noise and available data for the
estimation of the involved second-order statistics.

A more robust iterative Wiener filter must include regularization based on the `2
norm, i.e.,

min
ĥ1

[
J
(

ĥ1|ĥ2

)
+ δĥ

T
1 Ĥ

T
2 Ĥ2ĥ1

]
, (39)

min
ĥ2

[
J
(

ĥ2|ĥ1

)
+ δĥ

T
2 Ĥ

T
1 Ĥ1ĥ2

]
, (40)

from which the following optimal solutions are found:

ĥ1,W,δ =
(

Ĥ
T
2 RĤ2 + δĤ

T
2 Ĥ2

)−1
p

2
, (41)

ĥ2,W,δ =
(

Ĥ
T
1 RĤ1 + δĤ

T
1 Ĥ1

)−1
p

1
, (42)

which is equivalent to regularize the covariance matrix R. Again, by alternatively iterating
between ĥ1,W,δ and ĥ2,W,δ, a robust iterative Wiener filter is obtained, that converges to
the true solution. In order to avoid any potential numerical issues, a very small positive
constant should be added to the diagonal of the matrices in (41) and (42) before inversion.

6. Wiener Filter with the Quadratic Eigenvalue Problem

Assume that some knowledge is available on the impulse response, h, i.e., ‖h‖2
2 = α2

with α2 > 0. This information can be used to exactly regularize (with the Tikhonov
technique) the Wiener filter with the help of the so-called quadratic eigenvalue problem
(QEP) [29,30]. This approach is explained in this section.

The criterion is

min
h
J
(

ĥ
)

subject to ĥTĥ = α2. (43)

From the above criterion, the Lagrange function can be written:

L
(

ĥ, λ
)
= σ2

d − 2ĥTp + ĥTRĥ− λ
(

ĥTĥ− α2
)

, (44)

where λ is a Lagrange multiplier. Differentiating L
(

ĥ, λ
)

with respect to ĥ and λ and
equating to zero yields the equations:

Rĥ− λĥ = p, (45)

ĥTĥ = α2. (46)

It can be shown [31,32] that the smallest solution λ of the two previous equations is
needed to solve (43).
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Assume that λ is not an eigenvalue of R and let

h = (R− λIL)
−1(R− λIL)

−1p (47)

= (R− λIL)
−1ĥ.

In fact, because R > 0, all the eigenvalues of R are real and strictly positive. To be in
accordance with the regularization technique, R− λIL also needs to be positive definite.
Consequently, λ needs to always be negative.

Relations (45) and (46) can be written in terms of h as follows:

(R− λIL)
2h = p, (48)

h
T
(R− λIL)

2h = α2 (49)

= h
T

p.

It is easily deduced from this second equation that

pTh
α2 = 1. (50)

Developing (48) and using the previous result, it is obtained that(
R2 − 2λR + λ2IL

)
h = p (51)

=
ppT

α2 h.

As a consequence, (51) can be rewritten as[
λ2IL − 2λR +

(
R2 − ppT

α2

)]
h = 0 (52)

or alternatively, (
λ2A2 + λA1 + A0

)
h = Q(λ)h = 0, (53)

where

A2 = IL,

A1 = −2R,

A0 = R2 − ppT

α2 ,

and Q(λ) represents the λ-matrix, which is a degree 2 L× L matrix polynomial. In (53),
the QEP [29] can be recognized, where h is the right eigenvector corresponding to the
eigenvalue λ. Consequently, the solution of (43) is ĥ = (R− λIL)

−1p, where λ is the
smallest eigenvalue of (53).

The QEP represents a generalization of the standard eigenvalue problem (SEP),
Au = λu, and the generalized eigenvalue problem (GEP), Au = λBu. Having a λ-matrix
of size L× L, the QEP has 2L eigenvalues (finite or infinite) containing up to 2L right and
2L left eigenvectors. If there are more than L eigenvectors, then they cannot, of course, be
linearly independent [29]. In the current context, since A2 = IL is nonsingular, the QEP has
2L finite eigenvalues. Because A0, A1, and A2 are symmetric, the eigenvalues are real or
come in pairs (λ, λ∗) [29], where the superscript ∗ denotes the complex conjugate operator.

