
applied  
sciences

Article

Collision Risk Evaluation and Verification of GNSS-Based
Train Integrity Detection

Kewei Ji 1, Linguo Chai 2,*, Sihui Li 3, Xiangyan Liu 2 and Xiu Pan 4

����������
�������

Citation: Ji, K.; Chai, L.; Li, S.; Liu,

X.; Pan, X. Collision Risk Evaluation

and Verification of GNSS-Based Train

Integrity Detection. Appl. Sci. 2021,

11, 7764. https://doi.org/10.3390/

app11167764

Academic Editor: Paola Pellegrini

Received: 14 July 2021

Accepted: 20 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; keweiji@bjtu.edu.cn
2 School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;

17211275@bjtu.edu.cn
3 Department of Transportation of Hebei Province, Shijiazhuang 050031, China; lisihui@bjtu.edu.cn
4 Hebei Provincial Communication Planning and Design Institute, Shijiazhuang 050031, China;

panxiu@waystone.top
* Correspondence: lgchai@bjtu.edu.cn

Abstract: To meet the demand for middle and low-density railway lines, a Global Navigation
Satellite System (GNSS) based on a train integrity monitoring system (TIMS) is used for train integrity
detection. Each system has to be analyzed before it is applied in practice. To evaluate the safety of
the train integrity detection, a collision risk evaluation method is proposed based on the positioning
errors and protection level, in which the Probability of dangerous Failure per Hour (PFH) is computed
to quantify the the criteria of Safety Integrity Level (SIL). Then, an experiment-based simulation
procedure is presented for safety verification. Statistics results have been obtained from field test data,
and simulations are carried out using CPN and MATLAB to verify the collision risk of GNSS-based
train integrity detection. The result showed that the GNSS-based train integrity detection satisfies
the safety requirements in the system design phase for railway applications.

Keywords: Global Navigation Satellite System; train integrity; Colored Petri Net; safety verification

1. Introduction

In railway freight transport, there might be decoupling accidents that would seriously
threaten a train’s operation safety. As shown in Table 1, according to the analysis of
train integrity-related accidents or events caused by train couplers and traction devices
in the United States in the past 40 years (1975–2015) [1], coupler breakage, caused by
acceleration, and fault of management or maintenance, leads to train vehicle separation.
Without protection, the left behind train vehicles will lead to rear-end collision with the
approaching train, which would cause severe casualties and economic loss. Train integrity
detection means checking and reporting on train completeness in movement. The train
integrity monitoring system (TMIS) is a signaling platform to ensure trains consistently
remain intact. Once trains split unintentionally, TMIS will send alarms to the relevant
personnel to take appropriate measures to avoid a collision.

A train integrity monitoring system based on on-board equipment is a low-cost
solution for freight trains in middle and low-density railway lines. So far, there are train
integrity solutions based on brake air pipe pressure, wireless sensor network, and GNSS
as presented in reference [2–6]. In these systems, GNSS and other sensors are employed
for self-localization and wireless communication. The risks of using GNSS are due to its
inherent features [7], especially for safety relevant TIMS. It is necessary to point out the
positioning faults or failures when the GNSS-based position is used in TIMS to ensure a
safe and reliable position determination. So, a safety evaluation and verification in the
system design phase should be done for the development of GNSS-based TIMS. CPN [8,9]
has been successfully applied for the modeling and verification of safety-relevant systems,
including risk analysis, accident modeling, and system verification [10–12]. Colored Petri
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Net (CPN) is selected as the simulation of train positioning errors for the newly developed
GNSS-based TIMS.

Table 1. Accidents or events related to train integrity caused by train coupler and traction devices.

