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Abstract: Fuzzy systems (FSs) are popular and interpretable machine learning methods, represented
by the adaptive neuro-fuzzy inference system (ANFIS). However, they have difficulty dealing with
high-dimensional data due to the curse of dimensionality. To effectively handle high-dimensional
data and ensure optimal performance, this paper presents a deep neural fuzzy system (DNFS) based
on the subtractive clustering-based ANFIS (SC-ANFIS). Inspired by deep learning, the SC-ANFIS
is proposed and adopted as a submodule to construct the DNFS in a bottom-up way. Through
the ensemble learning and hierarchical learning of submodules, DNFS can not only achieve faster
convergence, but also complete the computation in a reasonable time with high accuracy and
interpretability. By adjusting the deep structure and the parameters of the DNFS, the performance
can be improved further. This paper also performed a profound study of the structure and the
combination of the submodule inputs for the DNFS. Experimental results on five regression datasets
with various dimensionality demonstrated that the proposed DNFS can not only solve the curse of
dimensionality, but also achieve higher accuracy, less complexity, and better interpretability than
previous FSs. The superiority of the DNFS is also validated over other recent algorithms especially
when the dimensionality of the data is higher. Furthermore, the DNFS built with five inputs for each
submodule and two inputs shared between adjacent submodules had the best performance. The
performance of the DNFS can be improved by distributing the features with high correlation with
the output to each submodule. Given the results of the current study, it is expected that the DNFS
will be used to solve general high-dimensional regression problems efficiently with high accuracy
and better interpretability.

Keywords: interpretability; high-dimensional data; adaptive neuro-fuzzy inference system; deep
neural fuzzy system

1. Introduction

Fuzzy systems (FSs) originated from the fuzzy set theory proposed by Zadeh in
1965 [1], which are based on fuzzy rules. FSs are more interpretable and intuitive methods
that can match any set of input–output data by each fuzzy rule [2]. As soft computing
techniques, FSs have achieved great success in dealing with numerous problems of un-
certainty, such as the seismic vulnerability assessment of buildings [3–5], the prediction
of the irrigation water infiltration rate [6], the automatic classification of crop disease
images [7], etc.

However, there are three main challenges in developing optimal FSs through the
analysis of the research status: (1) Optimization: Optimizing FSs within a valid period
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of time to achieve higher accuracy and faster convergence is now worthy of in-depth
study, which is also challenging. (2) The curse of dimensionality: The number of fuzzy
rules increases exponentially with the dimensionality of the input, which leads to the
computation not being able to be completed within a reasonable time. Hence, it is difficult
for FSs to deal with high-dimensional problems. (3) Interpretability: The interpretability
is the advantage of FSs that distinguishes them from other machine learning models.
However, as the number of fuzzy rules increases, the interpretability of FSs will be affected.
Therefore, how to solve the high-dimensional problem on the basis of ensuring better
interpretability is one of the current bottlenecks.

In recent years, great efforts have been made to improve FSs [8]. Evolutionary algo-
rithms (EAs) [9,10], the gradient descent (GD) algorithm [11], and GD plus least squares
estimation (LSE) [12] have been proposed to optimize FSs. Although EAs can search for
the optimal solution with enough iterations, the computational cost is too expensive to be
suitable for the optimization of FSs. The adaptive neuro-fuzzy inference system (ANFIS)
proposed by Jang formed by GD plus LSE [12] has been widely applied in national energy
demand forecasting [13,14], flood sensitivity forecasting [15], geographic temperature fore-
casting [16], heart disease classification [17], and so on. However, the convergence speed of
GD or GD plus LSE is very slow, and they easily fall into local optimal solutions.

In view of the above problems, new techniques based on the ANFIS optimized by EAs
have been emerging. For example, Azar et al. proposed the improved ANFIS based on
the Harris hawks optimization evolutionary algorithm and demonstrated its effectiveness
on the prediction of the longitudinal dispersion coefficient of natural rivers [18]. Xu et al.
proposed an ANFIS-PSO method based on an improved particle swarm optimization
algorithm and successfully applied it to the evaluation of tool wear [19]. Kaur et al.
combined the genetic algorithm with the ANFIS to further improve the prediction accuracy
of the waterborne disease cholera [20]. In addition, a method of optimizing the ANFIS based
on an improved firefly algorithm and the differential evolution optimization algorithm was
proposed by Balasubramanian [21], which has been proven to be effective in the application
of medical disease prediction. Ehteram et al. used three optimization algorithms (sine–
cosine algorithm, particle swarm optimization algorithm, and firefly algorithm) to optimize
the ANFIS to improve the prediction accuracy [22]. However, all the above methods only
focus on the optimization of FSs and still have challenges in solving high-dimensional data.