An important observation regarding the QEP is that the linearization process is not
unique. It is said that a 2L × 2L matrix A − λB represents a linearization of the L × L
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λ-matrix Q(λ) if the eigenvalues of these matrices are identical. Due to this process, the
QEP can be solved with the GEP. One option is to take

A =

[
0 A0

A0 A1

]
, (54)

B =

[
A0 0
0 −A2

]
. (55)

It can be checked that if t is an eigenvector of Q(λ), then

u =

[
t

λt

]
(56)

is an eigenvector of A − λB. This process corresponds to the symmetric linearization
since both A and B are symmetric. The accuracy of this approach will depend on the
conditioning of A0 and A2. Another possibility is to take

A =

[
0 −IL

A0 A1

]
, (57)

B =

[
−IL 0

0 −A2

]
= −I2L, (58)

where I2L is the 2L× 2L identity matrix. This linearization is not symmetric. Different
linearizations may yield different results; therefore, choosing the right one is important.

The eigenvalues of Q(λ) can be ordered as

<(λ1) ≤ <(λ2) ≤ · · · ≤ <(λ2L), (59)

where <(·) denotes the real part of a complex number. Then, the regularized Wiener filter
with the QEP is

ĥQW = [R−<(λ1)IL]
−1p. (60)

Now, if the eigenvalues with the P smallest real parts are considered, another version
of the Wiener filter is obtained

ĥQW,P =
(
R− λPIL

)−1
p, (61)

where

λP =
1
P

P

∑
p=1
<
(
λp
)
. (62)

7. Simulations

In this section, simulation results are provided to support the main theoretical findings
related to the regularization of the Wiener filter, which were presented in Sections 4–6. All
the experiments were performed using MATLAB R2018b on an Asus GL552VX device
(Windows 10 OS), having an Intel Core i7-6700HQ CPU @ 2.60 GHz, with 4 Cores, 8 Logical
Processors, and 16 GB of RAM.

7.1. Conventional Wiener Filter with `2-Norm Regularization

First, it is important to assess the performance of the conventional Wiener filter, which
depends on several important factors, such as the accuracy of the statistical estimates,
the SNR, and the regularization parameter. The performance measure is the normalized
misalignment (in dB), which is evaluated based on (16). The input signal, x(k), is an AR(1)
process with a pole at 0.9, while the additive noise, w(k), is white and Gaussian, and
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different values of the SNR are used. The unknown system, h, is the first impulse response
from G168 Recommendation [33], which is padded with zeros up to the length L = 500.
It represents a network echo path, which is sparse in nature. Its sparsity measure can be
evaluated based on (15) and results in ξ12(h) = 0.8957.

The first critical factor that influences the overall performance of the Wiener filter
is the accuracy of the statistical estimates—namely, the covariance matrix, R, and the
cross-correlation vector, p. Let us consider that N data samples are used to estimate these
quantities, which result in

R̂ =
1
N

N

∑
k=1

x(k)xT(k), (63)

p̂ =
1
N

N

∑
k=1

x(k)d(k). (64)

A higher value of N (as compared to the filter length L) leads to a reliable set of esti-
mates. On the other hand, when a low quantity of data samples is used for the estimation of
the statistics (i.e., N ≈ L), the conventional Wiener filter is not able to provide an accurate
solution. Such a scenario is very challenging in different practical applications, where only
an incomplete set of data/information is available. Moreover, in the framework of a low
SNR environment, the challenges become even more apparent.