Cause of the Accident
Quantity Type of Accident

Count Percentage Collision Derail Other

Knuckle broken or defective 466 14 93 318 55
Coupler mismatch 387 11.6 41 302 44
Coupler draw head broken or
defective 672 20.2 55 585 32

Coupler retainer pin/cross key
missing 412 12.4 18 355 39

Draft gear/mechanism
broke/defect 423 12.7 19 371 33

Coupler carrier broken/defective 209 6.3 24 175 10
Coupler shank broken/defective 125 3.7 5 110 10
Coupler shank broken/defectivel 11 0.3 - 10 1
Other coupler/draft system 622 18.7 97 446 79
Total 3327 100 352 2672 303

The paper is organized as follows. Firstly, system structure and train integrity de-
tection logic of GNSS-based TIMS are introduced. Secondly, the safety of train integrity
detection is evaluated based on the positioning errors and protection level using an indi-
cator of Failure per Hour (PFH) to quantify the criteria of SIL, and an experiment-based
Monte Carlo simulation verification procedure is proposed. Finally, simulations are carried
out by CPN and MATLAB using the statistics from field tests.

2. GNSS-Based Train Integrity Detection

A typical GNSS-based TIMS consists of a ground monitoring center, Head-of-Train
(HoT), and End-of-Train (EoT) units. An integrated train positioning system (in Figure 1),
including a BDS, GPS, and inertial measurement unit (IMU), is employed to monitor the
dynamic state of trains. EoT-HoT and train-ground communication are achieved by The
General Packet Radio Service (GPRS) wireless channel. Messages from EoTs and HoTs are
gathered by the train’s integrity detection software in the ground monitoring center, where
the train’s integrity decisions are made.
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The ground monitoring center receives the train’s location messages, such as traveling
mileage, velocity, and direction, and the train’s integrity and potential collision will be
detected. Any warning would be sent to the managers and drivers to take safety action to
avoid accidents. The TIMS should locate the train position, detect loss of train integrity
(accidental train parting) and also point out the potential collision. The detailed timeline of
a train’s integrity detection under potential collision risk is illustrated in Figure 2.
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In the GNSS-based TIMS, an undetected train parting is a dangerous failure. When a
limited safe time is exceeded, the undetected train breakage will lead to a rear-end collision.
For the development of the safety-relevant GNSS-based TIMS, the safety evaluation and
verification should be done based on a simulation in the system design phase.

TIMS is based on GPS/BDS and integrated with an IMU sensor to realize train
localization. The GNSS-based train position error is the absolute difference between
the estimated position and the actual position in two dimensional space [1,2], while the
protection level (PL) is the uncertainty of location estimation, extending in a bounded
domain under a certain confidence probability [13,14], bound to the horizontal PL with a
probability derived from the integrity requirement (see Figure 3). Then we can form a safe
train position description.
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3. Collision Risk Evaluation of Train Integrity Detection

The EN 50129 standard is a common basis for railway executives, recognizing and
approving safety-relevant systems for signaling in railway applications [15]. EN 50129
and EN 50126 [16] can both quantitatively and qualitatively assess the risk. The IEC 61508
standard [17] thus defines quantitative safety requirements for each SIL. The quantitative
requirements for the standard are summarized in Table 2, where the SILs are differentiated
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by using the Probability of dangerous Failure per Hour (PFH), showing the quantitative
SIL requirements with a minimal and maximal boundary.

Table 2. Quantitative SIL requirements.

Safety Integrity Level Probability of Dangerous Failure per Hour
(PFH)/h

SIL 4 10−9 ≤ PFH < 10−8

SIL 3 10−8 ≤ PFH < 10−7

SIL 2 10−7 ≤ PFH < 10−6

SIL 1 10−6 ≤ PFH < 10−5

Determining the probabilistic aspects of SIL for safety functions is performed differ-
ently [17]. The supplier designs the system safety and verifies these specifications using
the dependability parameters of the components integrated in the system. The Probability
of Failure on Demand (PFD) [17] is used to determine the PFH value related to a SIL (see
Table 2). PFH is calculated during the system design analysis.

PFH =
PFD(Ti)

Ti
(1)

In which Ti is the time interval between two proof tests, identical for the different
subsystems.