In order to enable FSs to process high-dimensional data, principal component analysis
(PCA) [23] is widely used for dimensionality reduction. Razin et al. combined the ANFIS
with PCA to predict the Iranian ionospheric time series, which can shorten the convergence
time and obtain the optimal solution [24]. Phan et al. solved the problem of predicting the
fracture pressure of defective pipelines more effectively through the combination of PCA
and the ANFIS [25]. Meanwhile, it is worth referring to the efficient training algorithm
named MBGD-RDA proposed by Wu et al. for TSK FSs in 2020 [26]. PCA was applied to
constrain the maximum input dimensionality to five, and several novel techniques were
proposed in MBGD-RDA. However, in terms of the above methods, the performance will
be affected due to the loss of important features by PCA, especially for high-dimensional
data. Therefore, the curse of dimensionality has not been fundamentally solved for FSs.

The primary target of this study was to enable FSs to effectively solve high-dimensional
regression problems on the basis of ensuring the performance and interpretability. The
main contributions of this paper are as follows:

(1) Inspired by deep learning, the subtractive clustering-based ANFIS (SC-ANFIS) is
proposed and adopted as a submodule to construct the deep neural fuzzy system
(DNFS) in a bottom-up way;

(2) Combined with ensemble learning and hierarchical learning, the DNFS that can solve
general high-dimensional regression problems efficiently with high accuracy and
interpretability is proposed;

(3) The effect of the deep structure and the combination of submodule inputs on the
performance of the DNFS are researched in-depth;
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(4) The effectiveness and superiority of the DNFS are validated on five real-world datasets
with various dimensionalities.

The remainder of this paper is organized as follows: Section 2 introduces the proposed
DNFS algorithm. Section 3 describes the datasets and performance indices used in the
experiments. Section 4 presents the experimental results to verify the effectiveness of the
DNFS. Section 5 draws the conclusion and points out the directions for future research.

2. The DNFS Algorithm
2.1. The SC-ANFIS Submodel

The structure of the ANFIS is composed of an adaptive neural network and an FS.
It not only inherits the adaptive learning ability of neural networks, but also keeps the
interpretability of FSs. The ANFIS can adjust the parameters according to prior knowledge
so that the predicted values are closer to the target values, which has achieved great
success in many applications [27]. The SC-ANFIS is proposed in this paper, which applies
subtractive clustering (SC) to construct a Sugeno fuzzy inference system in the ANFIS.
The SC-ANFIS can effectively avoid the combinatorial explosion of fuzzy rules when the
dimensionality of the input is very high. In addition, the fuzzy rules generated by SC are
more consistent with the data than those obtained without clustering. The input space
can be divided appropriately, and the number of membership functions (MFs) and the
parameters for each input domain can be reasonably determined [28]. There are two other
well-known methods to construct fuzzy inference systems: (1) grid partitioning; (2) fuzzy
c-means clustering [29]. It has been proven that SC is better than other algorithms [30,31],
and it was adopted as the method to generate the fuzzy inference system in the ANFIS.

There are several types of MFs in the ANFIS (e.g., triangular, trapezoidal, generalized
bell, Gaussian, etc.) that can be applied [32]. The MF used in the SC-ANFIS is Gaussian,
considering that it has the advantages of being nonzero, simple, and smooth and having
fewer parameters compared with other MFs [33]. Furthermore, relevant studies have
demonstrated that the performance of the Gaussian MF is better than others in many
nonlinear complex problems [34,35]. The general ANFIS structure, which has five layers
and two inputs, is as follows:

Layer 1: Calculate the MF values for each input domain.