In order to highlight these aspects, the performance of the conventional Wiener filter
depending on N and for different SNRs is illustrated. Having available the statistical
estimates from (63) and (64), the conventional Wiener solution is obtained based on (19). In
this simulation, a very small value of the regularization parameter is used, i.e., δ = 10−8.
The results are presented in Figure 2. As expected, a larger value of N improves the Wiener
solution, while the accuracy is also influenced by a lower SNR. The critical scenario appears
for N ≈ L, where the conventional Wiener filter is not able to obtain a reliable solution
even for a high SNR.
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Figure 2. Misalignment of the conventional Wiener filter with `2-norm regularization for different
values of N and SNRs, using δ = 10−8.

Next, the influence of the regularization parameter, δ, on the performance of the con-
ventional Wiener filter is evaluated in different SNR conditions. First, in Figure 3a,b, good
SNR conditions are considered, by setting SNR = 30 dB and SNR = 20 dB, respectively,
while choosing different values for δ. As it can be noticed, the influence of the regulariza-
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tion parameter becomes more apparent when using a low quantity of data (e.g., N ≈ L)
to estimate the statistics. In this case, a larger value of δ can improve the accuracy of the
solution. The influence of the regularization parameter becomes less important for N � L;
in these conditions, a larger value of δ can even bias the Wiener solution. Nevertheless, in
low SNR environments, a larger value of the regularization parameter is required. This is
supported in Figure 3c,d, in which the SNR is set to 10 dB and 0 dB, respectively. As it can
be observed, the largest value of δ improves the performance for any value of N. However,
the `2-norm regularization used in (19) does not exploit the sparse character of the system,
which is taken into account within the `1-norm framework presented in Section 4. Details
of these results [focusing on the initial parts of the plots from Figure 3a–d] are shown in
Figure 4a–d.
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Figure 3. Misalignment of the conventional Wiener filter with `2-norm regularization for different
values of N and δ, using (a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB, and (d) SNR = 0 dB.
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Figure 4. Details of Figure 3 (focusing on the initial parts of the plots), showing the misalignment
of the conventional Wiener filter with `2-norm regularization for different values of N and δ, using
(a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB, and (d) SNR = 0 dB.
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7.2. Iterative Wiener Filter with `1-Norm Regularization

The iterative `1-norm regularization from (26) can improve the Wiener solution for
sparse system identification. This is supported in the next set of experiments, where the
iterative `1-norm regularization is compared to the conventional `2-norm regularization of
the Wiener filter.

In Figure 5, different SNRs are set and a large quantity of data is used to estimate
the statistics, i.e., N = 5000. The conventional Wiener filter uses δ = 10−8, while the
iterative `1-norm regularization involves different values of the parameter δ1 from (26).
As it can be observed in Figure 5 (where N � L), for some values of δ1, the iterative
`1-norm regularization leads to better performance. Details of these results [focusing on
the overlapping curves in Figure 5a–d] are shown in Figure 6a–d.

This is more apparent for low values of N, e.g., when N = L, as illustrated in Figure 7.
In this case, the conventional `2-norm regularization is clearly outperformed by the iterative
`1-norm version, for all the values of δ1.

The SNR also influences the performance of the iterative `1-norm regularization, and
the values of δ1 from (26) depend on the noise level. As it can be observed in Figures 5–7,
a higher value of δ1 is required when SNR decreases. On the other hand, the gain of the
iterative `1-norm regularization is more apparent for low SNRs, where it performs much
better with respect to the conventional Wiener filter using the `2-norm regularization.
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Figure 5. Misalignment of the conventional Wiener filter with `2-norm regularization using δ = 10−8

and the Wiener filter with iterative `1-norm regularization using different values of δ1, for N = 5000
and (a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB, and (d) SNR = 0 dB.