A probabilistic analysis is about assessing the probability that a method is satisfying
one or more performance criteria. It is up to the analyst to formulate what constitutes
acceptable performance, or conversely failure, for the method under consideration. The
limit state concept provides a unified framework for expressing the probability of failure
definitions, which defines the boundary between the safe and unsafe regions of the design
space. In terms of the detection threshold and measuring results, whether a system is safe
or not is captured by one quantity, which is referred to as the performance function and is
commonly denoted by Z. More generally, the performance function may be expressed in
terms of all of the basic random variables in the problem:

Z = Pr
{

m
∩

j=1
Gj(Θ) < 0

}
(2)

In which Pr{·} stands for the probability of the random event in the bracket, and
Θ = (Θ1, Θ2, . . . Θs) being the measurement variables. As shown in Figure 4, Gj(·) is the
limit state function. The notation G(·) < 0 denotes the failure region. Likewise, G(·) = 0
and G(·) > 0 indicate the failure surface and safe region, respectively.

Appl. Sci. 2021, 11, 7764 5 of 17 
 

In which {}Pr ⋅  stands for the probability of the random event in the bracket, and 

1 2( , ,... )sΘ Θ Θ=Θ  being the measurement variables. As shown in Figure 4, ( )jG ⋅  is the 
limit state function. The notation ( ) 0⋅ <G  denotes the failure region. Likewise, 

( ) 0⋅ =G  and ( ) 0⋅ >G  indicate the failure surface and safe region, respectively. 

μG
i

iP

( )βΦ i

β σ⋅ G
i i

 
Figure 4. The probabilistic analysis method. 

For the GNSS-based train integrity detection, the limit-state indicates the margin of 
safety between the detection threshold and the estimated train positioning results. The 
limit state function ( )jG ⋅  can be described as: 

( )j j jG Θ D Θ= −   (3)

where 
= dD L  is the train integrity detection threshold; 
, 1,2=jΘ j  are the positioning results. As Figure 5 shows, 1 = eΘ L  is the estimated 

train length and =2 pΘ L  is the train protection length. 

 
Figure 5. The distributed structure of the train integrity detection. 

We assume in GNSS-based positioning that PE and PL are normally distributed 
~ ( , )

j jj Θ ΘΘ N μ σ . The mean and standard deviation of the limit-state, ( )⋅G , can be deter-

mined from the elementary definition of the mean and variance, ~ ( , )G GG N μ σ . Where 

Θ= −G Dμ μ μ  is the mean. Dμ  and Θμ  are the means of D and jΘ , respectively.

2 2 2= + −G D Θ DΘ D Θσ σ σ ρ σ σ  is the standard deviation. Thus, the probability of failure is 

0

( ) 1 ( ) ( )
−∞

= = − Φ = Φ −Θ GR f G dG β β
  

(4)

where 

Figure 4. The probabilistic analysis method.

For the GNSS-based train integrity detection, the limit-state indicates the margin of
safety between the detection threshold and the estimated train positioning results. The
limit state function Gj(·) can be described as:

Gj(Θj) = D−Θj (3)
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where
D = Ld is the train integrity detection threshold;
Θj, j = 1, 2 are the positioning results. As Figure 5 shows, Θ1 = Le is the estimated

train length and Θ2 = Lp is the train protection length.
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We assume in GNSS-based positioning that PE and PL are normally distributed
Θj ∼ N(µΘj , σΘj). The mean and standard deviation of the limit-state, G(·), can be
determined from the elementary definition of the mean and variance, G ∼ N(µG, σG).
Where µG = µD − µΘ is the mean. µD and µΘ are the means of D and Θj, respectively.

σG =
√

σ2
D + σ2

Θ − 2ρDΘσDσΘ is the standard deviation. Thus, the probability of failure is

RΘ =

0∫
−∞

fG(G)dG = 1−Φ(β) = Φ(−β) (4)

where
βi =

µG
i

σG
i
=

µR
i −µS

i
σR

i +σS
i

is defined as the safety index. Values of β for typical values of G(·)
are shown in [18].