Oi
1 = uAi (x1), i = 1, 2 | Oi

1 = uB(i−2)
(x2), i = 3, 4 (1)

where x1, x2 are the inputs and uAi (x) and uB(i−2)
(x) are the corresponding MF values,

which can be expressed in the Equation (2).

uAi (x1) = uBi (x2) = e
− (x−ci)

2

2σ2
i , i = 1, 2 (2)

where ci and σi are the parameters of the Gaussian MF that result in the different shapes of
the MF for each input;

Layer 2: Multiply the MF values of the inputs as the excitation intensity corresponding
to the fuzzy rule:

Oi
2 = wi = uAi (x1)× uBi (x2), i = 1, 2; (3)

Layer 3: Normalize the incentive intensity of the fuzzy rule, which represents the
weight of the rule in all rule bases:

Oi
3 = w̄i =

wi
w1 + w2

, i = 1, 2; (4)

Layer 4: Calculate the output of each fuzzy rule:

Oi
4 = w̄i fi = w̄i(px1 + qx2 + r), i = 1, 2 (5)
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where {p, q, r} are the consequent parameters for each fuzzy rule;
Layer 5: Integrate the output of all fuzzy rules and calculate the final output.

O1
5 = ∑

i
w̄i fi, i = 1, 2 (6)

where Oi
k is the output of the k-th layer.

2.2. The Structure of the DNFS Algorithm

This paper employed the SC-ANFIS as a submodule to construct the DNFS. By di-
viding the high-dimensional data into several groups of m-dimensionality, the results are
obtained by each submodule in a more efficient way.

The number of inputs for each submodule (m) and the number of inputs shared
between adjacent submodules (n) need to be initialized, so as to construct DNFSm-n.
Figure 1 shows the general structure diagram of DNFS5-2.

The basic definition of the structure of DNFSm-n is defined as follows:
Layer 1: The number of inputs for each submodules is m, and n inputs are shared be-

tween adjacent submodules. Each submodule works separately and obtains its own results;
Layer 2: The outputs of each submodules in the first layer are merged into a new

dataset, which are applied in the second layer. The way of grouping the inputs is the same
as the first layer;

Similarly, the inputs of layer L consist of the outputs of each submodule of L-1. The
submodules are built in the same way as the first layer to group the inputs. The submodules
of each layer are built bottom-up until the inputs of the last layer are only enough to build
one submodule, and the final result is obtained.

Figure 1. The general structure diagram of DNFS5-2.

2.3. The Implementation Steps of the DNFS Algorithm

This section mainly introduces the implementation steps of the DNFS algorithm.
The flowchart of the proposed DNFSm-n is shown in Figure 2. The execution process of
DNFSm-n is as follows:
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Step 1. Data preprocessing: Each numerical feature was mapminmax-normalized, and
the dataset was divided into a training set and a test set;

Step 2. Define the structure of the DNFS: Determine m, n, the layers, and the number
of submodules of each layer;

Step 3. Group the training set and the test set: The training set and the test set are divided
into several groups of m-dimensionality, and each group corresponds to one submodule;

Step 4. Training submodule: Traverse each submodule of the current layer, and put
the grouped training set into the corresponding submodule for training;

Step 5. Test submodule: Put the grouped test set into the corresponding submodule,
which has been trained to perform the testing;

Step 6. Determine if the DNFS is completed: If the current layer is the last one of
the DNFS structure, the current outputs are directly taken as the final output, and turn to
Step 7. Otherwise, the outputs of the current layer are merged into a new dataset, which
are adopted as the inputs of the next layer, and return to Step 3;

Step 7. Obtain the final result.
There is a special case in Step 3: the group needs to be supplemented if there are not

enough features in the grouping to constitute m-dimensional inputs. The main situations
are as follows:

• If this happens when the training set and the test set are grouped in the first layer, the
features are selected in turn from the first group that has been divided to supplement them;

• If this happens when the training set and the test set are grouped among the second
layer to the last layer, all the outputs of the upper layer are sorted based on the
error value in ascending order, and the outputs with the smallest error are selected
according to the number of missing ones.

Figure 2. The flowchart of DNFSm-n.

3. Dataset and Performance Index
3.1. The Datasets

To demonstrate that the proposed DNFS can effectively solve the high-dimensional
regression problems, this paper selected five representative datasets with various dimen-
sionality from the UCI machine learning repository, and the specific information of the
datasets is shown in Table 1. Sixty percent of the samples were randomly selected for
training and the remaining forty percent for testing.
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Table 1. Summary of the five regression datasets.

Index Dataset No. of Features No. of Samples Application Field

1 Parkinson’s 1 21 5875 Parkinson’s telemonitoring
2 Wdbc 2 30 569 Breast cancer diagnosis
3 Superconductor 3 81 10,000 Superconductor temperature prediction
4 Music 4 69 1059 Geographic origin of music
5 Residential Building 5 108 372 Residential building cost

1 http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring (accessed on 20 March 2021); 2 http://archive.ics.uci.edu/
ml/datasets/Breast+Cancer+Wisconsin+%28Prognostic%29 (accessed on 20 March 2021); 3 http://archive.ics.uci.edu/ml/datasets/
Superconductivty+Data (accessed on 20 March 2021); 4 http://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music (ac-
cessed on 20 March 2021); 5 http://archive.ics.uci.edu/ml/datasets/Residential+Building+Data+Set (accessed on 20 March 2021).