Finding an optimal value of δ1 is beyond the scope of this paper, in which the main
purpose is to outline the features and the potential of the `1-norm regularization for the
identification of sparse systems. However, based on the previous experimental results,
some empirical ranges for the values of this parameter could be recommended, depending
on the SNR. For example, in good SNR conditions (e.g., SNR ≥ 20 dB), a reliable choice
could be

δ1|SNR(dB)≥20dB = 10−(1+log10SNR) (65)

= 10−
(

1+ SNR(dB)
10

)
.
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On the other hand, in moderate or low SNR environments (e.g., 0 ≤ SNR < 20 dB),
another option could be

δ1|SNR(dB)<20dB = 10−(2+log10SNR) (66)

= 10−
(

2+ SNR(dB)
10

)
.
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Figure 6. Details of Figure 5 (focusing on the overlapping curves), showing the misalignment of the
conventional Wiener filter with `2-norm regularization using δ = 10−8 and the Wiener filter with
iterative `1-norm regularization using different values of δ1, for N = 5000 and (a) SNR = 30 dB,
(b) SNR = 20 dB, (c) SNR = 10 dB, and (d) SNR = 0 dB.
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Figure 7. Misalignment of the conventional Wiener filter with `2-norm regularization using δ = 10−8

and the Wiener filter with iterative `1-norm regularization using different values of δ1, for N = 500
and (a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB, and (d) SNR = 0 dB.
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The validity of these recommended choices are verified in Figure 8, in which the
iterative `1-norm regularization is compared with the conventional `2-norm regularization
in various SNR conditions and for different values of N. Here, δ = δ1, where δ1 is computed
based on (65) and (66), depending on the SNR. As it can be inferred, the iterative `1-norm
regularization works significantly better in all the cases, but its gain is more apparent for
low SNRs. Furthermore, the results indicate a good behavior for low values of N, especially
for the critical case when N ≈ L.
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Figure 8. Misalignment of the conventional Wiener filter with `2-norm regularization and the Wiener
filter with iterative `1-norm regularization, using δ = δ1 [based on (65) and (66)] and different values
of N, for (a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB, and (d) SNR = 0 dB.

7.3. Wiener Filter Based on the Kronecker Product Decomposition

The Wiener filter based on the Kronecker product decomposition (KPD) presented in
Section 5 involves smaller data structures with respect to the conventional Wiener filter.
While the conventional solution is obtained by directly solving (19), the KPD-based Wiener
filter iteratively combines the solutions from (41) and (42). In other words, instead of
dealing with a single filter of length L = L1L2 (as in the conventional case), the KPD
approach handles two shorter filters of lengths PL1 and PL2, with P� L2. The advantages
become more apparent for the identification of long-length impulse responses, such as in
echo cancellation [10].

In Figure 9, the conventional Wiener filter is compared with the KPD-based solution
using different values of the decomposition parameter P. The regularization parameter is
set to δ = 10−8 for both algorithms. In this simulation, N is set to 5000 and different SNRs
are used. As shown in Section 5, the value of P is related to the rank of the matrix H, which
reshapes the impulse response h. In this scenario, the length of h is L = 500, so that the
values L1 = 25 and L2 = 20 can be used. In this case, rank(H) = 3. As it can be observed
in Figure 9a–c, the performance of the KPD-based Wiener filter is improved as the value of
P increases up to the rank of H. The advantages become more apparent for lower SNRs,
where the KPD solution outperforms the conventional Wiener filter for most of the values
of P. It is interesting to notice that in heavy noise conditions (e.g., SNR = 0 dB), a lower
value of P could be used, as indicated in Figure 9d.