Φ(·) is the standard normal cumulative distribution function.
Kalman filter (KF) is employed to solve the Bayesian filtering problem and obtain

the state estimation results in GNSS-based train position estimation. Variation of PL is
determined by relevant information from the Kalman filtering process. Besides, an efficient
way is to project the test statistic to the position domain by using the uncertainty of position
estimation.

The first step for identifying PL is to carry out the state estimation by fusing informa-
tion with the system model and sensor measurement. Assume that hk denotes the state
vector at instant k that describes the dynamic state of a train moving along the track; the
system model for fusion is:

hk = Akthk−1 + η
yk = Bkhk + w

(5)

where Ak is the active transition matrix at time k; Bk is the active emission matrix at time
k. η and w are the independent Gaussian transitions and observation noises, and yk is the
observation vector with instant sensor measurement. As the definition of filtering state, the
horizontal position uncertainty of PL can be calculated as

PL = γk · σk (6)
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where γk is the factor determined to reflect the probability of missed detection of PL, and
the value γk = 6.18 indicates a probability of missed detection of 5× 10−9 [19]. σk is the is
the estimation residual in KF [14].

For GNSS-based train localization, the probability of failure, risk of GNSS integrity
monitoring, which indicates the positioning error exceeding PL, can be calculated as:

R f = Φ
(
−PL− µ

σ

)
+ 1−Φ

(
PL− µ

σ

)
(7)

where µ and σ are the mean and variance of the position estimation error ĥk.
Then we can work out the safety risk of train integrity. As shown in Figure 5, there are

two different situations in train integrity monitoring:

• Le < Lp < Ld

The detection threshold Ld is lower than the measured train length Le and protection
length Lp. Then, Rk = Pr{G1(Θ) < 0∪ G2(Θ) < 0} = Pr{G2(Θ) < 0} and the PFD can be
derived as:

PFDk = Pr{G2(Θ) < 0} = R f × RΘ2 (8)

• Le < Ld < Lp

The detection threshold Ld is bigger than the measured train length Le and lower than
the protection length Lp. Then Rk = Pr{G1(Θ) < 0∪ G2(Θ) < 0} = Pr{G1(Θ) < 0}, and
the PFD can be derived as:

PFDk = Pr{G1(Θ) < 0} = RΘ1 (9)

If the train parting is still not detected in the limited safe time, a rear-end collision will
occur. Then we can get the safety risk for collision in GNSS-based train integrity detection:

PFH =
3600

m

m

∑
k=1

PFDk (10)

where m is the limited safe time. In the train control system, the time interval between
the adjacent two trains is greater than the train braking time, as illustrated in Table 3 [20].
There are differences in the train coasting time and braking coefficient between full-service
braking and emergency braking. In this paper, the limited safe time m is chosen as the
same as the full-service braking time according to the velocity, and on the assumption that
the following train shares the same velocity with the preceding train.

Table 3. Train braking time in train control system.

Velocity (km/h) 300~0 250~0 200~0 160~0 100~0

Emergency braking time (s) 74.2 60.6 47.1 37.5 23.2
Full-service braking time (s) 113.1 88.1 63.6 48.1 31.3

4. Experiments Based Simulation for Collision Risk Verification

For each specific scenario in GNSS-based TIMS constructed from the attributes of
the operating situation (both GNSS positioning situation and train motion situation), the
probability of a specific event in a scenario depends on the frequency range assigned to the
safety function [21].