3.2. Performance Index

To evaluate the performance of the DNFS algorithm comprehensively, four perfor-
mance indices (e.g., mean absolute error (MAE), root mean squared error (RMSE), Akaike
information criterion (AIC) [36], and symmetric mean absolute percentage error (SMAPE))
were introduced. MAE, RMSE, and SMAPE mainly measure the precision, while AIC
considers the precision and simplicity simultaneously [37]. They are defined as:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (7)

RMSE =

√√√√( 1
n

n

∑
i=1

(ŷi − yi)
2

)
(8)

AIC = n log(RMSE)2 + 2k (9)

SMAPE =
100%

n

n

∑
i=1

2|ŷi − yi|
(|ŷi|+ |yi|)

(10)

where n is the number of samples, ŷ and y are the predicted value and the true value,
respectively, and k is the number of parameters that can be optimized. The parameters of a
submodule are equal to the number of antecedent parameters (A ∗ T ∗ S) plus the number
of consequent parameters (R ∗ (S + 1)). A and T are the number of MF parameters and
the MF in each input domain, respectively. S is the input dimensions. R is the number of
fuzzy rules (TS). The parameters of the DNFS are equal to the sum of the parameters of
each submodule.

In order to reflect the comprehensive performance of the model, this paper also defined
an evaluation method to rank each index. The final score was the sum of the scores of
each index. The experimental platform of this paper was a desktop computer running
MATLAB 2020a and Windows 10 Education 64x, with Intel Core i7-9700 CPU @ 3.00 GHz,
16 GB memory, and a 512 GB solid state drive.

4. Experimental Results
4.1. The Effect of the Number of Submodule Inputs on the DNFS

This section mainly focuses on the effect of the number of submodule inputs on the
DNFS for the first three datasets. The corresponding DNFSs with 3, 4, and 5 submodule
inputs are DNFS3-0, DNFS4-0, and DNFS5-0, respectively.

The performance comparison of DNFSs with different submodule inputs on the first
three test datasets are shown in Tables 2–4. The prediction charts performed by the three

http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Prognostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Prognostic%29
http://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
http://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
http://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
http://archive.ics.uci.edu/ml/datasets/Residential+Building+Data+Set


Appl. Sci. 2021, 11, 7766 7 of 19

DNFSs on the first three test datasets are shown in Figure 3. The analysis of the results
obtained was as follows:

DNFS5-0 outperformed DNFS3-0 and DNFS4-0 in the prediction accuracy, which
determined that its comprehensive score was always the highest among the three cases.
The MAE, RMSE, and SMAPE of DNFS5-0 were smaller than the other two algorithms on
the three datasets. As shown in Figure 3, it also can be seen that DNFS5-0 achieved the best
fitting effect, while the other two algorithms performed relatively poor.

In terms of model complexity, DNFS5-0 had the minimum layers and submodules,
followed by DNFS4-0 and DNFS3-0. It can be concluded that more submodules and layers
needed to be built to decompose the high-dimensional data with fewer submodule inputs.
Meanwhile, DNFS5-0 had the most parameters and DNFS3-0 the least on average. The
AIC of DNFS3-0 was the minimum for the first two datasets, while DNFS5-0 obtained the
best AIC on Dataset No. 3.

The average computational time that DNFS3-0, DNFS4-0, and DNFS5-0 spent on
the three datasets was 31.21 s, 36.44 s, and 58.32 s respectively. It can be concluded that
DNFS3-0 is the most efficient method for the three cases.

Based on the analysis above, DNFS5-0 can ensure the optimal performance with less
complexity. The advantage of DNFS5-0 was further revealed with the increase of dimen-
sionality, by which the high-dimensional data could be divided into submodules more
rapidly. Therefore, the DNFS algorithm with five submodule inputs was researched further.

Table 2. The performance of DNFSs with different submodule inputs on Test Dataset No. 1 .