In terms of the quantity of data available for the estimation of the statistics, the value
N = 5000 corresponds to a favorable scenario, since L = 500, so that N = 10L in this case.
Therefore, a reliable set of statistical estimates [see (63) and (64)] are available. However,
even in this favorable scenario, the performance of the conventional Wiener filter is still
influenced by the SNR level, as already supported in Figure 2. In other words, the accuracy
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of its solution is worse when the SNR decreases, as can also be inferred from Figure 9. On
the other hand, the KPD-based Wiener filter operates with smaller data structures, and it is
less influenced by the accuracy of the statistical estimates, as compared to the conventional
Wiener filter. Consequently, it is also more robust to the SNR level. Especially in noisy
conditions, i.e., with moderate and low SNRs (e.g., 10 dB and 0 dB, respectively), the
KPD-based Wiener filter (for any value of P) outperforms the conventional Wiener solution.
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Figure 9. Misalignment of the conventional Wiener filter and the KPD-based Wiener filter using
different values of P, for N = 5000 and (a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB, and
(d) SNR = 0 dB.

Next, the performance of the KPD-based Wiener filter (using P = 3) is evaluated for
different values of N and in different SNR conditions, using the conventional Wiener filter
as a benchmark for comparison. As it can be observed in Figure 10, the KPD approach
outperforms the conventional solution for all the values of N and in all SNR conditions.
The advantages become more apparent for low values of N, i.e., N ≈ L.
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Figure 10. Misalignment of the conventional Wiener filter and the KPD-based Wiener filter using
P = 3, for different values of N and (a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB, and
(d) SNR = 0 dB.
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7.4. Wiener Filter with QEP Regularization

Finally, the last experiment is dedicated to the QEP regularization from (60), which
is explained in Section 6. The linearization methods from (54), (55), (57), and (58) are
referred in Figure 11 as QEP 1 and QEP 2, respectively. The conventional Wiener filter
using δ = 10−8 is considered for comparison.
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Figure 11. Misalignment of the conventional Wiener filter with `2-norm regularization using
δ = 10−8 and the Wiener filter with QEP regularization using the linearizations from (54) and
(55) (namely QEP 1) and (57) and (58) (namely QEP 2), for different values of N and (a) SNR = 30 dB,
(b) SNR = 20 dB, (c) SNR = 10 dB, and (d) SNR = 0 dB.

In Figure 11, different values of N and different SNRs are used. It can be inferred that
the QEP regularization outperforms the regular `2-norm regularization, especially for low
values of N. In heavy noise conditions (e.g., SNR = 0 dB), the QEP approach leads to better
results for all the values of N, as indicated in Figure 11d. It can also be observed that the
two linearization methods perform in a very similar way. It is interesting to compare the
results from Figure 11 with the plots from Figure 3. In this context, it can be observed that
the QEP regularization is close to the optimal `2-norm regularization of the Wiener filter.

8. Conclusions

The regularization process is a critical step in any ill-posed problem, especially in
noisy environments. This important step is also required in conjunction with the well-
known Wiener filter, to avoid an ill-conditioned matrix inversion, as well as to control and
improve its performance in low SNR conditions. In this paper, the focus was on several
regularization techniques of the Wiener filter.

As shown in Section 4, the classical `2-norm (or Tikhonov) regularization performs
reasonably well only in good or moderate SNR environments. Nevertheless, for sparse
systems, the overall performance of the Wiener filter can be improved by using a regu-
larization technique based on the `1 norm. The iterative solution proposed in this paper
outperforms the `2-norm regularization, especially in challenging conditions, i.e., for low
SNRs and/or when using less accurate statistical estimates.

The KPD-based approach is also suitable when only a small quantity of data is
available for the estimation of the statistics, as supported in Section 5. The resulting
iterative KPD-based Wiener filter can lead to significantly better results, as compared to
the conventional Wiener filter for the identification of low-rank systems. This KPD-based
version combines the solutions provided by two shorter filters, while the conventional
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Wiener filter operates with a single filter of much longer length. Consequently, the KPD-
based approach fits very well for the identification of long-length impulse responses.

Finally, the QEP regularization technique presented in Section 6 improves the perfor-
mance of the Wiener filter (as compared to the `2-norm regularization), especially in noisy
environments (i.e., low SNRs), but also when using less accurate estimates of the statistics.
Experimental results have supported the main theoretical developments and indicated the
robust performance of these regularization techniques.
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