To consider the influence of the environment along train routes, it is obviously impos-
sible to describe a limited number of representative geometries to cover all situations of
signal visibility. Environmental configurations along the train itinerary present identical ge-
ometry features. The area around this itinerary constitutes a “typical” environment. Safety
results can then give representative characteristics for the different typical environments
observed [21]. The GNSS-based positioning system can be decomposed as a state to help
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identify the system performance level. These states of GNSS in TIMS are related to location
measurements. So from the GNSS receiver perspective, three states are defined for the
GNSS receiver locations. These three states [21] are upstate, degraded state, and faulty
state, as shown in Figure 6.
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The measured position of the GNSS-based positioning unit is the most important
factor for train parting incident detection. So, a hazardous event is more likely to occur
when the localization function reaches the degraded state and fault state. A train, which has
been wrongly positioned, can lead to unexpected estimated train length and false detection
results. This situation can lead to a rear-end collision. Safety activities on a GNSS-based
TIMS concentrate on these states of GNSS-based localization.

The Monte Carlo simulation is a numerical process that is able to generate both
GNSS positioning errors and train parting sequences composed of dependent situations
where failure frequencies are subject to uncertainty [22]. Several possible evolutions in
the life of the system (i.e., the dynamic transitions of the GNSS positioning system in an
up or degraded state) can be obtained with a Monte Carlo simulation. In GNSS-based
applications in railways, we use an Experience Statistics (ES) methodology [7] to obtain an
efficient procedure capable of managing a huge quantity of data in order to evaluate the
safety properties of GNSS-based positioning. This approach follows the usual steps that
we have here adapted to the GNSS localization.

To determine the accuracy of an estimated position, a reference is needed. The inertial
navigation sensors and other technical solutions-based reference systems can provide an
accurate reference for measurement data evaluation. Figure 7 illustrates the proposed
ES-based Monte Carlo simulation procedure, which begins with this data collection and
continues with several processing steps:

• Step 1, a selection is carried out by the amount of collected data stemming from
receiver output files. They constitute raw data that are unworkable for a safety
evaluation. Useful data leading to the position estimation are extracted at each
sampling instant. Then the useful data are processed to obtain information related to
correct and hazardous states. To determine if there is a failure or not, a position has to
be compared with the true position (the reference). The obtained information leads
to quantitative values that can be subsequently analyzed statistically in order to get
safety results

• Step 2, the typical testing scenarios can be simulated by different probabilities from
Step 1. The system states of GNSS-based positioning in each scenario will be defined
and transformed to each other. Aligned with time, states, and scenarios, positioning
errors are obtained with the normal distribution, of which the mean and variant can
be found from the statistics.

• Step 3, the train motion of both the preceding train and following train will be simu-
lated with different velocities and accelerations. Integrated with positioning errors,
the train movement state can employ a Kalman filter to compute the protection level.
With different train operation situations, the limited safety time, simulation time, and
detection time can be found. Based on the detection threshold, a limit-state-based prob-
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ability method will be applied to get the PFD and PFH. Finally, the SIL of GNSS-based
TIMS in the design phase are achieved.
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5. Simulation and Results

To obtain different scenarios and positioning states, raw data are collected as follows:
the runs of a train equipped with a GPS receiver and reference system are tested in
order to evaluate the positioning errors. The GNSS and the reference location data were
collected along the High Tatra Mountain railway line from May 2008 to February 2009
(see Figure 8) [23–26], and the deviation between GNSS receiver and reference locations is
calculated for performance evaluation.
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The High Tatra Mountain railway line is 29.1 km long from Poprad to Smokovec until
Strbske Pleso. There are open areas and forests but no tunnels or railway bridges. The
thresholds for the required train localization function are set as an upstate threshold of
10 m, and the positioning deviations bigger than 10 m and lower than 20 m are set as the
degraded state. A faulty state is defined when the deviation is bigger than 20 m, which
indicates it ceases to be a localization function and is no longer available as a resource for
the localization function. Then, the statistics of positioning errors in different scenarios
(open area and forest) and localization states (upstate, degraded state and fault state) are
found out [27], as shown in Table 4. Since the mean and variance of deviation normal
distribution in upstate from the test run are chosen, the mean and variance of the other
two states are set depending on the thresholds.

Table 4. Statistics of GNSS positioning errors.