Methods AIC MAE RMSE SMAPE Score Layers No. of Submodules No. of Params Time(s)

DNFS3-0 −12,986.28 0.039451 0.051882 4.0123% 9 3 11 460 14.4406
DNFS4-0 −12,020.87 0.039588 0.052901 4.0713% 5 3 9 897 30.1497
DNFS5-0 −10,667.72 0.037904 0.051602 3.8449% 10 2 6 1632 96.9152

Table 3. The performance of DNFSs with different submodule inputs on Test Dataset No. 2.

Methods AIC MAE RMSE SMAPE Score Layers No. of Submodules No. of Params Time(s)

DNFS3-0 −480.23 0.047057 0.057765 7.8493% 7 4 17 410 2.2976
DNFS4-0 −372.59 0.042295 0.060043 6.1742% 6 3 11 455 1.3916
DNFS5-0 −409.42 0.035025 0.049632 5.4848% 11 3 9 480 1.3602

Table 4. The performance of DNFSs with different submodule inputs on Test Dataset No. 3.

Methods AIC MAE RMSE SMAPE Score Layers No. of Submodules No. of Params Time(s)

DNFS3-0 −14,625.26 0.081153 0.105330 8.1929% 5 4 40 1690 76.9161
DNFS4-0 −14,451.25 0.078638 0.101860 7.8498% 7 4 30 1911 77.8035
DNFS5-0 −14,761.41 0.073618 0.098158 7.5000% 12 3 22 1904 76.7091
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(a)

(b)

(c)

Figure 3. Prediction chart of DNFSs with different submodule inputs on the three test datasets. (a) Test Dataset No. 1.
(b) Test Dataset No. 2. (c) Test Dataset No. 3.
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4.2. The Effect of the Number of Inputs Shared by Adjacent Submodules on the DNFS

The target of this section is to explore the performance of the DNFS with different
shared inputs on the first three datasets.

As shown in Tables 5–7, DNFS5-2 had the minimum MAE, RMSE, and SMAPE on the
three test datasets, which indicated that the best prediction accuracy can be achieved by
DNFS5-2. As shown in Figure 4, it can be seen obviously that DNFS5-2 achieved the best
fitting effect on the three test datasets among the three cases.

Based on the experimental results obtained, it also can be found that the structures of
DNFS5-0 and DNFS5-1 were simpler than DNFS5-2. There is no doubt that the more shared
inputs there are, the more layers and submodules will be under the same submodule inputs.
Consequently, DNFS5-2 had the most layers, submodules, and parameters on average,
which led to its poor AIC value.

On average, DNFS5-0, DNFS5-1, and DNFS5-2 spent 60.02 s, 49.93 s, and 70.84 s on the
three test datasets. Therefore, DNFS5-1 is the most efficient method, followed by DNFS5-0
and DNFS5-2.

As the comprehensive performance was taken into consideration, the superiority of
DNFS5-2 is shown obviously. The score of DNFS5-2 was the highest among the three
DNFSs, which can resolve the high-dimensional data within a valid period of time. On
the whole, DNFS without shared input had a simpler structure, and that with two shared
inputs had better prediction accuracy.

Table 5. The performance of DNFSs with different shared inputs on Test Dataset No. 1.

Methods AIC MAE RMSE SMAPE Score Layers No. of Submodules No. of Params Time(s)

DNFS5-0 −10,667.72 0.037904 0.051602 3.8449% 7 2 6 1632 99.3428
DNFS5-1 −11,899.62 0.039198 0.051779 4.0155% 6 2 6 1008 56.0007
DNFS5-2 −10,960.29 0.036194 0.048819 3.6826% 11 3 10 1616 75.7929

Table 6. The performance of DNFSs with different shared inputs on Test Dataset No. 2.

Methods AIC MAE RMSE SMAPE Score Layers No. of Submodules No. of Params Time(s)

DNFS5-0 −409.42 0.035025 0.049632 5.4848% 9 3 9 480 2.1238
DNFS5-1 −84.53 0.036351 0.053814 5.5005% 5 3 11 624 1.7390
DNFS5-2 97.92 0.034611 0.045798 5.4495% 10 3 14 752 2.1080

Table 7. The performance of DNFSs with different shared inputs on Test Dataset No. 3.