Scenarios Open Area Forest

Percentage 98% 2%

States Upstate Degraded
State

Fault
State Upstate Degraded

State
Fault
State

Percentage 95.78% 3.26% 0.96% 73.69 7.92% 18.39%

Positioning
error

µ(m) 6.84 16.84 26.84 8.96 18.96 28.96

σ(m) 24.11 24.11 24.11 29.71 29.71 29.71

Not only the localization states but also the transitions between the states are con-
sidered here. The mean time of the six transitions can be found out from the measured
individual time span staying in one state to another. The mean times from one state transi-
tion to another are categorized, and the results [27] of all six transitions are estimated in
Table 5.

Table 5. Distribution of Each Transition and Parameters.

Transition Mean Time (s) Corresponding in CPN Model

upstate to degraded state transition 15.31 UP_DE
degraded state to upstate transition 2.46 DE_UP

upstate to faulty state transition 20.79 UP_FA
faulty state to upstate transition 5.91 FA_UP

degraded state to faulty state transition 2.88 DE_FA
faulty state to degraded state transition 6.71 FA_DE

The procedure is based on the statistically processed fieldmeasurements. One scenario
is a sequence constituted of a succession of states associated with the localization function.
The transition between the different states is also associated with time. Figure 9 illustrates
scenarios (open area with white color and forest with grey color) in which states (upstate
with green color, degraded state with yellow color, and fault state with red color) are
distinguished at each sampling instant using unit steps and colors.

Because of the timed and stochastic nature of the GNSS-based positioning system,
formal and simulation-based verification are combined to generate the GNSS positioning
errors. The CPN model of the GNSS positioning errors is shown in Figures 10 and 11. In
order to evaluate the existing or planned systems, a performance analysis is conducted. In
CPN, each token can be parameterized with the required meaning, which is not available
in low-level Petri Nets. By adapting values to corresponding quantities, the system can
be easily understood and changed, then described in executable code. During simulation-
based performance analysis, data is collected from the occurring binding elements, and the
markings reached [15]. With the data obtained from the model, performance measures of
the GNSS-based TIMS are available.
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The model is divided into two layers; the first layer (see Figure 10) includes EoT and
HoT in open area scenarios and forest scenarios. As shown in Figure 11, the second layer
described each scenario in detail; parameterization was done in this layer (EoT_Open_Area,
HoT_Open_Area, EoT_Forest, and HoT_Forest share the same model structure in Figure 11,
different parameters according to Table 4). Relative time and distributions characteris-
tics are involved in the second layer; position error data can be extracted from up_data,
degraded_data, and faulty_data.
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The off-line data positioning errors (see Figure 12) aligned to simulation time from
CPN tools are imported into MATLAB and integrated with the train motion simulation. The
train motion simulation generates kinematic data (i.e., position, velocity, and acceleration)
of both HoT and EoT. Train parting events are so rare that they do not provide enough
information for statistical analysis, and we cannot have a true experiment yet. To take
into account each parameter subject to failure, train parting processes are simulated with
different relative distances, velocities, and accelerations over a mission time to provide
an interval of time-dependent probabilities for the train integrity detection. Hence in this
Monte Carlo process, the system states evolve, while the operating context remains the
same and experiences all the possible GNSS localization and train operation scenarios
and states.
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The autonomous positioning error of offline data corresponding to the simulation
time from the CPN tool (see Figure 5) are imported into MATLAB and combined with the
simulation data of train motion characteristics to generate kinematic data (i.e., position,
speed, and acceleration) for evaluating hot and EoT. Due to the severity and contingency
of train separation accidents, they cannot provide enough measurement information for
a statistical analysis, and it is difficult to carry out corresponding field tests. In order to
consider the parameters of each safety failure model, different relative distances, speeds,
and accelerations are used to simulate the train separation process in order to provide the
time-dependent probability interval of train integrity detection. Therefore, through the
Monte Carlo simulation process of multi-level state transition, train integrity detection
results of all simulation operation scenarios, environment scenarios, train positioning status,
train integrity status, and other system’s multi-level state evolution can be completed.

For accelerometers, the sensor error includes three parts: bias, temperature drift, and
random interference. Taking the measurement result of the x-axis of the accelerometer as
an example, the error model [28] is as follows:

â = (1 + S)a + B f + n (11)

The meaning of each symbol in the formula is as follows: â is the measured value of
acceleration; a is the actual acceleration; S is the scale factor error; B f is the zero bias error;
n is the random noise error.

In order to verify the performance of the proposed train integrity detection based
on autonomous perception, this paper takes the actual operation of the Ge NJ2 train on
Qinghai Tibet Railway as an example and uses the combination of measured data and
numerical simulation data to verify the performance of the train operation state estimation,
train integrity detection and collision risk evaluation and verification. See Table 6 for the
main parameters of the Ge NJ2 train.

Table 6. Main parameters of NJ2.

Performance Parameter Category Parameter Characteristics

Locomotive length 21 m
Maximum operating speed 120 km/h

Brake type CCBII
Maximum acceleration 7.2 km/h/s
Maximum deceleration 14.4 km/h/s

Dead-weight 13.8 t

The simulated train operation time of the train parting process in every single sim-
ulation is 100 s. Every set of simulation tests include 2700 simulation tests, in which the
velocity increases from 0 to 50 m/s (almost the maximum velocity that a freight train can
reach) by 1 m/s and the acceleration from 0 to 0.54 m/s2 (maximum traction acceleration)
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by 0.01 m/s2. Kalman filtering is employed to smooth the data and compute the protection
level. Based on the positioning errors and protection level (see Figure 13), the train integrity
detection threshold is set to be 50 m. Then a safety evaluation procedure is launched, and
plenty of PFDs in different simulations are computed. As presented in Figure 14, a set of
simulation tests with all the train motion situations show the calculated PFD. The results
show that the PFD varies from 10−20 to 10−50, and higher PFD’s have smaller velocity and
acceleration.
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Figure 14. Collision risks in one simulation test.

Due to the limit of computing performance, 50 sets of simulation tests are carried out,
and the total simulated train operation time is 1.35× 10−7 s. Plenty of PFD in both different
GNSS localization scenarios and states and train motion states are calculated and followed
by the PFH with simulated train operation time. The calculated PFH (see Figure 15) in the
50 sets of simulation range from 10−23 per hour to 10−35 per hour.

An average PFH = 10−25.1482 is found, in reference to the corresponding relationship
of SIL and PFH, the value of the PFH goes into SIL4. Additionally, in the simulated 3750 h
of train operation, no collision accidents happen. Consequently, GNSS technologies can
be applied in safety-related TIMS. Yet it is worth more time to verify, since the results of
SIL quantities were gained over a limited time period. To improve the performance of
GNSS-based train integrity detection, an innovative method should be offered.
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6. Conclusions

This paper proposed methods of formal and Monte Carlo simulation-based collision
risk evaluation and verification of GNSS-based Train integrity Monitoring Systems. When
GNSS in applied in TIMS, the positioning error is the uncertain factor in train integrity
detection. Based on the positioning errors and protection level from the filtering, the
collision risk evaluation method is proposed by using PFH to quantity the SIL. To verify the
collision risk of GNSS-based TIMS, an experiment-based Monte Carlo simulation procedure
is presented. In the simulation, GNSS localization statistics are found from the field test in
the High Tatra Mountain railway line. The CPN is employed to simulate the positioning
errors based on the testing scenarios and states, then the protection level is computed in
MATLAB, and the PFH is derived. The simulation results show that the GNSS-based TIMS
satisfies the safety requirements in the system design phase for railway applications.

Future research will concentrate on the more complex scenarios of both GNSS local-
ization and TIMS operation for simulation. In the next phase of system development, more
real system operation data should be collected and analyzed to further evaluate the train
integrity detection performance.
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