Methods AIC MAE RMSE SMAPE Score Layers No. of Submodules No. of Params Time(s)

DNFS5-0 −14,761.41 0.073618 0.098158 7.5000% 9 3 22 1904 78.6101
DNFS5-1 −14,065.16 0.074622 0.098456 7.6021% 5 3 26 2240 92.0680
DNFS5-2 −12,060.34 0.072505 0.096758 7.4269% 10 4 40 3312 134.6429

4.3. The Effect of the Combination of Submodule Inputs on the DNFS

To reveal the effect of the combination of submodule inputs on the DNFS, this paper
introduced DNFS5-2-Random. The implementation steps of DNFS5-2-Random are as
follows: each time DNFS5-2 is executed, the input of each layer is randomly scrambled.
After DNFS5-2 is executed in this way 10 times, the optimal input order is taken as the final
order of DNFS5-2, and the corresponding results are obtained.

Meanwhile, in order to validate the effectiveness and superiority of DNFS, MBGD-
RDA, which is the latest training algorithm for TSK FSs, was introduced to be compared
with DNFS. MBGD-RDA was implemented by the MATLAB implementation given in [26],
and its initial learning parameters were consistent with [26], which proved to be the optimal
one. Besides, the radial basis function (RBF) [38], generalized regression neural network
(GRNN) [39], and long-short term memory (LSTM) [40] were also introduced to further
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reveal the superiority of the DNFS, which represent general machine learning models.
Their implementation were mainly realized by calling the newrb, newgrnn, and trainNetwork
functions of the deep learning toolbox in MATLAB 2020a, whose learning parameters were
mainly selected as the default values of the functions.

(b)

(c)

(a)

Figure 4. Prediction chart of DNFSs with different shared inputs on the three test datasets. (a) Test Dataset No. 1. (b) Test
Dataset No. 2. (c) Test Dataset No. 3.
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The analysis of the effect of different combinations of submodule inputs: By analyzing the
structure of the DNFS, the combination of inputs for each submodule of the first layer
played a key role in improving the performance of the DNFS. Therefore, we performed
the Pearson correlation analysis on the confusion inputs of the first layer obtained in the
experiments with the output variable. Figure 5 shows the correlation analysis diagram
between the output and inputs sequentially and randomly on the five datasets. It can
be seen obviously that the input variables with high correlation values were relatively
concentrated both sequentially and in the random cases on Dataset No. 1 and No. 3. On
the contrary, the inputs with high correlation values were more scattered in the random
case than that of the sequential case on Dataset No.2, No. 4, and No. 5.

Meanwhile, the results of Tables 8–12 indicate that DNFS5-2-Random achieved better
performance than DNFS5-2 on Dataset No. 2, No. 4, and No. 5. Compared with DNFS5- 2,
DNFS5-2-Random decreased by 38.8%, 27.7%, and 38.5% the MAE, RMSE, and SMAPE for
Test Dataset No. 2, while it decreased them by 19.9%, 16.7%, and 18.9% for Test Dataset
No. 4, and by 72.4%, 71.8%, and 57.7% for Test Dataset No. 5, respectively. However, their
performance was not significantly differences on the other two datasets.

Through the analysis of the results obtained, it can be concluded that the features that
had a higher correlation with the output should be dispersed into each submodule, so that
the performance of each submodule can be balanced and the overall performance improved.

(b)

(c)

(a)

(e)

(d)

Figure 5. Correlation analysis comparison of sequential inputs with random inputs. (a) The random inputs were obtained
from Dataset No. 1. (b) The random inputs were obtained from Dataset No. 2. (c) The random inputs were obtained from
Dataset No. 3. (d) The random inputs were obtained from Dataset No. 4. (e) The random inputs were obtained from Dataset
No. 5.
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Table 8. The performance of different algorithms on Test Dataset No. 1.

Methods AIC MAE RMSE SMAPE Score No. of Params Time(s)

DNFS5-2 −10,960.29 0.036194 0.048819 3.6826% 22 1616 79.17
DNFS5-2-Random −10,586.60 0.038558 0.052859 3.8531% 18 1616 79.17

MBGD-RDA −11,543.80 0.060311 0.078368 5.8256% 12 212 80.60
RBF −11,197.62 0.056373 0.075138 5.6249% 14 484 4.45

GRNN 151,331.14 0.076540 0.100070 7.3024% 4 81,075 0.75
LSTM −5155.65 0.053984 0.071124 5.3900% 14 3634 11.27

Table 9. The performance of different algorithms on Test Dataset No. 2.

Methods AIC MAE RMSE SMAPE Score No. of Params Time(s)

DNFS5-2 97.92 0.034611 0.045798 5.4495% 19 752 3.24
DNFS5-2-Random −49.68 0.021180 0.033134 3.3494% 23 752 3.24

MBGD-RDA −876.94 0.044928 0.057675 7.1593% 14 212 11.55
RBF 744.59 0.046341 0.075619 7.0748% 10 961 2.85

GRNN 20,721.73 0.065567 0.089166 9.5434% 4 10,912 0.23
LSTM 13,319.86 0.036128 0.048267 5.9079% 14 7351 3.69

Table 10. The performance of different algorithms on Test Dataset No. 3.

Methods AIC MAE RMSE SMAPE Score No. of Params Time(s)

DNFS5-2 −12,060.34 0.072505 0.096758 7.4269% 19 3312 136.01
DNFS5-2-Random −12,267.30 0.070064 0.094287 7.2362% 23 3312 136.01

MBGD-RDA −15,879.33 0.107280 0.130300 10.2332% 15 212 133.09
RBF −4768.90 0.079133 0.102580 8.1977% 15 6724 55.13

GRNN 980,721.60 0.128060 0.148110 11.6646% 4 498,000 4.66
LSTM 89,774.67 0.111550 0.135110 10.6297% 8 52,894 61.63

Table 11. The performance of different algorithms on Test Dataset No. 4.

Methods AIC MAE RMSE SMAPE Score No. of Params Time(s)

DNFS5-2 4360.27 0.14319 0.19193 7.4534% 17 2880 18.98
DNFS5-2-Random 4205.55 0.11462 0.15992 6.0446% 23 2880 18.98

MBGD-RDA −962.79 0.15571 0.19488 8.1886% 11 212 17.95
RBF 8462.11 0.15690 0.20645 8.0534% 7 4900 3.04

GRNN 88,733.52 0.14374 0.18379 7.4592% 14 45,085 0.27
LSTM 75,437.50 0.14707 0.18509 7.6936% 12 38,434 7.72

Table 12. The performance of different algorithms on Test Dataset No. 5.

Methods AIC MAE RMSE SMAPE Score No. of Params Time(s)

DNFS5-2 16,098.64 0.054051 0.095032 9.0792% 14 8400 27.58
DNFS5-2-Random 15,720.91 0.014918 0.026753 3.8346% 23 8400 27.58

MBGD-RDA −274.07 0.065187 0.096086 9.4366% 12 212 8.79
RBF 23,125.08 0.070965 0.117970 11.0976% 6 11,881 3.08

GRNN 48,221.88 0.044081 0.060055 7.4286% 17 24,530 0.24
LSTM 186,906.80 0.055241 0.068434 8.9043% 12 93,853 6.80

The analysis of the performances of the DNFS and the other algorithms: The performance
comparison of the DNFS with the other algorithms on the five test datasets is shown in
Tables 8–12. The prediction charts for different algorithms are shown in Figures 6–10.
Through observation and analysis, the following information can be obtained:

As shown in Figures 6–10, DNFS5-2-Random achieved the highest prediction accuracy
among the six algorithms on the five datasets. Compared to MBGD-RDA, RBF, GRNN, and
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LSTM, the average MAE decreased by 40.1%, 36.7%, 43.3%, and 35.8%, respectively, the
average RMSE decreased by 34.1%, 36.4%, 36.8%, and 27.7%, respectively, and the average
SMAPE decreased by 40.4%, 39.2%, 43.9%, and 36.8% respectively. The performance of
DNFS5-2 was second only to DNFS5-2-Random. Compared to MBGD-RDA, RBF, GRNN,
and LSTM, the average MAE of DNFS5-2 was reduced by 21.4%, 16.8%, 25.6%, and 15.6%,
respectively, the average RMSE decreased by 14.1%, 17.2%, 17.6%, and 5.8%, respectively,
and the average SMAPE decreased by 18.9%, 17.3%, 23.7%, and 14.1%, respectively. Hence,
there is no doubt that the DNFS outperformed the other algorithms in prediction accuracy.

Meanwhile, Tables 8–12 show that DNFS5-2 had fewer parameters and a simpler
structure than RBF, GRNN, and LSTM, which validated that DNFS5-2 has less complexity
and higher interpretability. On the contrary, the parameters of the three machine learning
models increased exponentially with the dimensionality of the input, which led to their
interpretability being very poor. In addition, MBGD-RDA constrained the maximum input
dimensionality five, so that its parameters were equal to 212( 5 ∗ 2 ∗ 2 + 25 ∗ (5 + 1) = 212),
while the MF was Gaussian and the number for each input domain was two. On all five
datasets, the parameters of MBGD-RDA were far fewer than the other algorithms, resulting
in the AIC being minimum. However, the prediction accuracy of MBGD-RDA was not
optimal, which was probably because of the loss of important features due to PCA, so the
performance was greatly affected.

The average computational time that DNFS5-2, MBGD-RDA, RBF, GRNN, and LSTM
spent on the five datasets was 52.99 s, 50.39 s, 13.31 s, 1.23 s, and 18.22 s respectively.
Obviously, GRNN was the most efficient method among all the algorithms. Although the
efficiency of DNFS5-2 was relatively poor, it could achieve the best performance within
a valid period of time, which could not be achieved by previous FSs. Additionally, the
computational cost for each algorithm increased with the features and samples based on
Tables 8–12.

Figure 6. Prediction charts of different algorithms on Test Dataset No. 1.
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Figure 7. Prediction charts of different algorithms on Test Dataset No. 2.

Figure 8. Prediction charts of different algorithms on Test Dataset No. 3.
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Figure 9. Prediction charts of different algorithms on Test Dataset No. 4.

Figure 10. Prediction charts of different algorithms on Test Dataset No. 5.
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The analysis of the generalization ability of the DNFS: The performance comparison of the
DNFS on the five datasets for the training and the testing is shown in Figure 11. Figure 11a
shows the test MAE comparison of the DNFS on the training level with the testing level,
while Figure 11b,c shows the test RMSE and SMAPE comparison, respectively. It can be
seen that the DNFS could achieve excellent performance both on the training level and
testing level. The DNFS had similar performance on the training level and testing level, in
particular for Dataset No. 1 and No. 3. It is obvious that the DNFS had excellent generaliza-
tion performance with enough samples. However, the test performance would be slightly
worse than that on the training level due to fewer samples. Therefore, the regularization
method will be introduced in the future research to enhance the generalization ability of
the DNFS.

(a) (b)

(c)

Figure 11. Performance of the DNFS on the five datasets for the training and testing. (a) The test MAE comparison. (b) The
test RMSE comparison. (c) The test SMAPE comparison.

5. Conclusions

FSs are well-known machine learning models, but have difficulty in dealing with high-
dimensional data. This paper proposed the DNFS to enable FSs to effectively solve high-
dimensional regression problems on the basis of ensuring accuracy and interpretability.
Inspired by deep learning, the SC-ANFIS was proposed and adopted as a submodule to
construct the structure of the DNFS in a bottom-up way. This paper also performed an
in-depth study on the deep structure and the combination of submodule inputs for the
DNFS to improve the performance of the DNFS.

The experimental results on five real-world regression datasets indicated that:

1. The DNFS had higher prediction accuracy. Compared with the well-known models:
MBGD-RDA, RBF, GRNN, and LSTM, the average values of the DNFS on MAE,
RMSE, and SMAPE decreased by 38.9%, 33.7%, and 40.0%, respectively;

2. The DNFS had less complexity and better interpretability. The number of parameters
of the DNFS was far less than the other algorithms, especially when the dimensionality
of the input was very high. It also can be concluded that the structure of the DNFS is
simpler and more interpretable;

3. The DNFS can solve high-dimensional regression problems in a more reasonable time
than the previous FSs, while ensuring excellent performance;

4. The DNFS with five submodule inputs and two shared inputs had the best compre-
hensive performance. Additionally, dispersing the features that had a high correla-
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tion with the output into each submodule, better improvement of the DNFS could
be achieved.

Additionally, this paper proposes future research directions: On the one hand, how
to reduce the time consumption under the same structure will be further considered.
Removing the submodules with poor performance or more fuzzy rules is the current
preliminary idea, which is likely to reduce the computational cost and improve the accuracy.
On the other hand, how to determine the optimal input combination for each submodule
is also another future direction.
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The following abbreviations are used in this manuscript:

ANFIS Adaptive neuro-fuzzy inference system
SC Subtractive clustering
SC-ANFIS Subtractive clustering-based ANFIS
DNFS Deep neural fuzzy system
FSs Fuzzy systems
EAs Evolutionary algorithms
GD Gradient descent
LSE Least squares estimation
PCA Principal component analysis
MFs Membership functions
MAE Mean absolute error
RMSE Root mean squared error
SMAPE Symmetric mean absolute percentage error
AIC Akaike information criterion
RBF Radial basis function
GRNN Generalized regression neural network
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